Submitted:
26 June 2023
Posted:
27 June 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. AMPs and CPPs and Neglected Zoonotic Diseases: An Overview
3. How Do AMPs and CPPs Specifically Target Protozoan Parasites without Harming the Infected Mammalian Cell? Cell Entry Mechanisms
4. AMPs and CPPs as Alternative Therapies vs. Conventional Drugs against Leishmaniosis and Chagas Disease
5. Antiparasitic and Immunomodulatory Activities of AMPs and CPPs
5.1. Synthetic and Bioinformatic Tools
5.2. AMPs and CPPs for Combatting Different Forms of Leishmaniosis
| Peptide molecule | Source | Antiprotozoal Activity | Reference |
|---|---|---|---|
| Andropin | Synthetic |
L. panamensis L. major |
[101] |
| Anti-lipopolysaccharide factor | Penaeus monodon (Marine crustacean) | L. braziliensis | [102] |
| BatxC | Bothrops atrox (Snake) | T. cruzi (Y strain) | [131] |
| Bombinins H2 and H4 | Bombina variegata (Frog) | L. donovani | [121] |
| Cathelicidins (SMAP 29, PG-1) | Synthetic |
L. major L. amazonensis |
[132] |
| Cecropin A, D |
Drosophila Hyalaphora cecropia |
L. aethiopica L. panamensis |
[67,92] |
| Cecropin A- melittin | Hybrid peptide |
L. donovani L. pifanoi |
[93,125] |
| Cecropin A, B and P1 | Synthetic |
L. panamensis L. major T. cruzi (Tulahuen strain) |
[101,133] |
| Chyral cyclobutanes | Synthetic | L. donovani | [28] |
| Clavanin A | Styela clava (Sea squirt) | L. braziliensis | [102] |
| CM11 (cecropin-melittin hybrid) | Synthetic | L. major | [47] |
| Cryptdin-1 and -4 | Rhesus macaque small bowel |
L. major L. amazonensis |
[132] |
| Ctn | Crotalus durissus terrificus (Rattlesnake) | T. cruzi (Y strain) | [134] |
| Defensin | Phlebotomus duboscqi (Sandfly) |
L. major L. amazonensis |
[67,135] |
| Defensin α1 | Human | T. cruzi (Tulahuen strain) | [136,137] |
| Defensin (fragments D, P, B, Q & E) |
Mytilus galloprovincialis (Mussel) | L. major | [138] |
| Dermaseptin | Phyllomedusa sauvagii (Frog) |
L. mexicana L. panamensis L. major |
[101,119] |
| Dermaseptin 01 | Synthetic | L. infantum | [120] |
| Dermaseptin-01, 02, 03, 04, 06 and 07 | Phyllomedusa hypochondrialis (Frog) | L. amazonensis | [118] |
| Dermaseptin S1 analogues | Synthetic | L. major | [117] |
| Dhvar4 (histatin 5 analog) | Synthetic | L. donovani | [139] |
| DS 01 | Frog Phyllomedusa oreades |
T. cruzi (Y strain) | [140] |
| Enterocin AS-48 | Enterococcus faecalis | L. pifanoi | [141] |
| Enterocin AS-48 homologs | Synthetic | L. donovani | [45] |
| Eumenitin | Eumenes rubronotatus (wasp venom) | L. major | [67] |
| Gomesin | Acanthoscurria gomesiana (Tarantula) | L. amazonensis | [142] |
| Histatin 5 (L and d-enantiomers) | Synthetic |
L. donovani L. pifanoi |
[139] |
| Hmc364-382 |
Dpenaeus monodon (shrimp) | T. cruzi (Y strain) | [143] |
| Indolicidin | Synthetic | L. donovani | [112] |
| Lactoferricin (17-30) Lactoferrampin (265-284) LFchimera |
Bovine milk lactoferrin (domain N1) |
L. pifanoi L. donovani |
[104] |
| LTP2 α-1 | Hordeum vulgare (Barley) | L. donovani | [127] |
| M-PONTX-Dq3a[1-15] / [Lys]3-M-PONTX-Dq3a[1-15] |
Dinoponera quadriceps (Ant) Synthetic modification |
T. cruzi (Y strain) | [144,145] |
| Magainin Magainin analogues (MG-H1 / H2) & F5W-magainin 2 |
Xenopus laevis (Frog) Synthetic |
L. braziliensis L. major L. donovani L. amazonensis |
[67,102,146] |
| Melittin | Bee venom Apis mellifera |
L. donovani L. infantum L. panamensis L. major T. cruzi (CL Brener strain) |
[67,101,147] |
| Mylitin A | Mussel Mytilus edulis |
L. braziliensis | [102] |
| NK2 | Synthetic | T. cruzi (Tehuantepec strain) | [148] |
| Ovispirin | Synthetic |
L. major L. amazonensis |
[132] |
| p-Acl and analogue p-AclR7 | Synthetic cationic peptides |
L. amazonensis L. infantum |
[99] |
| Penaeidian-3 | Whiteleg shrimp Litopenaeus vannamei |
L. braziliensis | [102] |
| Rhesus | Synthetic |
L. major L. amazonensis |
[132] |
| Phylloseptin-1 | Synthetic | L. amazonensis | [115] |
| Polybia-CP | Polybia paulista (wasp) | T. cruzi (Y strain) | [149] |
| PTH-1 | Solanum tuberosum (Potato) | L. donovani | [127] |
| Pr-1, 2 and 3 | Synthetic |
L. panamensis L. major |
[101] |
| Pylloseptin 7 | Phyllomedusa nordestina (Frog) | T. cruzi (Y strain) | [150] |
| SALPs | Synthetic | L. major | [67] |
| Snakin-1 | Solanum tuberosum (Potato) | L. donovani | [127] |
| Seminalplasmin (SPK & 27RP) | Synthetic | L. donovani | [112] |
| StigA25 | Tityus stigmurus (Scorpion)-Synthetic | T. cruzi (Y strain) | [151] |
| Tachyplesin | Tachypleus tridentatus (Horseshoe crab) |
L. panamensis L. major L. braziliensis L. donovani T. cruzi (Y strain) |
[101,102,103,152] |
| TAT (48-57) peptide TAT (48-60) peptide TAT and polyarginine |
TAT (transactivator of transcription) protein from HIV-1 |
L. donovani L. infantum |
[28,108,109] |
| Temporins A and B | Rana temporaria (Frog) |
L. donovani L. pifanoi |
[67,123] |
| Temporin-1Sa, 1Sb and 1Sc | Pelophylax saharica (Frog) | L. infantum | [122] |
| Temporizin-1 | Synthetic | T. cruzi (Y strain) | [153] |
| Thionin α-1, α-2 and β type I |
Triticum aestivum (Wheat) Hordeum vulgare (Barley) |
L. donovani | [127] |
| [Arg]11-VmCT1 | Vaejovis mexicanus (Scorpion) | T. cruzi (Y strain) | [154] |
5.3. AMPs and CPPs to Combat T. cruzi Infection
6. Biological Models to Evaluate the Activity of AMPs and CPPs
6.1. Cell Lines and Primary Cell Cultures for Cytotoxicity Assays
6.2. Antiparasitic Activity
6.3. In Vivo Models
7. Challenges to Overcome Regarding the Current Limitations of AMPs and CPPs
8. Emerging Biotechnological Tools: Future Directions
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Donelson, J.E.; Hill, K.L.; El-Sayed, N.M. Multiple mechanisms of immune evasion by African trypanosomes. Mol Biochem Parasitol 1998, 91, 51–66. [Google Scholar] [CrossRef]
- Pauli, I.; Rezende, C.O., Jr.; Slafer, B.W.; Dessoy, M.A.; de Souza, M.L.; Ferreira, L.L.G.; Adjanohun, A.L.M.; Ferreira, R.S.; Magalhaes, L.G.; Krogh, R.; et al. Multiparameter Optimization of Trypanocidal Cruzain Inhibitors With In Vivo Activity and Favorable Pharmacokinetics. Front Pharmacol 2021, 12, 774069. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.K.; Das, S.; Kamran, M.; Ejazi, S.A.; Ali, N. The pathogenicity and virulence of Leishmania - interplay of virulence factors with host defenses. Virulence 2022, 13, 903–935. [Google Scholar] [CrossRef] [PubMed]
- Vazquez-Cabrera, N.; Espinosa-Marquez, A.; Cedillo-Ramirez, M.L. [Historical evolution of World Health Organization guidelines on antimicrobial resistanceEvolucao historica da Organizacao Mundial da Saude e a resistencia aos antimicrobianos]. Rev Panam Salud Publica 2023, 47, e51. [Google Scholar] [CrossRef] [PubMed]
- Murray, A.K.; Stanton, I.; Gaze, W.H.; Snape, J. Dawning of a new ERA: Environmental Risk Assessment of antibiotics and their potential to select for antimicrobial resistance. Water Res 2021, 200, 117233. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Li, G. Antimicrobial Peptides and Cell-Penetrating Peptides: Non-Antibiotic Membrane-Targeting Strategies Against Bacterial Infections. Infect Drug Resist 2023, 16, 1203–1219. [Google Scholar] [CrossRef] [PubMed]
- Parn, K.; Eriste, E.; Langel, U. The Antimicrobial and Antiviral Applications of Cell-Penetrating Peptides. Methods in molecular biology 2015, 1324, 223–245. [Google Scholar] [CrossRef] [PubMed]
- Cruz, G.S.; Santos, A.T.D.; Brito, E.H.S.; Radis-Baptista, G. Cell-Penetrating Antimicrobial Peptides with Anti-Infective Activity against Intracellular Pathogens. Antibiotics (Basel) 2022, 11. [Google Scholar] [CrossRef] [PubMed]
- WHO. Neglected tropical diseases. Available online: https://www.who.int/health-topics/neglected-tropical-diseases#tab=tab_1 (accessed on 9 March 2023).
- The, L. Neglected tropical diseases: ending the neglect of populations. Lancet 2022, 399, 411. [Google Scholar] [CrossRef]
- Organization, G.W.H. Ending the neglect to attain the Sustainable Development Goals: a road map for neglected tropical diseases 2021–2030 2021.
- Roquero, I.; Cantizani, J.; Cotillo, I.; Manzano, M.P.; Kessler, A.; Martin, J.J.; McNamara, C.W. Novel chemical starting points for drug discovery in leishmaniasis and Chagas disease. Int J Parasitol Drugs Drug Resist 2019, 10, 58–68. [Google Scholar] [CrossRef] [PubMed]
- Rojas-Pirela, M.; Kemmerling, U.; Quinones, W.; Michels, P.A.M.; Rojas, V. Antimicrobial Peptides (AMPs): Potential Therapeutic Strategy against Trypanosomiases? Biomolecules 2023, 13. [Google Scholar] [CrossRef]
- Robles-Loaiza, A.A.; Pinos-Tamayo, E.A.; Mendes, B.; Teixeira, C.; Alves, C.; Gomes, P.; Almeida, J.R. Peptides to Tackle Leishmaniasis: Current Status and Future Directions. International journal of molecular sciences 2021, 22. [Google Scholar] [CrossRef] [PubMed]
- Rima, M.; Rima, M.; Fajloun, Z.; Sabatier, J.M.; Bechinger, B.; Naas, T. Antimicrobial Peptides: A Potent Alternative to Antibiotics. Antibiotics (Basel) 2021, 10. [Google Scholar] [CrossRef] [PubMed]
- APD. The Antimicrobial Peptide Database. Available online: https://aps.unmc.edu/ (accessed on 8 March 2023).
- Mazurkiewicz-Pisarek, A.; Baran, J.; Ciach, T. Antimicrobial Peptides: Challenging Journey to the Pharmaceutical, Biomedical, and Cosmeceutical Use. International journal of molecular sciences 2023, 24. [Google Scholar] [CrossRef] [PubMed]
- Neundorf, I. Antimicrobial and Cell-Penetrating Peptides: How to Understand Two Distinct Functions Despite Similar Physicochemical Properties. Adv Exp Med Biol 2019, 1117, 93–109. [Google Scholar] [CrossRef] [PubMed]
- CPPdatabase. The Cell Penetrating Peptides Database. Available online: https://webs.iiitd.edu.in/raghava/cppsite/ (accessed on 9 March 2023).
- Khairkhah, N.; Namvar, A.; Bolhassani, A. Application of Cell Penetrating Peptides as a Promising Drug Carrier to Combat Viral Infections. Mol Biotechnol 2023, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Kardani, K.; Bolhassani, A. Cppsite 2.0: An Available Database of Experimentally Validated Cell-Penetrating Peptides Predicting their Secondary and Tertiary Structures. J Mol Biol 2021, 433, 166703. [Google Scholar] [CrossRef] [PubMed]
- Batista, M.F.; Najera, C.A.; Meneghelli, I.; Bahia, D. The Parasitic Intracellular Lifestyle of Trypanosomatids: Parasitophorous Vacuole Development and Survival. Front Cell Dev Biol 2020, 8, 396. [Google Scholar] [CrossRef]
- Rennick, J.J.; Johnston, A.P.R.; Parton, R.G. Key principles and methods for studying the endocytosis of biological and nanoparticle therapeutics. Nat Nanotechnol 2021, 16, 266–276. [Google Scholar] [CrossRef]
- Buccini, D.F.; Cardoso, M.H.; Franco, O.L. Antimicrobial Peptides and Cell-Penetrating Peptides for Treating Intracellular Bacterial Infections. Front Cell Infect Microbiol 2020, 10, 612931. [Google Scholar] [CrossRef]
- Rivas, L.; Nácher-Vázquez, M.; Andreu, D. The Physical Matrix of the Plasma Membrane as a Target: The Charm of Drugs with Low Specificity. In Drug Discovery for Leishmaniasis, Rivas, L., Gil, C., Eds.; The Royal Society of Chemistry: 2017; pp. 0 %@ 978-971-78262-78889-78267.
- Field, M.C.; Carrington, M. The trypanosome flagellar pocket. Nat Rev Microbiol 2009, 7, 775–786. [Google Scholar] [CrossRef]
- Halliday, C.; de Castro-Neto, A.; Alcantara, C.L.; Cunha, E.S.N.L.; Vaughan, S.; Sunter, J.D. Trypanosomatid Flagellar Pocket from Structure to Function. Trends Parasitol 2021, 37, 317–329. [Google Scholar] [CrossRef] [PubMed]
- Illa, O.; Olivares, J.A.; Gaztelumendi, N.; Martinez-Castro, L.; Ospina, J.; Abengozar, M.A.; Sciortino, G.; Marechal, J.D.; Nogues, C.; Royo, M.; et al. Chiral Cyclobutane-Containing Cell-Penetrating Peptides as Selective Vectors for Anti-Leishmania Drug Delivery Systems. International journal of molecular sciences 2020, 21. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, A.C.S.; Soares, D.C.; Neves, R.F.C.; Koeller, C.M.; Heise, N.; Adade, C.M.; Frases, S.; Meyer-Fernandes, J.R.; Saraiva, E.M.; Souto-Padron, T. Endocytosis and Exocytosis in Leishmania amazonensis Are Modulated by Bromoenol Lactone. Front Cell Infect Microbiol 2020, 10, 39. [Google Scholar] [CrossRef] [PubMed]
- Ansari, I.; Basak, R.; Mukhopadhyay, A. Hemoglobin Endocytosis and Intracellular Trafficking: A Novel Way of Heme Acquisition by Leishmania. Pathogens 2022, 11. [Google Scholar] [CrossRef] [PubMed]
- Patel, N.; Singh, S.B.; Basu, S.K.; Mukhopadhyay, A. Leishmania requires Rab7-mediated degradation of endocytosed hemoglobin for their growth. Proc Natl Acad Sci U S A 2008, 105, 3980–3985. [Google Scholar] [CrossRef] [PubMed]
- Rastogi, R.; Kapoor, A.; Verma, J.K.; Ansari, I.; Sood, C.; Kumar, K.; Mukhopadhyay, A. Rab5b function is essential to acquire heme from hemoglobin endocytosis for survival of Leishmania. Biochim Biophys Acta Mol Cell Res 2021, 1868, 118868. [Google Scholar] [CrossRef]
- Rastogi, R.; Verma, J.K.; Singh, V.; Krishnamurthy, G.; Sood, C.; Kapoor, A.; Kumar, K.; Ansari, I.; Mukhopadhyay, A. Identification and characterization of the hemoglobin-binding domain of hemoglobin receptor in Leishmania. FEBS Lett 2021, 595, 548–558. [Google Scholar] [CrossRef] [PubMed]
- Pessoa, C.C.; Ferreira, E.R.; Bayer-Santos, E.; Rabinovitch, M.; Mortara, R.A.; Real, F. Trypanosoma cruzi Differentiates and Multiplies within Chimeric Parasitophorous Vacuoles in Macrophages Coinfected with Leishmania amazonensis. Infect Immun 2016, 84, 1603–1614. [Google Scholar] [CrossRef] [PubMed]
- Pessoa, C.C.; Reis, L.C.; Ramos-Sanchez, E.M.; Orikaza, C.M.; Cortez, C.; de Castro Levatti, E.V.; Badaro, A.C.B.; Yamamoto, J.; D'Almeida, V.; Goto, H.; et al. ATP6V0d2 controls Leishmania parasitophorous vacuole biogenesis via cholesterol homeostasis. PLoS pathogens 2019, 15, e1007834. [Google Scholar] [CrossRef] [PubMed]
- Scariot, D.B.; Staneviciute, A.; Zhu, J.; Li, X.; Scott, E.A.; Engman, D.M. Leishmaniasis and Chagas disease: Is there hope in nanotechnology to fight neglected tropical diseases? Front Cell Infect Microbiol 2022, 12, 1000972. [Google Scholar] [CrossRef] [PubMed]
- Sundar, S.; Rai, M. Treatment of visceral leishmaniasis. Expert Opin Pharmacother 2005, 6, 2821–2829. [Google Scholar] [CrossRef] [PubMed]
- Chatelain, E.; Konar, N. Translational challenges of animal models in Chagas disease drug development: a review. Drug Des Devel Ther 2015, 9, 4807–4823. [Google Scholar] [CrossRef] [PubMed]
- Mishra, J.; Saxena, A.; Singh, S. Chemotherapy of leishmaniasis: past, present and future. Curr Med Chem 2007, 14, 1153–1169. [Google Scholar] [CrossRef] [PubMed]
- Del Rio, G.; Trejo Perez, M.A.; Brizuela, C.A. Antimicrobial peptides with cell-penetrating activity as prophylactic and treatment drugs. Bioscience reports 2022, 42. [Google Scholar] [CrossRef] [PubMed]
- Radis-Baptista, G. Cell-Penetrating Peptides Derived from Animal Venoms and Toxins. Toxins (Basel) 2021, 13. [Google Scholar] [CrossRef] [PubMed]
- Huan, Y.; Kong, Q.; Mou, H.; Yi, H. Antimicrobial Peptides: Classification, Design, Application and Research Progress in Multiple Fields. Frontiers in microbiology 2020, 11, 582779. [Google Scholar] [CrossRef] [PubMed]
- Powers, J.P.; Hancock, R.E. The relationship between peptide structure and antibacterial activity. Peptides 2003, 24, 1681–1691. [Google Scholar] [CrossRef] [PubMed]
- Abengozar, M.A.; Fernandez-Reyes, M.; Salazar, V.A.; Torrent, M.; de la Torre, B.G.; Andreu, D.; Boix, E.; Rivas, L. Essential Role of Enzymatic Activity in the Leishmanicidal Mechanism of the Eosinophil Cationic Protein (RNase 3). ACS Infect Dis 2022, 8, 1207–1217. [Google Scholar] [CrossRef] [PubMed]
- Corman, H.N.; Ross, J.N.; Fields, F.R.; Shoue, D.A.; McDowell, M.A.; Lee, S.W. Rationally Designed Minimal Bioactive Domains of AS-48 Bacteriocin Homologs Possess Potent Antileishmanial Properties. Microbiol Spectr 2022, 10, e0265822. [Google Scholar] [CrossRef] [PubMed]
- Crauwels, P.; Bank, E.; Walber, B.; Wenzel, U.A.; Agerberth, B.; Chanyalew, M.; Abebe, M.; Konig, R.; Ritter, U.; Reiling, N.; et al. Cathelicidin Contributes to the Restriction of Leishmania in Human Host Macrophages. Frontiers in immunology 2019, 10, 2697. [Google Scholar] [CrossRef] [PubMed]
- Khalili, S.; Ebrahimzade, E.; Mohebali, M.; Shayan, P.; Mohammadi-Yeganeh, S.; Moosazadeh Moghaddam, M.; Elikaee, S.; Akhoundi, B.; Sharifi-Yazdi, M.K. Investigation of the antimicrobial activity of a short cationic peptide against promastigote and amastigote forms of Leishmania major (MHRO/IR/75/ER): An in vitro study. Exp Parasitol 2019, 196, 48–54. [Google Scholar] [CrossRef] [PubMed]
- Naderer, T.; Vince, J.E.; McConville, M.J. Surface determinants of Leishmania parasites and their role in infectivity in the mammalian host. Curr Mol Med 2004, 4, 649–665. [Google Scholar] [CrossRef] [PubMed]
- McConville, M.J.; Ferguson, M.A. The structure, biosynthesis and function of glycosylated phosphatidylinositols in the parasitic protozoa and higher eukaryotes. Biochem J 1993, 294 ( Pt 2) Pt 2, 305–324. [Google Scholar] [CrossRef]
- Torrent, M.; Pulido, D.; Rivas, L.; Andreu, D. Antimicrobial peptide action on parasites. Curr Drug Targets 2012, 13, 1138–1147. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Zheng, J.; Chan, C.F.; Wong, I.L.K.; Heater, B.S.; Chow, L.M.C.; Lee, M.M.M.; Chan, M.K. Targeted delivery of antimicrobial peptide by Cry protein crystal to treat intramacrophage infection. Biomaterials 2019, 217, 119286. [Google Scholar] [CrossRef] [PubMed]
- Kauffman, W.B.; Fuselier, T.; He, J.; Wimley, W.C. Mechanism Matters: A Taxonomy of Cell Penetrating Peptides. Trends Biochem Sci 2015, 40, 749–764. [Google Scholar] [CrossRef] [PubMed]
- Cao, L.; Jiang, W.; Cao, S.; Zhao, P.; Liu, J.; Dong, H.; Guo, Y.; Liu, Q.; Gong, P. In vitro leishmanicidal activity of antimicrobial peptide KDEL against Leishmania tarentolae. Acta Biochim Biophys Sin (Shanghai) 2019, 51, 1286–1292. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Zhao, P.; Cao, L.; Gong, P.; Yuan, S.; Yao, X.; Guo, Y.; Dong, H.; Jiang, W. A Novel Anti-Microbial Peptide from Pseudomonas, REDLK Induced Growth Inhibition of Leishmania tarentolae Promastigote In Vitro. Korean J Parasitol 2020, 58, 173–179. [Google Scholar] [CrossRef] [PubMed]
- Pitale, D.M.; Kaur, G.; Baghel, M.; Kaur, K.J.; Shaha, C. Halictine-2 antimicrobial peptide shows promising anti-parasitic activity against Leishmania spp. Exp Parasitol 2020, 218, 107987. [Google Scholar] [CrossRef] [PubMed]
- Zahedifard, F.; Lee, H.; No, J.H.; Salimi, M.; Seyed, N.; Asoodeh, A.; Rafati, S. Comparative study of different forms of Jellein antimicrobial peptide on Leishmania parasite. Exp Parasitol 2020, 209, 107823. [Google Scholar] [CrossRef] [PubMed]
- Croft, S.L.; Olliaro, P. Leishmaniasis chemotherapy--challenges and opportunities. Clin Microbiol Infect 2011, 17, 1478–1483. [Google Scholar] [CrossRef] [PubMed]
- Pradhan, S.; Schwartz, R.A.; Patil, A.; Grabbe, S.; Goldust, M. Treatment options for leishmaniasis. Clin Exp Dermatol 2022, 47, 516–521. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.; Kumar, P.; Singh, N.; Khajuria, S.; Patel, R.; Rajana, V.K.; Mandal, D.; Velayutham, R. Limitations of current chemotherapy and future of nanoformulation-based AmB delivery for visceral leishmaniasis-An updated review. Front Bioeng Biotechnol 2022, 10, 1016925. [Google Scholar] [CrossRef] [PubMed]
- Zahedifard, F.; Lee, H.; No, J.H.; Salimi, M.; Seyed, N.; Asoodeh, A.; Rafati, S. Anti-leishmanial activity of Brevinin 2R and its Lauric acid conjugate type against L. major: In vitro mechanism of actions and in vivo treatment potentials. PLoS Negl Trop Dis 2019, 13, e0007217. [Google Scholar] [CrossRef]
- Souza, G.S.; de Carvalho, L.P.; de Melo, E.J.T.; Gomes, V.M.; Carvalho, A.O. The toxic effect of Vu-Defr, a defensin from Vigna unguiculata seeds, on Leishmania amazonensis is associated with reactive oxygen species production, mitochondrial dysfunction, and plasma membrane perturbation. Can J Microbiol 2018, 64, 455–464. [Google Scholar] [CrossRef] [PubMed]
- Jhingran, A.; Chawla, B.; Saxena, S.; Barrett, M.P.; Madhubala, R. Paromomycin: uptake and resistance in Leishmania donovani. Mol Biochem Parasitol 2009, 164, 111–117. [Google Scholar] [CrossRef] [PubMed]
- Pinto-Martinez, A.K.; Rodriguez-Duran, J.; Serrano-Martin, X.; Hernandez-Rodriguez, V.; Benaim, G. Mechanism of Action of Miltefosine on Leishmania donovani Involves the Impairment of Acidocalcisome Function and the Activation of the Sphingosine-Dependent Plasma Membrane Ca(2+) Channel. Antimicrob Agents Chemother 2018, 62. [Google Scholar] [CrossRef] [PubMed]
- Paris, C.; Loiseau, P.M.; Bories, C.; Breard, J. Miltefosine induces apoptosis-like death in Leishmania donovani promastigotes. Antimicrob Agents Chemother 2004, 48, 852–859. [Google Scholar] [CrossRef] [PubMed]
- Souza, G.S.; de Carvalho, L.P.; de Melo, E.J.T.; da Silva, F.C.V.; Machado, O.L.T.; Gomes, V.M.; de Oliveira Carvalho, A. A synthetic peptide derived of the beta(2)-beta(3) loop of the plant defensin from Vigna unguiculata seeds induces Leishmania amazonensis apoptosis-like cell death. Amino Acids 2019, 51, 1633–1648. [Google Scholar] [CrossRef]
- Andre, S.; Raja, Z.; Humblot, V.; Piesse, C.; Foulon, T.; Sereno, D.; Oury, B.; Ladram, A. Functional Characterization of Temporin-SHe, a New Broad-Spectrum Antibacterial and Leishmanicidal Temporin-SH Paralog from the Sahara Frog (Pelophylax saharicus). International journal of molecular sciences 2020, 21. [Google Scholar] [CrossRef] [PubMed]
- El-Dirany, R.; Fernandez-Rubio, C.; Pena-Guerrero, J.; Moreno, E.; Larrea, E.; Espuelas, S.; Abdel-Sater, F.; Brandenburg, K.; Martinez-de-Tejada, G.; Nguewa, P. Repurposing the Antibacterial Agents Peptide 19-4LF and Peptide 19-2.5 for Treatment of Cutaneous Leishmaniasis. Pharmaceutics 2022, 14. [Google Scholar] [CrossRef] [PubMed]
- Khanra, S.; Kumar, Y.P.; Dash, J.; Banerjee, R. In vitro screening of known drugs identified by scaffold hopping techniques shows promising leishmanicidal activity for suramin and netilmicin. BMC research notes 2018, 11, 319. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, B.; Pahuja, R.; Kumar, P.; Rath, S.K.; Gupta, K.C.; Goyal, N. Nanotized Curcumin and Miltefosine, a Potential Combination for Treatment of Experimental Visceral Leishmaniasis. Antimicrob Agents Chemother 2017, 61. [Google Scholar] [CrossRef] [PubMed]
- Aqeele, G.; Shayan, P.; Ebrahimzade Abkooh, E.; Mohebali, M. Evaluation of curcumin and CM11 peptide alone and in combination against amastigote form of Iranian strain of L. major (MRHO/IR75/ER) in vitro. Exp Parasitol 2021, 229, 108151. [Google Scholar] [CrossRef] [PubMed]
- Aqeele, G.; Shayan, P.; Ebrahimzadeh, E.; Mohebali, M.; Khalili, S. Determination of the Effective Dose of Curcumin alone and in Combination with Antimicrobial Peptide CM11 on Promastigote Forms of Iranian Strain of L. major (MRHO / IR / 75 / ER). Arch Razi Inst 2019, 74, 413–422. [Google Scholar] [CrossRef] [PubMed]
- Wijnant, G.-J.; Dumetz, F.; Dirkx, L.; Bulté, D.; Cuypers, B.; Van Bocxlaer, K.; Hendrickx, S. Tackling Drug Resistance and Other Causes of Treatment Failure in Leishmaniasis. Frontiers in Tropical Diseases 2022, 3. [Google Scholar] [CrossRef]
- Sanchez-Valdez, F.J.; Padilla, A.; Wang, W.; Orr, D.; Tarleton, R.L. Spontaneous dormancy protects Trypanosoma cruzi during extended drug exposure. Elife 2018, 7. [Google Scholar] [CrossRef] [PubMed]
- Moretta, A.; Scieuzo, C.; Petrone, A.M.; Salvia, R.; Manniello, M.D.; Franco, A.; Lucchetti, D.; Vassallo, A.; Vogel, H.; Sgambato, A.; et al. Antimicrobial Peptides: A New Hope in Biomedical and Pharmaceutical Fields. Front Cell Infect Microbiol 2021, 11, 668632. [Google Scholar] [CrossRef] [PubMed]
- Alberola, J.; Rodriguez, A.; Francino, O.; Roura, X.; Rivas, L.; Andreu, D. Safety and efficacy of antimicrobial peptides against naturally acquired leishmaniasis. Antimicrob Agents Chemother 2004, 48, 641–643. [Google Scholar] [CrossRef] [PubMed]
- Catisti, R.; Uyemura, S.A.; Docampo, R.; Vercesi, A.E. Calcium mobilization by arachidonic acid in trypanosomatids. Mol Biochem Parasitol 2000, 105, 261–271. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.Y.; Yan, Z.B.; Meng, Y.M.; Hong, X.Y.; Shao, G.; Ma, J.J.; Cheng, X.R.; Liu, J.; Kang, J.; Fu, C.Y. Antimicrobial peptides: mechanism of action, activity and clinical potential. Mil Med Res 2021, 8, 48. [Google Scholar] [CrossRef]
- Marr, A.K.; McGwire, B.S.; McMaster, W.R. Modes of action of Leishmanicidal antimicrobial peptides. Future Microbiol 2012, 7, 1047–1059. [Google Scholar] [CrossRef] [PubMed]
- McGwire, B.S.; Kulkarni, M.M. Interactions of antimicrobial peptides with Leishmania and trypanosomes and their functional role in host parasitism. Exp Parasitol 2010, 126, 397–405. [Google Scholar] [CrossRef] [PubMed]
- Santos, F.A.; Cruz, G.S.; Vieira, F.A.; Queiroz, B.R.S.; Freitas, C.D.T.; Mesquita, F.P.; Souza, P.F.N. Systematic review of antiprotozoal potential of antimicrobial peptides. Acta Trop 2022, 236, 106675. [Google Scholar] [CrossRef] [PubMed]
- Mesa-Galloso, H.; Valiente, P.A.; Valdes-Tresanco, M.E.; Epand, R.F.; Lanio, M.E.; Epand, R.M.; Alvarez, C.; Tieleman, D.P.; Ros, U. Membrane Remodeling by the Lytic Fragment of SticholysinII: Implications for the Toroidal Pore Model. Biophys J 2019, 117, 1563–1576. [Google Scholar] [CrossRef] [PubMed]
- Riezk, A.; Raynes, J.G.; Yardley, V.; Murdan, S.; Croft, S.L. Activity of Chitosan and Its Derivatives against Leishmania major and Leishmania mexicana In Vitro. Antimicrob Agents Chemother 2020, 64. [Google Scholar] [CrossRef] [PubMed]
- Soussi, S.; Essid, R.; Karkouch, I.; Saad, H.; Bachkouel, S.; Aouani, E.; Limam, F.; Tabbene, O. Effect of Lipopeptide-Loaded Chitosan Nanoparticles on Candida albicans Adhesion and on the Growth of Leishmania major. Appl Biochem Biotechnol 2021, 193, 3732–3752. [Google Scholar] [CrossRef] [PubMed]
- Riezk, A.; Van Bocxlaer, K.; Yardley, V.; Murdan, S.; Croft, S.L. Activity of Amphotericin B-Loaded Chitosan Nanoparticles against Experimental Cutaneous Leishmaniasis. Molecules 2020, 25. [Google Scholar] [CrossRef]
- Registre, C.; Soares, R.; Rubio, K.T.S.; Santos, O.D.H.; Carneiro, S.P. A Systematic Review of Drug-Carrying Nanosystems Used in the Treatment of Leishmaniasis. ACS Infect Dis 2023, 9, 423–449. [Google Scholar] [CrossRef] [PubMed]
- Mendes, B.; Proano-Bolanos, C.; Gadelha, F.R.; Almeida, J.R.; Miguel, D.C. Cruzioseptins, antibacterial peptides from Cruziohyla calcarifer skin, as promising leishmanicidal agents. Pathog Dis 2020, 78. [Google Scholar] [CrossRef] [PubMed]
- Torres, M.D.T.; Sothiselvam, S.; Lu, T.K.; de la Fuente-Nunez, C. Peptide Design Principles for Antimicrobial Applications. J Mol Biol 2019, 431, 3547–3567. [Google Scholar] [CrossRef] [PubMed]
- Abdildinova, A.; Kurth, M.J.; Gong, Y.D. Heterocycles as a Peptidomimetic Scaffold: Solid-Phase Synthesis Strategies. Pharmaceuticals (Basel) 2021, 14. [Google Scholar] [CrossRef] [PubMed]
- Pena-Carrillo, M.S.; Pinos-Tamayo, E.A.; Mendes, B.; Dominguez-Borbor, C.; Proano-Bolanos, C.; Miguel, D.C.; Almeida, J.R. Dissection of phospholipases A(2) reveals multifaceted peptides targeting cancer cells, Leishmania and bacteria. Bioorg Chem 2021, 114, 105041. [Google Scholar] [CrossRef] [PubMed]
- Diaz-Garrido, P.; Cardenas-Guerra, R.E.; Martinez, I.; Poggio, S.; Rodriguez-Hernandez, K.; Rivera-Santiago, L.; Ortega-Lopez, J.; Sanchez-Esquivel, S.; Espinoza, B. Differential activity on trypanosomatid parasites of a novel recombinant defensin type 1 from the insect Triatoma (Meccus) pallidipennis. Insect Biochem Mol Biol 2021, 139, 103673. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Zhu, X.; Tan, T.; Li, W.; Shan, A. Design of embedded-hybrid antimicrobial peptides with enhanced cell selectivity and anti-biofilm activity. PloS one 2014, 9, e98935. [Google Scholar] [CrossRef] [PubMed]
- Akuffo, H.; Hultmark, D.; Engstom, A.; Frohlich, D.; Kimbrell, D. Drosophila antibacterial protein, cecropin A, differentially affects non-bacterial organisms such as Leishmania in a manner different from other amphipathic peptides. Int J Mol Med 1998, 1, 77–82. [Google Scholar] [CrossRef] [PubMed]
- Diaz-Achirica, P.; Ubach, J.; Guinea, A.; Andreu, D.; Rivas, L. The plasma membrane of Leishmania donovani promastigotes is the main target for CA(1-8)M(1-18), a synthetic cecropin A-melittin hybrid peptide. Biochem J 1998, 330 ( Pt 1) Pt 1, 453–460. [Google Scholar] [CrossRef]
- Le, C.F.; Fang, C.M.; Sekaran, S.D. Intracellular Targeting Mechanisms by Antimicrobial Peptides. Antimicrob Agents Chemother 2017, 61. [Google Scholar] [CrossRef] [PubMed]
- Sabia Junior, E.F.; Menezes, L.F.S.; de Araujo, I.F.S.; Schwartz, E.F. Natural Occurrence in Venomous Arthropods of Antimicrobial Peptides Active against Protozoan Parasites. Toxins (Basel) 2019, 11. [Google Scholar] [CrossRef] [PubMed]
- Brogden, K.A. Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Microbiol 2005, 3, 238–250. [Google Scholar] [CrossRef] [PubMed]
- Lazzaro, B.P.; Zasloff, M.; Rolff, J. Antimicrobial peptides: Application informed by evolution. Science 2020, 368. [Google Scholar] [CrossRef] [PubMed]
- de Barros, N.B.; Aragao Macedo, S.R.; Ferreira, A.S.; Tagliari, M.P.; Kayano, A.M.; Nicolete, L.D.F.; Soares, A.M.; Nicolete, R. ASP49-phospholipase A(2)-loaded liposomes as experimental therapy in cutaneous leishmaniasis model. Int Immunopharmacol 2018, 55, 128–132. [Google Scholar] [CrossRef] [PubMed]
- Mendes, B.; Almeida, J.R.; Vale, N.; Gomes, P.; Gadelha, F.R.; Da Silva, S.L.; Miguel, D.C. Potential use of 13-mer peptides based on phospholipase and oligoarginine as leishmanicidal agents. Comp Biochem Physiol C Toxicol Pharmacol 2019, 226, 108612. [Google Scholar] [CrossRef] [PubMed]
- Amand, H.L.; Rydberg, H.A.; Fornander, L.H.; Lincoln, P.; Norden, B.; Esbjorner, E.K. Cell surface binding and uptake of arginine- and lysine-rich penetratin peptides in absence and presence of proteoglycans. Biochim Biophys Acta 2012, 1818, 2669–2678. [Google Scholar] [CrossRef] [PubMed]
- Perez-Cordero, J.J.; Lozano, J.M.; Cortes, J.; Delgado, G. Leishmanicidal activity of synthetic antimicrobial peptides in an infection model with human dendritic cells. Peptides 2011, 32, 683–690. [Google Scholar] [CrossRef] [PubMed]
- Lofgren, S.E.; Miletti, L.C.; Steindel, M.; Bachere, E.; Barracco, M.A. Trypanocidal and leishmanicidal activities of different antimicrobial peptides (AMPs) isolated from aquatic animals. Exp Parasitol 2008, 118, 197–202. [Google Scholar] [CrossRef] [PubMed]
- Kumar, V.; Chugh, A. Peptide-mediated leishmaniasis management strategy: Tachyplesin emerges as an effective anti-leishmanial peptide against Leishmania donovani. Biochim Biophys Acta Biomembr 2021, 1863, 183629. [Google Scholar] [CrossRef] [PubMed]
- Silva, T.; Abengozar, M.A.; Fernandez-Reyes, M.; Andreu, D.; Nazmi, K.; Bolscher, J.G.; Bastos, M.; Rivas, L. Enhanced leishmanicidal activity of cryptopeptide chimeras from the active N1 domain of bovine lactoferrin. Amino Acids 2012, 43, 2265–2277. [Google Scholar] [CrossRef] [PubMed]
- Keller, A.A.; Breitling, R.; Hemmerich, P.; Kappe, K.; Braun, M.; Wittig, B.; Schaefer, B.; Lorkowski, S.; Reissmann, S. Transduction of proteins into leishmania tarentolae by formation of non-covalent complexes with cell-penetrating peptides. J Cell Biochem 2014, 115, 243–252. [Google Scholar] [CrossRef] [PubMed]
- Ajasin, D.; Eugenin, E.A. HIV-1 Tat: Role in Bystander Toxicity. Front Cell Infect Microbiol 2020, 10, 61. [Google Scholar] [CrossRef] [PubMed]
- Sadiq, I.Z.; Muhammad, A.; Mada, S.B.; Ibrahim, B.; Umar, U.A. Biotherapeutic effect of cell-penetrating peptides against microbial agents: a review. Tissue Barriers 2022, 10, 1995285. [Google Scholar] [CrossRef] [PubMed]
- de la Torre, B.G.; Hornillos, V.; Luque-Ortega, J.R.; Abengozar, M.A.; Amat-Guerri, F.; Acuna, A.U.; Rivas, L.; Andreu, D. A BODIPY-embedding miltefosine analog linked to cell-penetrating Tat(48-60) peptide favors intracellular delivery and visualization of the antiparasitic drug. Amino Acids 2014, 46, 1047–1058. [Google Scholar] [CrossRef] [PubMed]
- Defaus, S.; Gallo, M.; Abengozar, M.A.; Rivas, L.; Andreu, D. A Synthetic Strategy for Conjugation of Paromomycin to Cell-Penetrating Tat(48-60) for Delivery and Visualization into Leishmania Parasites. Int J Pept 2017, 2017, 4213037. [Google Scholar] [CrossRef] [PubMed]
- Luque-Ortega, J.R.; Rivas, L. Characterization of the leishmanicidal activity of antimicrobial peptides. Methods in molecular biology 618. [CrossRef]
- Gulsen, S.H.; Tileklioglu, E.; Bode, E.; Cimen, H.; Ertabaklar, H.; Ulug, D.; Ertug, S.; Wenski, S.L.; Touray, M.; Hazir, C.; et al. Antiprotozoal activity of different Xenorhabdus and Photorhabdus bacterial secondary metabolites and identification of bioactive compounds using the easyPACId approach. Sci Rep 2022, 12, 10779. [Google Scholar] [CrossRef] [PubMed]
- Bera, A.; Singh, S.; Nagaraj, R.; Vaidya, T. Induction of autophagic cell death in Leishmania donovani by antimicrobial peptides. Mol Biochem Parasitol 2003, 127, 23–35. [Google Scholar] [CrossRef] [PubMed]
- Dong, Z.; Hu, H.; Yu, X.; Tan, L.; Ma, C.; Xi, X.; Li, L.; Wang, L.; Zhou, M.; Chen, T.; et al. Novel Frog Skin-Derived Peptide Dermaseptin-PP for Lung Cancer Treatment: In vitro/vivo Evaluation and Anti-tumor Mechanisms Study. Front Chem 2020, 8, 476. [Google Scholar] [CrossRef]
- Brand, G.D.; Santos, R.C.; Arake, L.M.; Silva, V.G.; Veras, L.M.; Costa, V.; Costa, C.H.; Kuckelhaus, S.S.; Alexandre, J.G.; Feio, M.J.; et al. The skin secretion of the amphibian Phyllomedusa nordestina: a source of antimicrobial and antiprotozoal peptides. Molecules 2013, 18, 7058–7070. [Google Scholar] [CrossRef] [PubMed]
- Kuckelhaus, S.A.; Leite, J.R.; Muniz-Junqueira, M.I.; Sampaio, R.N.; Bloch, C., Jr.; Tosta, C.E. Antiplasmodial and antileishmanial activities of phylloseptin-1, an antimicrobial peptide from the skin secretion of Phyllomedusa azurea (Amphibia). Exp Parasitol 2009, 123, 11–16. [Google Scholar] [CrossRef] [PubMed]
- Kuckelhaus, S.A.S.; Aquino, D.S.; Borges, T.K.; Moreira, D.C.; Leite, L.M.; Muniz-Junqueira, M.I.; Kuckelhaus, C.S.; Romero, G.A.S.; Prates, M.V.; Bloch, C., Jr.; et al. Phylloseptin-1 is Leishmanicidal for Amastigotes of Leishmaniaamazonensis Inside Infected Macrophages. Int J Environ Res Public Health 2020, 17. [Google Scholar] [CrossRef]
- Savoia, D.; Guerrini, R.; Marzola, E.; Salvadori, S. Synthesis and antimicrobial activity of dermaseptin S1 analogues. Bioorg Med Chem 2008, 16, 8205–8209. [Google Scholar] [CrossRef] [PubMed]
- Brand, G.D.; Leite, J.R.; de Sa Mandel, S.M.; Mesquita, D.A.; Silva, L.P.; Prates, M.V.; Barbosa, E.A.; Vinecky, F.; Martins, G.R.; Galasso, J.H.; et al. Novel dermaseptins from Phyllomedusa hypochondrialis (Amphibia). Biochem Biophys Res Commun 2006, 347, 739–746. [Google Scholar] [CrossRef]
- Hernandez, C.; Mor, A.; Dagger, F.; Nicolas, P.; Hernandez, A.; Benedetti, E.L.; Dunia, I. Functional and structural damage in Leishmania mexicana exposed to the cationic peptide dermaseptin. Eur J Cell Biol 1992, 59, 414–424. [Google Scholar] [PubMed]
- Zampa, M.F.; Araujo, I.M.; Costa, V.; Nery Costa, C.H.; Santos, J.R., Jr.; Zucolotto, V.; Eiras, C.; Leite, J.R. Leishmanicidal activity and immobilization of dermaseptin 01 antimicrobial peptides in ultrathin films for nanomedicine applications. Nanomedicine : nanotechnology, biology, and medicine 2009, 5, 352–358. [Google Scholar] [CrossRef] [PubMed]
- Mangoni, M.L.; Papo, N.; Saugar, J.M.; Barra, D.; Shai, Y.; Simmaco, M.; Rivas, L. Effect of natural L- to D-amino acid conversion on the organization, membrane binding, and biological function of the antimicrobial peptides bombinins H. Biochemistry 2006, 45, 4266–4276. [Google Scholar] [CrossRef] [PubMed]
- Abbassi, F.; Oury, B.; Blasco, T.; Sereno, D.; Bolbach, G.; Nicolas, P.; Hani, K.; Amiche, M.; Ladram, A. Isolation, characterization and molecular cloning of new temporins from the skin of the North African ranid Pelophylax saharica. Peptides 2008, 29, 1526–1533. [Google Scholar] [CrossRef] [PubMed]
- Mangoni, M.L.; Saugar, J.M.; Dellisanti, M.; Barra, D.; Simmaco, M.; Rivas, L. Temporins, small antimicrobial peptides with leishmanicidal activity. J Biol Chem 2005, 280, 984–990. [Google Scholar] [CrossRef] [PubMed]
- Luque-Ortega, J.R.; Saugar, J.M.; Chiva, C.; Andreu, D.; Rivas, L. Identification of new leishmanicidal peptide lead structures by automated real-time monitoring of changes in intracellular ATP. Biochem J 2003, 375, 221–230. [Google Scholar] [CrossRef] [PubMed]
- Chicharro, C.; Granata, C.; Lozano, R.; Andreu, D.; Rivas, L. N-terminal fatty acid substitution increases the leishmanicidal activity of CA(1-7)M(2-9), a cecropin-melittin hybrid peptide. Antimicrob Agents Chemother 2001, 45, 2441–2449. [Google Scholar] [CrossRef] [PubMed]
- Fernandez-Reyes, M.; Diaz, D.; de la Torre, B.G.; Cabrales-Rico, A.; Valles-Miret, M.; Jimenez-Barbero, J.; Andreu, D.; Rivas, L. Lysine N(epsilon)-trimethylation, a tool for improving the selectivity of antimicrobial peptides. J Med Chem 2010, 53, 5587–5596. [Google Scholar] [CrossRef] [PubMed]
- Berrocal-Lobo, M.; Molina, A.; Rodriguez-Palenzuela, P.; Garcia-Olmedo, F.; Rivas, L. Leishmania donovani: thionins, plant antimicrobial peptides with leishmanicidal activity. Exp Parasitol 2009, 122, 247–249. [Google Scholar] [CrossRef] [PubMed]
- Vila-Perello, M.; Sanchez-Vallet, A.; Garcia-Olmedo, F.; Molina, A.; Andreu, D. Synthetic and structural studies on Pyrularia pubera thionin: a single-residue mutation enhances activity against Gram-negative bacteria. FEBS Lett 2003, 536, 215–219. [Google Scholar] [CrossRef] [PubMed]
- Stec, B. Plant thionins--the structural perspective. Cell Mol Life Sci 2006, 63, 1370–1385. [Google Scholar] [CrossRef] [PubMed]
- Zahedifard, F.; Lee, H.; No, J.H.; Salimi, M.; Seyed, N.; Asoodeh, A.; Rafati, S. Correction: Anti-leishmanial activity of Brevinin 2R and its Lauric acid conjugate type against L. major: In vitro mechanism of actions and in vivo treatment potentials. PLoS Negl Trop Dis 2019, 13, e0007584. [Google Scholar] [CrossRef] [PubMed]
- Mello, C.P.; Lima, D.B.; Menezes, R.R.; Bandeira, I.C.; Tessarolo, L.D.; Sampaio, T.L.; Falcao, C.B.; Radis-Baptista, G.; Martins, A.M. Evaluation of the antichagasic activity of batroxicidin, a cathelicidin-related antimicrobial peptide found in Bothrops atrox venom gland. Toxicon 2017, 130, 56–62. [Google Scholar] [CrossRef] [PubMed]
- Kulkarni, M.M.; McMaster, W.R.; Kamysz, E.; Kamysz, W.; Engman, D.M.; McGwire, B.S. The major surface-metalloprotease of the parasitic protozoan, Leishmania, protects against antimicrobial peptide-induced apoptotic killing. Mol Microbiol 2006, 62, 1484–1497. [Google Scholar] [CrossRef]
- Jaynes, J.M.; Burton, C.A.; Barr, S.B.; Jeffers, G.W.; Julian, G.R.; White, K.L.; Enright, F.M.; Klei, T.R.; Laine, R.A. In vitro cytocidal effect of novel lytic peptides on Plasmodium falciparum and Trypanosoma cruzi. FASEB J 1988, 2, 2878–2883. [Google Scholar] [CrossRef]
- Bandeira, I.C.J.; Bandeira-Lima, D.; Mello, C.P.; Pereira, T.P.; De Menezes, R.; Sampaio, T.L.; Falcao, C.B.; Radis-Baptista, G.; Martins, A.M.C. Antichagasic effect of crotalicidin, a cathelicidin-like vipericidin, found in Crotalus durissus terrificus rattlesnake's venom gland. Parasitology 2018, 145, 1059–1064. [Google Scholar] [CrossRef] [PubMed]
- Boulanger, N.; Lowenberger, C.; Volf, P.; Ursic, R.; Sigutova, L.; Sabatier, L.; Svobodova, M.; Beverley, S.M.; Spath, G.; Brun, R.; et al. Characterization of a defensin from the sand fly Phlebotomus duboscqi induced by challenge with bacteria or the protozoan parasite Leishmania major. Infect Immun 2004, 72, 7140–7146. [Google Scholar] [CrossRef] [PubMed]
- Madison, M.N.; Kleshchenko, Y.Y.; Nde, P.N.; Simmons, K.J.; Lima, M.F.; Villalta, F. Human defensin alpha-1 causes Trypanosoma cruzi membrane pore formation and induces DNA fragmentation, which leads to trypanosome destruction. Infect Immun 2007, 75, 4780–4791. [Google Scholar] [CrossRef] [PubMed]
- Kleschenko, Y.E.; Karpenko, L.P.; Villalta, F. Effects of human defensin-alpha(1)on Trypanosoma cruzi trypomastigotes in vitro. Bull Exp Biol Med 2010, 149, 731–733. [Google Scholar] [CrossRef] [PubMed]
- Roch, P.; Beschin, A.; Bernard, E. Antiprotozoan and Antiviral Activities of Non-cytotoxic Truncated and Variant Analogues of Mussel Defensin. Evid Based Complement Alternat Med 2004, 1, 167–174. [Google Scholar] [CrossRef] [PubMed]
- Luque-Ortega, J.R.; van't Hof, W.; Veerman, E.C.; Saugar, J.M.; Rivas, L. Human antimicrobial peptide histatin 5 is a cell-penetrating peptide targeting mitochondrial ATP synthesis in Leishmania. FASEB J 2008, 22, 1817–1828. [Google Scholar] [CrossRef] [PubMed]
- Brand, G.D.; Leite, J.R.; Silva, L.P.; Albuquerque, S.; Prates, M.V.; Azevedo, R.B.; Carregaro, V.; Silva, J.S.; Sa, V.C.; Brandao, R.A.; et al. Dermaseptins from Phyllomedusa oreades and Phyllomedusa distincta. Anti-Trypanosoma cruzi activity without cytotoxicity to mammalian cells. J Biol Chem 2002, 277, 49332–49340. [Google Scholar] [CrossRef] [PubMed]
- Abengozar, M.A.; Cebrian, R.; Saugar, J.M.; Garate, T.; Valdivia, E.; Martinez-Bueno, M.; Maqueda, M.; Rivas, L. Enterocin AS-48 as Evidence for the Use of Bacteriocins as New Leishmanicidal Agents. Antimicrob Agents Chemother 2017, 61. [Google Scholar] [CrossRef] [PubMed]
- Silva, P.I., Jr.; Daffre, S.; Bulet, P. Isolation and characterization of gomesin, an 18-residue cysteine-rich defense peptide from the spider Acanthoscurria gomesiana hemocytes with sequence similarities to horseshoe crab antimicrobial peptides of the tachyplesin family. J Biol Chem 2000, 275, 33464–33470. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, M.L.; Lima, D.B.; Menezes, R.; Sampaio, T.L.; Silva, B.P.; Serra Nunes, J.V.; Cavalcanti, M.M.; Morlighem, J.E.; Martins, A.M.C. Antichagasic effect of hemocyanin derived from antimicrobial peptides of penaeus monodon shrimp. Exp Parasitol 2020, 215, 107930. [Google Scholar] [CrossRef]
- Lima, D.B.; Mello, C.P.; Bandeira, I.C.J.; Pessoa Bezerra de Menezes, R.R.P.; Sampaio, T.L.; Falcao, C.B.; Morlighem, J.R.L.; Radis-Baptista, G.; Martins, A.M.C. The dinoponeratoxin peptides from the giant ant Dinoponera quadriceps display in vitro antitrypanosomal activity. Biological chemistry 2018, 399, 187–196. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, M.L.; Lima, D.B.; Freire, K.A.; Nicolaski Pedron, C.; Magalhaes, E.P.; Silva, B.P.; Garcia-Jareno, A.B.; De Oliveira, C.S.; Nunes, J.V.S.; Marinho, M.M.; et al. Rational design of a trypanocidal peptide derived from Dinoponera quadriceps venom. Eur J Med Chem 2022, 241, 114624. [Google Scholar] [CrossRef] [PubMed]
- Guerrero, E.; Saugar, J.M.; Matsuzaki, K.; Rivas, L. Role of positional hydrophobicity in the leishmanicidal activity of magainin 2. Antimicrob Agents Chemother 2004, 48, 2980–2986. [Google Scholar] [CrossRef] [PubMed]
- Adade, C.M.; Oliveira, I.R.; Pais, J.A.; Souto-Padron, T. Melittin peptide kills Trypanosoma cruzi parasites by inducing different cell death pathways. Toxicon 2013, 69, 227–239. [Google Scholar] [CrossRef] [PubMed]
- Jacobs, T.; Bruhn, H.; Gaworski, I.; Fleischer, B.; Leippe, M. NK-lysin and its shortened analog NK-2 exhibit potent activities against Trypanosoma cruzi. Antimicrob Agents Chemother 2003, 47, 607–613. [Google Scholar] [CrossRef]
- Freire, K.A.; Torres, M.T.; Lima, D.B.; Monteiro, M.L.; Bezerra de Menezes, R.; Martins, A.M.C.; Oliveira, V.X., Jr. Wasp venom peptide as a new antichagasic agent. Toxicon 2020, 181, 71–78. [Google Scholar] [CrossRef] [PubMed]
- Pinto, E.G.; Pimenta, D.C.; Antoniazzi, M.M.; Jared, C.; Tempone, A.G. Antimicrobial peptides isolated from Phyllomedusa nordestina (Amphibia) alter the permeability of plasma membrane of Leishmania and Trypanosoma cruzi. Exp Parasitol 2013, 135, 655–660. [Google Scholar] [CrossRef] [PubMed]
- Amorim-Carmo, B.; Daniele-Silva, A.; Parente, A.M.S.; Furtado, A.A.; Carvalho, E.; Oliveira, J.W.F.; Santos, E.C.G.; Silva, M.S.; Silva, S.R.B.; Silva-Junior, A.A.; et al. Potent and Broad-Spectrum Antimicrobial Activity of Analogs from the Scorpion Peptide Stigmurin. International journal of molecular sciences 2019, 20. [Google Scholar] [CrossRef] [PubMed]
- Souto-Padron, T. The surface charge of trypanosomatids. An Acad Bras Cienc 2002, 74, 649–675. [Google Scholar] [CrossRef] [PubMed]
- Souza, A.L.; Faria, R.X.; Calabrese, K.S.; Hardoim, D.J.; Taniwaki, N.; Alves, L.A.; De Simone, S.G. Temporizin and Temporizin-1 Peptides as Novel Candidates for Eliminating Trypanosoma cruzi. PloS one 2016, 11, e0157673. [Google Scholar] [CrossRef]
- Pedron, C.N.; Freire, K.A.; Torres, M.T.; Lima, D.B.; Monteiro, M.L.; Menezes, R.; Martins, A.M.C.; Oliveira, V.X. Arg-substituted VmCT1 analogs reveals promising candidate for the development of new antichagasic agent. Parasitology 2020, 147, 1810–1818. [Google Scholar] [CrossRef] [PubMed]
- Clemente, C.M.; Pineda, T.; Yepes, L.M.; Upegui, Y.; Allemandi, D.A.; Robledo, S.M.; Ravetti, S. Eugenol carbonate activity against Plasmodium falciparum, Leishmania braziliensis, and Trypanosoma cruzi. Arch Pharm (Weinheim) 2022, 355, e2100432. [Google Scholar] [CrossRef] [PubMed]
- Franco, C.H.; Alcantara, L.M.; Chatelain, E.; Freitas-Junior, L.; Moraes, C.B. Drug Discovery for Chagas Disease: Impact of Different Host Cell Lines on Assay Performance and Hit Compound Selection. Trop Med Infect Dis 2019, 4. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Peinado, N.; Martori, C.; Cortes-Serra, N.; Sherman, J.; Rodriguez, A.; Gascon, J.; Alberola, J.; Pinazo, M.J.; Rodriguez-Cortes, A.; Alonso-Padilla, J. Anti-Trypanosoma cruzi Activity of Metabolism Modifier Compounds. International journal of molecular sciences 2021, 22. [Google Scholar] [CrossRef]
- Milagre, M.M.; Branquinho, R.T.; Goncalves, M.F.; de Assis, G.; de Oliveira, M.T.; Reis, L.; Saude-Guimaraes, D.A.; de Lana, M. Activity of the sesquiterpene lactone goyazensolide against Trypanosoma cruzi in vitro and in vivo. Parasitology 2020, 147, 108–119. [Google Scholar] [CrossRef]
- Andriani, G.; Chessler, A.D.; Courtemanche, G.; Burleigh, B.A.; Rodriguez, A. Activity in vivo of anti-Trypanosoma cruzi compounds selected from a high throughput screening. PLoS Negl Trop Dis 2011, 5, e1298. [Google Scholar] [CrossRef] [PubMed]
- Buckner, F.S.; Verlinde, C.L.; La Flamme, A.C.; Van Voorhis, W.C. Efficient technique for screening drugs for activity against Trypanosoma cruzi using parasites expressing beta-galactosidase. Antimicrob Agents Chemother 1996, 40, 2592–2597. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.; Ferreira de Almeida Fiuza, L.; Cardoso Santos, C.; Ferreira Nunes, D.; Cruz Moreira, O.; Bouton, J.; Karalic, I.; Maes, L.; Caljon, G.; Hulpia, F.; et al. 6-Methyl-7-Aryl-7-Deazapurine Nucleosides as Anti-Trypanosoma cruzi Agents: Structure-Activity Relationship and in vivo Efficacy. ChemMedChem 2021, 16, 2231–2253. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.; Jaen Batista, D.D.G.; Mazzeti, A.L.; Donola Girao, R.; de Oliveira, G.M.; Karalic, I.; Hulpia, F.; Soeiro, M.N.C.; Maes, L.; Caljon, G.; et al. N(6)-modification of 7-Deazapurine nucleoside analogues as Anti-Trypanosoma cruzi and anti-Leishmania agents: Structure-activity relationship exploration and In vivo evaluation. Eur J Med Chem 2022, 231, 114165. [Google Scholar] [CrossRef] [PubMed]
- Ortiz, J.E.; Pineiro, M.; Martinez-Peinado, N.; Barrera, P.; Sosa, M.; Bastida, J.; Alonso-Padilla, J.; Feresin, G.E. Candimine from Hippeastrum escoipense (Amaryllidaceae): Anti-Trypanosoma cruzi activity and synergistic effect with benznidazole. Phytomedicine 2023, 114, 154788. [Google Scholar] [CrossRef] [PubMed]
- Tayama, Y.; Mizukami, S.; Toume, K.; Komatsu, K.; Yanagi, T.; Nara, T.; Tieu, P.; Huy, N.T.; Hamano, S.; Hirayama, K. Anti-Trypanosoma cruzi activity of Coptis rhizome extract and its constituents. Trop Med Health 2023, 51, 12. [Google Scholar] [CrossRef]
- Bortoluzzi, A.A.M.; Staffen, I.V.; Banhuk, F.W.; Griebler, A.; Matos, P.K.; Ayala, T.S.; da Silva, E.A.A.; Sarragiotto, M.H.; Schuquel, I.T.A.; Jorge, T.C.M.; et al. Determination of chemical structure and anti-Trypanosoma cruzi activity of extracts from the roots of Lonchocarpus cultratus (Vell.) A.M.G. Azevedo & H.C. Lima. Saudi J Biol Sci 2021, 28, 99–108. [Google Scholar] [CrossRef] [PubMed]
- Meira, C.S.; Guimaraes, E.T.; Dos Santos, J.A.; Moreira, D.R.; Nogueira, R.C.; Tomassini, T.C.; Ribeiro, I.M.; de Souza, C.V.; Ribeiro Dos Santos, R.; Soares, M.B. In vitro and in vivo antiparasitic activity of Physalis angulata L. concentrated ethanolic extract against Trypanosoma cruzi. Phytomedicine 2015, 22, 969–974. [Google Scholar] [CrossRef] [PubMed]
- Beer, M.F.; Reta, G.F.; Puerta, A.; Bivona, A.E.; Alberti, A.S.; Cerny, N.; Malchiodi, E.L.; Tonn, C.E.; Padron, J.M.; Sulsen, V.P.; et al. Oxonitrogenated Derivatives of Eremophilans and Eudesmans: Antiproliferative and Anti-Trypanosoma cruzi Activity. Molecules 2022, 27. [Google Scholar] [CrossRef] [PubMed]
- Morilla, M.J.; Montanari, J.; Frank, F.; Malchiodi, E.; Corral, R.; Petray, P.; Romero, E.L. Etanidazole in pH-sensitive liposomes: design, characterization and in vitro/in vivo anti-Trypanosoma cruzi activity. Journal of controlled release : official journal of the Controlled Release Society 2005, 103, 599–607. [Google Scholar] [CrossRef] [PubMed]
- Musikant, D.; Leverrier, A.; Bernal, D.; Ferri, G.; Palermo, J.A.; Edreira, M.M. Hybrids of Cinchona Alkaloids and Bile Acids as Antiparasitic Agents Against Trypanosoma cruzi. Molecules 2019, 24. [Google Scholar] [CrossRef] [PubMed]
- Gulin, J.E.N.; Bisio, M.M.C.; Rocco, D.; Altcheh, J.; Solana, M.E.; Garcia-Bournissen, F. Miltefosine and Benznidazole Combination Improve Anti-Trypanosoma cruzi In Vitro and In Vivo Efficacy. Front Cell Infect Microbiol 2022, 12, 855119. [Google Scholar] [CrossRef] [PubMed]
- Pereira, P.S.; Oliveira, C.V.B.; Maia, A.J.; Tintino, S.R.; Oliveira-Tintino, C.D.M.; Vega-Gomez, M.C.; Rolon, M.; Coronel, C.; Duarte, A.E.; Barros, L.M.; et al. Cytotoxicity of Essential Oil Cordia verbenaceae against Leishmania brasiliensis and Trypanosoma cruzi. Molecules 2021, 26. [Google Scholar] [CrossRef] [PubMed]
- Roldos, V.; Nakayama, H.; Rolon, M.; Montero-Torres, A.; Trucco, F.; Torres, S.; Vega, C.; Marrero-Ponce, Y.; Heguaburu, V.; Yaluff, G.; et al. Activity of a hydroxybibenzyl bryophyte constituent against Leishmania spp. and Trypanosoma cruzi: in silico, in vitro and in vivo activity studies. Eur J Med Chem 2008, 43, 1797–1807. [Google Scholar] [CrossRef] [PubMed]
- Swearengen, J.R. Choosing the right animal model for infectious disease research. Animal Model Exp Med 2018, 1, 100–108. [Google Scholar] [CrossRef] [PubMed]
- Laing, G.; Vigilato, M.A.N.; Cleaveland, S.; Thumbi, S.M.; Blumberg, L.; Salahuddin, N.; Abdela-Ridder, B.; Harrison, W. One Health for neglected tropical diseases. Trans R Soc Trop Med Hyg 2021, 115, 182–184. [Google Scholar] [CrossRef]
- Kiani, A.K.; Pheby, D.; Henehan, G.; Brown, R.; Sieving, P.; Sykora, P.; Marks, R.; Falsini, B.; Capodicasa, N.; Miertus, S.; et al. Ethical considerations regarding animal experimentation. J Prev Med Hyg 2022, 63, E255–E266. [Google Scholar] [CrossRef] [PubMed]
- Fischer, M.R.; John, D.; Kautz-Neu, K.; Schermann, A.I.; Schwonberg, K.; von Stebut, E. Animal model for cutaneous leishmaniasis. Methods in molecular biology 2013, 961, 389–402. [Google Scholar] [CrossRef] [PubMed]
- Nieto, A.; Domínguez-Bernal, G.; Orden, J.A.; De La Fuente, R.; Madrid-Elena, N.; Carrión, J. Mechanisms of resistance and susceptibility to experimental visceral leishmaniosis: BALB/c mouse versus Syrian hamster model. Vet Res 2011, 42, 39. [Google Scholar] [CrossRef] [PubMed]
- Robledo, S.M.; Carrillo, L.M.; Daza, A.; Restrepo, A.M.; Munoz, D.L.; Tobon, J.; Murillo, J.D.; Lopez, A.; Rios, C.; Mesa, C.V.; et al. Cutaneous leishmaniasis in the dorsal skin of hamsters: a useful model for the screening of antileishmanial drugs. J Vis Exp 2012. [Google Scholar] [CrossRef]
- Murillo, J.; Montoya, A.; Carrillo-Bonilla, L.; Rodriguez, B.; Velez, I.D.; Robledo, S.M. Verification and monitoring of visceral leishmaniasis in hamsters caused by Leishmania infantum, using non-invasive approaches involving ultrasound imaging and blood gases. Exp Parasitol 2019, 201, 78–89. [Google Scholar] [CrossRef] [PubMed]
- Chatelain, E.; Scandale, I. Animal models of Chagas disease and their translational value to drug development. Expert Opin Drug Discov 2020, 15, 1381–1402. [Google Scholar] [CrossRef] [PubMed]
- Loria-Cervera, E.N.; Andrade-Narvaez, F.J. Animal models for the study of leishmaniasis immunology. Rev Inst Med Trop Sao Paulo 2014, 56, 1–11. [Google Scholar] [CrossRef]
- de Lana, M.; Giunchetti, R.C. Dogs as a Model for Chemotherapy of Chagas Disease and Leishmaniasis. Current pharmaceutical design 2021, 27, 1741–1756. [Google Scholar] [CrossRef] [PubMed]
- Guedes, P.M.; Veloso, V.M.; Afonso, L.C.; Caliari, M.V.; Carneiro, C.M.; Diniz, L.F.; Marques-da-Silva, E.A.; Caldas, I.S.; Do Valle Matta, M.A.; Souza, S.M.; et al. Development of chronic cardiomyopathy in canine Chagas disease correlates with high IFN-gamma, TNF-alpha, and low IL-10 production during the acute infection phase. Vet Immunol Immunopathol 2009, 130, 43–52. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, F.F.F.; Moreira, H.T.; de Barros-Filho, A.C.L.; Tanaka, D.M.; Fabricio, C.G.; Oliveira, L.F.L.; Prado, C.M.; Simoes, M.V.; Schmidt, A.; Maciel, B.C.; et al. Prospective analysis of myocardial strain through the evolution of Chagas disease in the hamster animal model. Int J Cardiovasc Imaging 2022, 38, 117–129. [Google Scholar] [CrossRef] [PubMed]
- Perez-Molina, J.A.; Crespillo-Andujar, C.; Bosch-Nicolau, P.; Molina, I. Trypanocidal treatment of Chagas disease. Enferm Infecc Microbiol Clin (Engl Ed) 2021, 39, 458–470. [Google Scholar] [CrossRef] [PubMed]
- Bellotti, D.; Remelli, M. Lights and Shadows on the Therapeutic Use of Antimicrobial Peptides. Molecules 2022, 27. [Google Scholar] [CrossRef] [PubMed]
- Diamond, G.; Beckloff, N.; Weinberg, A.; Kisich, K.O. The roles of antimicrobial peptides in innate host defense. Current pharmaceutical design 2009, 15, 2377–2392. [Google Scholar] [CrossRef] [PubMed]
- Guryanova, S.V.; Ovchinnikova, T.V. Immunomodulatory and Allergenic Properties of Antimicrobial Peptides. International journal of molecular sciences 2022, 23. [Google Scholar] [CrossRef] [PubMed]
- Urban, P.; Valle-Delgado, J.J.; Moles, E.; Marques, J.; Diez, C.; Fernandez-Busquets, X. Nanotools for the delivery of antimicrobial peptides. Curr Drug Targets 2012, 13, 1158–1172. [Google Scholar] [CrossRef] [PubMed]
- Ellington, A.D.; Szostak, J.W. In vitro selection of RNA molecules that bind specific ligands. Nature 1990, 346, 818–822. [Google Scholar] [CrossRef] [PubMed]
- Tuerk, C.; Gold, L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 1990, 249, 505–510. [Google Scholar] [CrossRef]
- Stoltenburg, R.; Reinemann, C.; Strehlitz, B. SELEX--a (r)evolutionary method to generate high-affinity nucleic acid ligands. Biomol Eng 2007, 24, 381–403. [Google Scholar] [CrossRef] [PubMed]
- Proske, D.; Blank, M.; Buhmann, R.; Resch, A. Aptamers--basic research, drug development, and clinical applications. Appl Microbiol Biotechnol 2005, 69, 367–374. [Google Scholar] [CrossRef] [PubMed]
- Lee, B.; Park, J.; Ryu, M.; Kim, S.; Joo, M.; Yeom, J.H.; Kim, S.; Park, Y.; Lee, K.; Bae, J. Antimicrobial peptide-loaded gold nanoparticle-DNA aptamer conjugates as highly effective antibacterial therapeutics against Vibrio vulnificus. Sci Rep 2017, 7, 13572. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Shin, E.; Yeom, J.H.; Choi, Y.; Joo, M.; Lee, M.; Kim, J.H.; Bae, J.; Lee, K. Gold nanoparticle-DNA aptamer-assisted delivery of antimicrobial peptide effectively inhibits Acinetobacter baumannii infection in mice. J Microbiol 2022, 60, 128–136. [Google Scholar] [CrossRef] [PubMed]
- Pourhajibagher, M.; Bahador, A. Aptamer decorated emodin nanoparticles-assisted delivery of dermcidin-derived peptide DCD-1L: Photoactive bio-theragnostic agent for Enterococcus faecalis biofilm destruction. Photodiagnosis Photodyn Ther 2022, 39, 103020. [Google Scholar] [CrossRef] [PubMed]
- Yeom, J.H.; Lee, B.; Kim, D.; Lee, J.K.; Kim, S.; Bae, J.; Park, Y.; Lee, K. Gold nanoparticle-DNA aptamer conjugate-assisted delivery of antimicrobial peptide effectively eliminates intracellular Salmonella enterica serovar Typhimurium. Biomaterials 2016, 104, 43–51. [Google Scholar] [CrossRef]
- Macleod, T.; Ward, J.; Alase, A.A.; Bridgewood, C.; Wittmann, M.; Stonehouse, N.J. Antimicrobial Peptide LL-37 Facilitates Intracellular Uptake of RNA Aptamer Apt 21-2 Without Inducing an Inflammatory or Interferon Response. Frontiers in immunology 2019, 10, 857. [Google Scholar] [CrossRef] [PubMed]
- Sakai, H.; Ikeda, Y.; Honda, T.; Tanaka, Y.; Shiraishi, K.; Inui, M. A cell-penetrating phospholamban-specific RNA aptamer enhances Ca2+ transients and contractile function in cardiomyocytes. J Mol Cell Cardiol 2014, 76, 177–185. [Google Scholar] [CrossRef] [PubMed]
- Diao, Y.; Liu, J.; Ma, Y.; Su, M.; Zhang, H.; Hao, X. A specific aptamer-cell penetrating peptides complex delivered siRNA efficiently and suppressed prostate tumor growth in vivo. Cancer Biol Ther 2016, 17, 498–506. [Google Scholar] [CrossRef]
- Liu, Y.; Wu, X.; Gao, Y.; Zhang, J.; Zhang, D.; Gu, S.; Zhu, G.; Liu, G.; Li, X. Aptamer-functionalized peptide H3CR5C as a novel nanovehicle for codelivery of fasudil and miRNA-195 targeting hepatocellular carcinoma. Int J Nanomedicine 2016, 11, 3891–3905. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.L.; Yuan, D.D.; Song, T.; Li, X.M. DNA nanopore functionalized with aptamer and cell-penetrating peptide for tumor cell recognition. Anal Bioanal Chem 2017, 409, 3789–3797. [Google Scholar] [CrossRef] [PubMed]
- Yamada, Y.; Furukawa, R.; Harashima, H. A Dual-Ligand Liposomal System Composed of a Cell-Penetrating Peptide and a Mitochondrial RNA Aptamer Synergistically Facilitates Cellular Uptake and Mitochondrial Targeting. J Pharm Sci 2016, 105, 1705–1713. [Google Scholar] [CrossRef] [PubMed]
- Frezza, V.; Pinto-Diez, C.; Fernandez, G.; Soto, M.; Martin, M.E.; Garcia-Sacristan, A.; Gonzalez, V.M. DNA aptamers targeting Leishmania infantum H3 protein as potential diagnostic tools. Anal Chim Acta 2020, 1107, 155–163. [Google Scholar] [CrossRef] [PubMed]
- Guerra-Perez, N.; Ramos, E.; Garcia-Hernandez, M.; Pinto, C.; Soto, M.; Martin, M.E.; Gonzalez, V.M. Molecular and Functional Characterization of ssDNA Aptamers that Specifically Bind Leishmania infantum PABP. PloS one 2015, 10, e0140048. [Google Scholar] [CrossRef] [PubMed]
- Martin, M.E.; Garcia-Hernandez, M.; Garcia-Recio, E.M.; Gomez-Chacon, G.F.; Sanchez-Lopez, M.; Gonzalez, V.M. DNA aptamers selectively target Leishmania infantum H2A protein. PloS one 2013, 8, e78886. [Google Scholar] [CrossRef] [PubMed]
- Moreno, M.; Rincon, E.; Pineiro, D.; Fernandez, G.; Domingo, A.; Jimenez-Ruiz, A.; Salinas, M.; Gonzalez, V.M. Selection of aptamers against KMP-11 using colloidal gold during the SELEX process. Biochem Biophys Res Commun 2003, 308, 214–218. [Google Scholar] [CrossRef] [PubMed]
- Goringer, H.U.; Homann, M.; Lorger, M. In vitro selection of high-affinity nucleic acid ligands to parasite target molecules. Int J Parasitol 2003, 33, 1309–1317. [Google Scholar] [CrossRef] [PubMed]
- Nagarkatti, R.; Bist, V.; Sun, S.; Fortes de Araujo, F.; Nakhasi, H.L.; Debrabant, A. Development of an aptamer-based concentration method for the detection of Trypanosoma cruzi in blood. PloS one 2012, 7, e43533. [Google Scholar] [CrossRef] [PubMed]
- Nagarkatti, R.; de Araujo, F.F.; Gupta, C.; Debrabant, A. Aptamer based, non-PCR, non-serological detection of Chagas disease biomarkers in Trypanosoma cruzi infected mice. PLoS Negl Trop Dis 2014, 8, e2650. [Google Scholar] [CrossRef] [PubMed]
- Ulrich, H.; Magdesian, M.H.; Alves, M.J.; Colli, W. In vitro selection of RNA aptamers that bind to cell adhesion receptors of Trypanosoma cruzi and inhibit cell invasion. J Biol Chem 2002, 277, 20756–20762. [Google Scholar] [CrossRef] [PubMed]
- Zahedifard, F.; Rafati, S. Prospects for antimicrobial peptide-based immunotherapy approaches in Leishmania control. Expert Rev Anti Infect Ther 2018, 16, 461–469. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
