Submitted:
21 June 2023
Posted:
21 June 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Climate and the evolution of homeothermy
3. Public health, temperature and climate change
- i)
- Limitations for physiological adaptation
- ii)
- Limitations for behavioural adaptation
4. Conclusions
Acknowledgments
Conflicts of Interest
References
- Romanovsky, A.A. Thermoregulation: some concepts have changed. Functional architecture of the thermoregulatory system. Am J Physiol Regul Integr Comp Physiol. 2007, 292, R37–46. [Google Scholar] [CrossRef] [PubMed]
- Valone, T.F. Linear global temperature correlation to carbon dioxide level, sea level, and innovative solutions to a projected 6 °C Warming by 2100. J Geosci Env Prot. 2021, 09, 84–135. [Google Scholar] [CrossRef]
- Vicedo-Cabrera, A.M.; Scovronick, N.; Sera, F.; et al. The burden of heat-related mortality attributable to recent human-induced climate change. Nat Clim Change 2021, 11, 492–500. [Google Scholar] [CrossRef] [PubMed]
- WHO. Heatwaves. Available online: https://www.who.int/health-topics/heatwaves#tab=tab_1 (accessed on 18 May 2023).
- Gasparrini, A.; Guo, Y.; Hashizume, M.; et al. Mortality risk attributable to high and low ambient temperature: a multi country observational study. Lancet 2015, 386, 369–375. [Google Scholar] [CrossRef]
- Vargas, N.T.; Schlader, Z.J.; Jay, O. , Hunter, A. Prioritize research on human behaviour during extreme heat. Nature Hum Behav. 2023, 7, 473–74. [Google Scholar] [CrossRef] [PubMed]
- Ravanelli, N.M.; Hodder, S.G.; Havenith, G. , Jay, O. Heart rate and body temperature responses to extreme heat and humidity with and without electric fans. JAMA. 2015, 313, 724–25. [Google Scholar] [CrossRef]
- Miller, S.L.; Schopf, J.W.; Lazcano, A. Oparin’s "Origin of Life": Sixty Years Later. J Mol Evol. 1997, 44, 351–353. [Google Scholar]
- Miller, S.L. A production of amino acids under possible primitive earth conditions. Sci. 1953, 117, 528–29. [Google Scholar] [CrossRef]
- Schopf, J.W. The evolution of the earliest cells. Sci Am. 1978, 239, 110–38. [Google Scholar] [CrossRef]
- Mendelssohn, M. Ueber den thermotropismus einzelliger organismen. Pflügers Archiv. 1895, 60, 1–27. [Google Scholar] [CrossRef]
- Brette, R. Integrative neuroscience of Paramecium, a “swimming neuron”. eNeuro 2021, 8, ENEURO.0018–21.2021. [Google Scholar] [CrossRef]
- Schmidt-Nielsen, K. Animal physiology: adaptation and environment. Cambridge: Cambridge University Press; 1997.
- Hansen, J.; Sato, M.; Ruedy, R.; Lo, K.; Lea, D.W. , Medina-Elizade, M. Global temperature change. PNAS. 2006, 103, 14288–93. [Google Scholar] [CrossRef] [PubMed]
- Mann, M.E.; Zhang, Z.; Hughes, M.K.; et al. Proxy-based reconstructions of hemispheric and global surface temperature variations over the past two millennia. PNAS. 2008, 105, 13252–57. [Google Scholar] [CrossRef]
- Crompton, A.W.; Taylor, C.R. , Jagger, J.A. Evolution of homeothermy in mammals. Nat. 1978, 272, 333. [Google Scholar] [CrossRef] [PubMed]
- Pörtner, H.O. Climate variability and the energetic pathways of evolution: the origin of endothermy in mammals and birds. Physiol Biochem Zool. 2004, 77, 959–81. [Google Scholar] [CrossRef] [PubMed]
- Marino, F.E. The evolutionary basis of thermoregulation and exercise performance. In: Marino, F.E., editor. Thermoregulation and human performance: physiological and biological aspects. Basel: Karger Publishers; 2008:1–13.
- Marino, F.E. Human Fatigue: evolution, health and performance. London: Routledge; 2019.
- Haywood, A.M.; Valdes, P.J.; Aze, T.; et al. What can Palaeoclimate Modelling do for you. Earth Sys Environ. 2019, 3, 1–18. [Google Scholar] [CrossRef]
- Zachos, J.; Pagani, M.; Sloan, L.; Thomas, E.; Billups, K. Trends, rhythms, and aberrations in global climate 65 Ma to present. Sci. 2001, 292, 686–693. [Google Scholar] [CrossRef] [PubMed]
- Franzen, J.L.; Gingerich, P.D.; Habersetzer, J.; Hurum, J.H.; von Koenigswald, W.; Smith, B.H. Complete primate skeleton from the Middle Eocene of Messel in Germany: morphology and paleobiology. PLOS ONE 2009, 4, e5723. [Google Scholar] [CrossRef]
- Tudge, C. The link: uncovering our earliest ancestor. Little, Brown; 2009.
- A. Muller, R.; Rohde, R.; Jacobsen, R.; Muller, E., Wickham, C. A new estimate of the average Earth surface land temperature spanning 1753 to 2011. A new estimate of the average Earth surface land temperature spanning 1753 to 2011. 2013, 01.
- Communication, N.A.S.A.P.S. Solar system temperatures. Available online: https://solarsystem.nasa.gov/resources/681/solar-system-temperatures/#:~:text=Earth%20%2D%2059%C2%B0F%20(15%C2%B0C) (accessed on 13 June 2023).
- Gisolfi, C.V.; Mora, M.T.; Mora, F., Teruel, F.M. The hot brain: survival, temperature, and the human body. Cambridge, MA: MIT Press; 2000.
- Lieberman, D.E. Human locomotion and heat loss: an evolutionary perspective. Comp Physiol. 2015, 5, 99–117. [Google Scholar]
- Observatory, N.A.S.A.E. How is today’s warming different from the past. Available online: https://earthobservatory.nasa.gov/features/GlobalWarming/page3.php#:~:text=As%20the%20Earth%20moved%20out,ice%2Dage%2Drecovery%20warming (accessed on 12 June 2023).
- Tong, S.; Wang, X.Y.; Yu, W.; Chen, D. , Wang, X. The impact of heatwaves on mortality in Australia: a multicity study. BMJ Open 2014, 4, e003579. [Google Scholar]
- Sun, Z.; Chen, C.; Yan, M.; et al. Heat wave characteristics, mortality and effect modification by temperature zones: a time-series study in 130 counties of China. In J Epidemiol 2021, 49, 1813–1822. [Google Scholar]
- Franklin, R.C.; Mason, H.M.; King, J.C.; et al. Heatwaves and mortality in Queensland 2010-2019: implications for a homogenous state-wide approach. Int J Biometeriol 2023, 67, 503–515. [Google Scholar]
- Ebi, K.L.; Capon, A.; Berry, P.; et al. Hot weather and heat extremes: health risks. Lancet 2021, 398, 698–708. [Google Scholar]
- Jay, O.; Capon, A.; Berry, P.; et al. Reducing the health effects of hot weather and heat extremes: from personal cooling strategies to green cities. Lancet 2021, 398, 709–724. [Google Scholar]
- Vanos, J.K.; Baldwin, J.W.; Jay, O. , Ebi, K.L. Simplicity lacks robustness when projecting heat-health outcomes in a changing climate. Nat Comm 2020, 11, 6079. [Google Scholar]
- Kenny, G.P.; Yardley, J.; Brown, C.; Sigal, R.J. , Jay, O. Heat stress in older individuals and patients with common chronic diseases. CMAJ. 2010, 182, 1053–60. [Google Scholar] [CrossRef]
- Bunker, A.; Wildenhain, J.; Vandenbergh, A.; et al. Effects of air temperature on climate-sensitive mortality and morbidity outcomes in the elderly; a systematic review and meta-analysis of epidemiological evidence. Ebio Med 2016, 6, 258–268. [Google Scholar]
- Roth, G.A.; Mensah, G.A.; Johnson, C.O.; et al. Global Burden of Cardiovascular Diseases and Risk Factors, 1990-2019: Update From the GBD 2019 Study. J Am Coll Card 2020, 76, 2982–3021. [Google Scholar]
- Kamijo, Y.-i. , Nose, H. Heat illness during working and preventive considerations from body fluid homeostasis. Indust Hlth. 2006, 44, 345–58. [Google Scholar] [CrossRef]
- Patterson, M.J.; Stocks, J.M. , Taylor, N.A. Whole-body fluid distribution in humans during dehydration and recovery, before and after humid-heat acclimation induced using controlled hyperthermia. Acta Physiol. 2014, 210, 899–912. [Google Scholar] [CrossRef] [PubMed]
- Coyle, E.F. Cardiovascular drift during prolonged exercise and the effects of dehydration. Int J Sports Med. 1998, 19, S121–24. [Google Scholar] [CrossRef] [PubMed]
- Roncal-Jimenez, C.; Lanaspa, M.A.; Jensen, T.; Sanchez-Lozada, L.G. , Johnson, R.J. Mechanisms by which dehydration may lead to chronic kidney disease. Ann Nut Metab. 2015, 66 Suppl 3, 10–13. [Google Scholar] [CrossRef]
- García-Trabanino, R.; Jarquín, E.; Wesseling, C.; et al. Heat stress, dehydration, and kidney function in sugarcane cutters in El Salvador–a cross-shift study of workers at risk of Mesoamerican nephropathy. Env Res. 2015, 142, 746–55. [Google Scholar] [CrossRef]
- Cabanac, M. , White, M.D. Core temperature thresholds for hyperpnea during passive hyperthermia in humans. Eur J Appl Physiol. 1995, 71, 71–76. [Google Scholar] [CrossRef]
- Fujii, N.; Honda, Y.; Hayashi, K.; Kondo, N.; Koga, S. , Nishiyasu, T. Effects of chemoreflexes on hyperthermic hyperventilation and cerebral blood velocity in resting heated humans. Exp Physiol. 2008, 93, 994–1001. [Google Scholar] [CrossRef]
- Stéphan, F.; Ghiglione, S.; Decailliot, F.; Yakhou, L.; Duvaldestin, P. , Legrand, P. Effect of excessive environmental heat on core temperature in critically ill patients. An observational study during the 2003 European heat wave. Br J Anaesth. 2005, 94, 39–45. [Google Scholar] [CrossRef] [PubMed]
- Showstack, R. Carbon dioxide tops 400 ppm at Mauna Loa, Hawaii. Eos Trans Am Geophys Un. 2013, 94, 192–192. [Google Scholar] [CrossRef]
- Jacobson, T.A.; Kler, J.S.; Hernke, M.T.; Braun, R.K.; Meyer, K.C. , Funk, W.E. Direct human health risks of increased atmospheric carbon dioxide. Nat Sustain. 2019, 2, 691–701. [Google Scholar] [CrossRef]
- Azuma, K.; Kagi, N.; Yanagi, U.; Osawa, H. Effects of low-level inhalation exposure to carbon dioxide in indoor environments: A short review on human health and psychomotor performance. Environ Int. 2018, 121, 51–56. [Google Scholar] [CrossRef]
- Larcombe, A.N.; Papini, M.G.; Chivers, E.K.; Berry, L.J.; Lucas, R.M.; Wyrwoll, C.S. Mouse Lung Structure and Function after Long-Term Exposure to an Atmospheric Carbon Dioxide Level Predicted by Climate Change Modeling. Environ Health Perspect. 2021, 129, 17001. [Google Scholar] [CrossRef] [PubMed]
- Joshi, M.; Goraya, H.; Joshi, A.; Bartter, T. Climate change and respiratory diseases: a 2020 perspective. Curr Opin Pulmon Med. 2020, 26, 119–127. [Google Scholar] [CrossRef] [PubMed]
- Pandolf, K.B.; Burse, R.L.; Goldman, R.F. Role of physical fitness in heat acclimatisation, decay and reinduction. Ergo 1977, 20, 399–408. [Google Scholar] [CrossRef] [PubMed]
- Havenith, G.; van Middendorp, H. The relative influence of physical fitness, acclimatization state, anthropometric measures and gender on individual reactions to heat stress. Eur J Appl Physiol. 1990, 61, 419–427. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, B.; Hales, J.R.; Strange, S.; Christensen, N.J.; Warberg, J.; Saltin, B. Human circulatory and thermoregulatory adaptations with heat acclimation and exercise in a hot, dry environment. J Physiol. 1993, 460, 467–485. [Google Scholar] [CrossRef] [PubMed]
- Andres, T.; Hexamer, M.; Werner, J. Heat acclimation of humans: hot environment versus physical exercise. J Therm Biol. 2000, 25, 139–142. [Google Scholar] [CrossRef]
- Wingfield, G.L.; Gale, R.; Minett, G.M.; Marino, F.E. , Skein, M. The effect of high versus low intensity heat acclimation on performance and neuromuscular responses. J Therm Biol. 2016, 58, 50–59. [Google Scholar] [CrossRef] [PubMed]
- Lei, T.H.; Fujiwara, M.; Gerrett, N.; et al. The effect of seasonal acclimatization on whole body heat loss response during exercise in a hot humid environment with different air velocity. J Appl Physiol. 2021, 131, 520–31. [Google Scholar] [CrossRef]
- Cheung, S.S.; McLellan, T.M. Heat acclimation, aerobic fitness, and hydration effects on tolerance during uncompensable heat stress. J Appl Physiol. 1998. [Google Scholar] [CrossRef]
- Sherwood, S.C. , Huber, M. An adaptability limit to climate change due to heat stress. PNAS. 2010, 107, 9552–55. [Google Scholar] [CrossRef]
- Budd, G.M. Wet-bulb globe temperature (WBGT)--its history and its limitations. J Sci Med Sport. 2008, 11, 20–32. [Google Scholar] [CrossRef]
- Nielsen, B. Olympics in Atlanta: a fight against physics. Med Sci Sports Exerc. 1996, 28, 665–68. [Google Scholar] [CrossRef]
- Vecellio, D.J.; Wolf, S.T.; Cottle, R.M.; Kenney, W.L. Evaluating the 35°C wet-bulb temperature adaptability threshold for young, healthy subjects (PSU HEAT Project). J Appl Physiol 2022, 132, 340–345. [Google Scholar] [CrossRef] [PubMed]
- Sokolov, A.P.; Stone, P.H.; Forest, C.E.; et al. Probabilistic forecast for twenty-first-century climate based on uncertainties in emissions (without policy) and climate parameters. J Clim. 2009, 22, 5175–5204. [Google Scholar] [CrossRef]
- Hanna, E.; Tait, P. Limitations to thermoregulation and acclimatization challenge: human adaptation to global warming. Int J Environ Res Public Health 2015, 12, 8034–8074. [Google Scholar] [CrossRef] [PubMed]
- Gagge, A.P.; Stolwijk, J.A.J. , Hardy, J.D. Comfort and thermal sensations and associated physiological responses at various ambient temperatures. Environ Res. 1967, 1, 1–20. [Google Scholar] [CrossRef] [PubMed]
- van Hoof, J. Forty years of Fanger’s model of thermal comfort: comfort for all. Indoor Air. 2008, 18, 182–201. [Google Scholar] [CrossRef]
- Kingma, B.R.; Frijns, A.J.; Schellen, L.; van Marken Lichtenbelt, W.D. Beyond the classic thermoneutral zone: Including thermal comfort. Temp. 2014, 1, 142–149. [Google Scholar] [CrossRef]
- Fanger, P.O. Thermal comfort. Analysis and applications in environmental engineering. Copenhagen: Danish Technical Press.; 1970.
- Schlader, Z.J.; Simmons, S.E.; Stannard, S.R. , Mündel, T. The independent roles of temperature and thermal perception in the control of human thermoregulatory behavior. Physiol Behav. 2011, 103, 217–24. [Google Scholar] [CrossRef]
- Gant, N.; Williams, C.; King, J.; Hodge, B.J. Thermoregulatory responses to exercise: relative versus absolute intensity. J Sports Sci. 2004, 22, 1083–1090. [Google Scholar] [CrossRef]
- Zander, K.K.; Botzen, W.J.W.; Oppermann, E.; Kjellstrom, T. , Garnett, S.T. Heat stress causes substantial labour productivity loss in Australia. Nat Clim Change. 2015, 5, 647–51. [Google Scholar] [CrossRef]
- Booth, J.; Marino, F. , Ward, J.J. Improved running performance in hot humid conditions following whole body precooling. Med Sci Sports Exerc. 1997, 29, 943–49. [Google Scholar] [CrossRef] [PubMed]
- Duffield, R.; Green, R.; Castle, P.; Maxwell, N. Precooling can prevent the reduction of self-paced exercise intensity in the heat. Med Sci Sports Exerc. 2010, 42, 577–584. [Google Scholar] [CrossRef] [PubMed]
- Minett, G.M.; Duffield, R.; Marino, F.E. , Portus, M. Volume-dependent response of precooling for intermittent-sprint exercise in the heat. Med Sci Sports Exerc. 2011, 43, 1760–69. [Google Scholar] [CrossRef]
- Choo, H.C.; Nosaka, K.; Peiffer, J.J.; Ihsan, M.; Abbiss, C.R. Ergogenic effects of precooling with cold water immersion and ice ingestion: A meta-analysis. Eur J Sport Sci 2018, 18, 170–181. [Google Scholar] [CrossRef]
- Hunt, A.P.; Brearley, M.; Hall, A. , Pope, R. Climate Change Effects on the Predicted Heat Strain and Labour Capacity of Outdoor Workers in Australia. Int J Environ Res Public Health. 2023, 20, 5675. [Google Scholar] [CrossRef]
- Obradovich, N.; Migliorini, R.; Mednick, S.C. , Fowler, J.H. Nighttime temperature and human sleep loss in a changing climate. Sci Adv. 2017, 3, e1601555. [Google Scholar] [CrossRef]
- Benjamin, C.L.; Curtis, R.M.; Huggins, R.A.; et al. Sleep Dysfunction and Mood in Collegiate Soccer Athletes. Sports Health. 2020, 12, 234–40. [Google Scholar] [CrossRef]
- Knutson, K.L.; Ryden, A.M.; Mander, B.A. , Van Cauter, E. Role of sleep duration and quality in the risk and severity of type 2 diabetes mellitus. Arch Int Med. 2006, 166, 1768–74. [Google Scholar] [CrossRef]
- Allison, K.C.; Spaeth, A. , Hopkins, C.M. Sleep and eating disorders. Curr Psych Rep. 2016, 18, 1–8. [Google Scholar] [CrossRef]
- He, C.; Kim, H.; Hashizume, M.; et al. The effects of night-time warming on mortality burden under future climate change scenarios: a modelling study. Lancet Planet Health 2022, 6, e648–57. [Google Scholar] [CrossRef] [PubMed]


Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
