Submitted:
17 June 2023
Posted:
19 June 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Bariatric surgery and pregnancy
3. Micronutrients, pregnancy and bariatric surgery
3.1. Iron
3.2. Folate
3.3. Vitamin B12
3.4. Calcium and vitamin D
3.5. Magnesium
3.6. Zinc
3.7. Copper
3.8. Selenium
3.9. Iodine
3.10. Thiamine
3.11. Vitamin A
3.12. Vitamin E
3.13. Vitamin K
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Mechanick, J.I.; Hurley, D.L.; Garvey, W.T. Adiposity-based chronic disease as a new diagnostic term: the american association of clinical endocrinologists and american college of endocrinology position statement. Endocrine Practice 2016. [CrossRef]
- Garvey, W.T.; et al. American Association of Clinical Endocrinologists and American College of Endocrinology Clinical Practice Guidelines for Comprehensive Medical Care of Patients With Obesity – Executive Summary. Endocrine Practice 2016, 22, EP161365.GL. [Google Scholar] [CrossRef]
- Rittenberg, V.; Seshadri, S.; Sunkara, S.K.; Sobaleva, S.; Oteng-Ntim, E.; El-Toukhy, T. Effect of body mass index on IVF treatment outcome: An updated systematic review and meta-analysis. Reproductive BioMedicine Online 2011, 23, 421–439. [Google Scholar] [CrossRef]
- Bellver, J.; Busso, C.; Pellicer, A.; Remohí, J.; Simón, C. Obesity and assisted reproductive technology outcomes. Reproductive biomedicine online 2006, 12, 562–568. [Google Scholar] [CrossRef]
- Yu, Z.; Han, S.; Zhu, J.; Sun, X.; Ji, C.; Guo, X. Pre-Pregnancy Body Mass Index in Relation to Infant Birth Weight and Offspring Overweight/Obesity : A Systematic Review and Meta-Analysis. 2013, 8. [Google Scholar] [CrossRef]
- Marchi, J.; Berg, M.; Dencker, A.; Olander, E.K.; Begley, C. Risks associated with obesity in pregnancy, for the mother and baby: A systematic review of reviews. Obesity Reviews 2015. [CrossRef]
- Goldstein, R.F.; et al. Association of Gestational Weight Gain With Maternal and Infant Outcomes. JAMA 2017, 317, 2207. [Google Scholar] [CrossRef]
- Santos, S.; et al. Impact of maternal body mass index and gestational weight gain on pregnancy complications: An individual participant data meta-analysis of European, North American and Australian cohorts. BJOG 2019. [CrossRef]
- Martin, A.; Krishna, I.; Ellis, J.; Paccione, R.; Badell, M. Super obesity in pregnancy: difficulties in clinical management. Journal of Perinatolog 2014, 34, 495–502. [Google Scholar] [CrossRef]
- Crane, J.M.G.; Murphy, P.; Burrage, L.; Hutchens, D. Maternal and perinatal outcomes of extreme obesity in pregnancy. J Obstet Gynaecol Can 2013, 35, 606–611. [Google Scholar] [CrossRef]
- Arterburn, D.E.; Courcoulas, A.P. Bariatric surgery for obesity and metabolic conditions in adults. Bmj 2014, 349, g3961, 2014. [Google Scholar] [CrossRef]
- Angrisani, L.; Santonicola, A.; Iovino, P.; Ramos, A.; Shikora, S.; Kow, L. Bariatric Surgery Survey 2018: Similarities and Disparities Among the 5 IFSO Chapters. Obes Surg 2021, 31. [Google Scholar] [CrossRef]
- Batterham, R.L.; Cummings, D.E. Mechanisms of diabetes improvement following bariatric/metabolic surgery. Diabetes Care 2016. [Google Scholar] [CrossRef]
- Hutch, C.R.; Sandoval, D.A. Physiological and molecular responses to bariatric surgery: markers or mechanisms underlying T2DM resolution? Annals of the New York Academy of Sciences 2017. [CrossRef]
- Davies, N.K.; O’Sullivan, J.M.; Plank, L.D.; Murphy, R. Altered gut microbiome after bariatric surgery and its association with metabolic benefits: A systematic review. Surgery for Obesity and Related Diseases 2019. [CrossRef]
- Penney, N.C.; Kinross, J.; Newton, R.C.; Purkayastha, S. The role of bile acids in reducing the metabolic complications of obesity after bariatric surgery: A systematic review. International Journal of Obesity 2015. [CrossRef]
- Vítek, L.; Haluzík, M. The role of bile acids in metabolic regulation. Journal of Endocrinology 2016. [CrossRef]
- Syn, N.L.; et al. Association of metabolic–bariatric surgery with long-term survival in adults with and without diabetes: a one-stage meta-analysis of matched cohort and prospective controlled studies with 174 772 participants. The Lancet 2021, 397. [Google Scholar] [CrossRef]
- Wiggins, T.; Guidozzi, N.; Welbourn, R.; Ahmed, A.R.; Markar, S.R. Association of bariatric surgery with all-cause mortality and incidence of obesity-related disease at a population level: A systematic review and meta-analysis. PLoS Medicine 2020, 17. [Google Scholar] [CrossRef]
- García, M.J.A.; López, F.J.V.; Martín, C.C.; Vera, P.S.; Cunill, J.L.P. Micronutrientes en cirug??a bari??trica. Nutr Hosp 2012, 27, 349–361. [Google Scholar] [CrossRef]
- Parrott, J.; et al. American Society for Metabolic and Bariatric Surgery Integrated Health Nutritional Guidelines for the Surgical Weight Loss Patient 2016 Update : Micronutrients. Surgery for Obesity and Related Diseases 2019, 13, 727–741. [Google Scholar] [CrossRef]
- Mechanick, J.I.; et al. Clinical practice guidelines for the perioperative nutrition, metabolic, and nonsurgical support of patients undergoing bariatric procedures – 2019 update: cosponsored by American Association of Clinical Endocrinologists/American College of Endocrinology, The Obesity Society, American Society for Metabolic & Bariatric Surgery, Obesity Medicine Association, and American Society of Anesthesiologists. Surgery for Obesity and Related Diseases 2020, 16. [Google Scholar] [CrossRef]
- O’Kane, M.; et al. British Obesity and Metabolic Surgery Society Guidelines on perioperative and postoperative biochemical monitoring and micronutrient replacement for patients undergoing bariatric surgery—2020 update. Obesity Reviews 2020, 21. [Google Scholar] [CrossRef] [PubMed]
- Galazis, N.; Docheva, N.; Simillis, C.; Nicolaides, K.H. Maternal and neonatal outcomes in women undergoing bariatric surgery: A systematic review and meta-analysis. European Journal of Obstetrics Gynecology and Reproductive Biology 2014, 181, 45–53. [Google Scholar] [CrossRef]
- Yi, X.Y.; Li, Q.F.; Zhang, J.; Wang, Z.H. A meta-analysis of maternal and fetal outcomes of pregnancy after bariatric surgery. International Journal of Gynecology and Obstetrics 2015. [CrossRef]
- Kwong, W.; Tomlinson, G.; Feig, D.S. Maternal and neonatal outcomes after bariatric surgery; a systematic review and meta-analysis: do the benefits outweigh the risks? American Journal of Obstetrics and Gynecology 2018. [CrossRef]
- Badreldin, N.; Kuller, J.; Rhee, E.; Brown, L.; Laifer, S. Pregnancy Management after Bariatric Surgery. Obstet Gynecol Surv 2016. [CrossRef]
- Harreiter, J.; et al. Management of Pregnant Women after Bariatric Surgery. Journal of Obesity 2018, 2018. [Google Scholar] [CrossRef]
- González, I.; Lecube, A.; Rubio, M.Á.; García-Luna, P.P. Pregnancy after bariatric surgery: Improving outcomes for mother and child. International Journal of Women’s Health 2016, 8, 721–729. [Google Scholar] [CrossRef]
- Shawe, J.; et al. Pregnancy after bariatric surgery: Consensus recommendations for periconception, antenatal and postnatal care. Obesity Reviews 2019, 20. [Google Scholar] [CrossRef]
- Alamri, S.H.; Abdeen, G.N. Maternal Nutritional Status and Pregnancy Outcomes Post-bariatric Surgery. Obesity Surgery 2022, 32. [Google Scholar] [CrossRef]
- Huang, B.; Yo, J.H.; Gandhi, S.; Maxwell, C. Micronutrient screening, monitoring, and supplementation in pregnancy after bariatric surgery. Obstet Med 2022, 15. [Google Scholar] [CrossRef]
- Guthrie, T.M.; Dix, C.F.; Truby, H.; Kumar, S.; de Jersey, S.J. A Systematic Review Investigating Maternal Nutrition During Pregnancy After Bariatric Surgery. Obes Surg. 2023. [CrossRef]
- Akhter, Z.; et al. Investigating the association between pregnancy following bariatric surgery and adverse perinatal outcomes: A systematic review and meta-analysis. BJOG 2018, 125. [Google Scholar]
- Mensink, G.B.M.; et al. Mapping low intake of micronutrients across Europe. British Journal of Nutrition 2013, 110, 755–773. [Google Scholar] [CrossRef]
- Das, J.K.; Salam, R.A.; Kumar, R.; Bhutta, Z.A. Micronutrient fortification of food and its impact on woman and child health: a systematic review. Syst Rev 2013. [CrossRef]
- Lecube, A.; et al. Trends in Bariatric Surgery in Spain in the Twenty-First Century: Baseline Results and 1-Month Follow Up of the RICIBA, a National Registry. Obes Surg 2016, 26, 1836–1842. [Google Scholar] [CrossRef]
- Alanis, M.C.; Goodnight, W.H.; Hill, E.G.; Robinson, C.J.; Villers, M.S.; Johnson, D.D. Maternal super-obesity (body mass index ≥ 50) and adverse pregnancy outcomes. Acta Obstet Gynecol Scand 2010. [CrossRef]
- Cogswell, M.E.; Weisberg, P.; Spong, C. Cigarette smoking, alcohol use and adverse pregnancy outcomes: Implications for micronutrient supplementation. Journal of Nutrition 2003, 133, 1722S–1731S. [Google Scholar] [CrossRef]
- Abbassi-Ghanavati, M.; Greer, L.G.; Cunningham, F.G. Pregnancy and laboratory studies: A reference table for clinicians. Obstetrics and Gynecology 2009. [CrossRef]
- Aron-Wisnewsky, J.; et al. . Nutritional and protein deficiencies in the short term following both gastric bypass and gastric banding. PLoS One 2016, 11, 1–17. [Google Scholar] [CrossRef] [PubMed]
- DeLoughery, T.G. Iron Deficiency Anemia. Medical Clinics of North America 2017. [CrossRef] [PubMed]
- Aigner, E.; Feldman, A.; Datz, C. Obesity as an emerging risk factor for iron deficiency. Nutrients. 2014. [CrossRef] [PubMed]
- Panel, E.; Nda, A. Scientific Opinion on Dietary Reference Values for iron. EFSA Journal 2015, 13, 4254. [Google Scholar] [CrossRef]
- Alwan, N.; Hamamy, H. Maternal Iron Status in Pregnancy and Long-Term Health Outcomes in the Offspring. J Pediatr Genet 2015. [CrossRef]
- De Sanidad, S.S. Grupo de trabajo de la Guía de práctica clínica de atención en el embarazo y puerperio. a Tención En El E Mbarazo Y P Uerperio. 2014, 397. [Google Scholar]
- Breymann, C. Iron deficiency and anaemia in pregnancy: Modern aspects of diagnosis and therapy. European Journal of Obstetrics & Gynecology and Reproductive Biology 2005. [Google Scholar] [CrossRef]
- World Health Organization. et al. Guideline : Daily iron and folic acid supplementation in pregnant women. World Health Organization 2012. [Google Scholar] [CrossRef]
- Muñoz, M.; Botella-Romero, F.; Gómez-Ramírez, S.; Campos, A.; García-Erce, J.A. Iron deficiency and anaemia in bariatric surgical patients: Causes, diagnosis and proper management. Nutr Hosp 2009, 24, 640–654. [Google Scholar] [CrossRef]
- Jeric, C.; et al. Diagn??stico y tratamiento del d??ficit de hierro, con o sin anemia, pre y poscirug??a bari??trica. Endocrinologia y Nutricion 2016, 63, 32–42 ttps://doiorg/101016/jendonu201509003. [Google Scholar] [CrossRef]
- Steenackers, N.; et al. Iron deficiency after bariatric surgery: What is the real problem? Proceedings of the Nutrition Society 2018. [CrossRef] [PubMed]
- Mechanick, J.I.; et al. AACE/TOS/ASMBS Bariatric Surgery Clinical Practice Guidelines. Endocrine Practice 2013, 19. [Google Scholar]
- Nomura, R.M.Y.; Dias, M.C.G.; Igai, A.M.K.; Paiva, L.V.; Zugaib, M. Anemia during pregnancy after silastic ring Roux-en-Y gastric bypass: Influence of time to conception. Obes Surg 2011. [CrossRef] [PubMed]
- Jans, G.; et al. Maternal Micronutrient Deficiencies and Related Adverse Neonatal Outcomes after Bariatric Surgery: A Systematic Review. Advances in Nutrition 2015, 6, 420–429. [Google Scholar] [CrossRef]
- Falcone, V.; et al. Pregnancy after bariatric surgery: A narrative literature review and discussion of impact on pregnancy management and outcome. BMC Pregnancy and Childbirth 2018. [CrossRef]
- Rottenstreich, A.; Elazary, R.; Goldenshluger, A.; Pikarsky, A.J.; Elchalal, U.; Ben-Porat, T. Maternal nutritional status and related pregnancy outcomes following bariatric surgery: A systematic review. Surgery for Obesity and Related Diseases 2019. [CrossRef] [PubMed]
- Hezelgrave, N.L.; Oteng-Ntim, E. Pregnancy after bariatric surgery: A review. Journal of Obesity 2011, 2011. [Google Scholar] [CrossRef]
- Dalfrà, M.G.; Busetto, L.; Chilelli, N.C.; Lapolla, A. Pregnancy and foetal outcome after bariatric surgery: a review of recent studies. J Matern Fetal Neonatal Med 2012, 25, 1537–43. [Google Scholar] [CrossRef]
- Busetto, L.; Dicker, D.; Azran, C.; Batterham, R.L.; Farpour-Lambert, N.; Fried, M.; Hjelmesæth, J.; Kinzl, J.; Leitner, D.R.; Makaronidis, J.M.; Schindler, K. Obesity Management Task Force of the European Association for the Study of Obesity Released ‘Practical Recommendations for the Post-Bariatric Surgery Medical Management. Obes Surg 2018. [CrossRef]
- Bailey, L.B.; et al. Biomarkers of Nutrition for Development—Folate Review. J Nutr 2015. [CrossRef]
- EFSA, EFSA Panel on Dietetic Products Nutrition and Allergies (NDA), EFSA, EFSA Panel on Dietetic Products Nutrition and Allergies (NDA), and EFSA. Scientific Opinion on Dietary Reference Values for folate. EFSA Journal 2015, 13, 1–59. [CrossRef]
- MRC Vitamin Study Research Group. Prevention of neural tube defects: Results of the Medical Research Council Vitamin Study. The Lancet 1991, 338, 131–137. [Google Scholar] [CrossRef]
- Shaw, G.M.; Carmichael, S.L.; Nelson, V.; Selvin, S.; Schaffer, D.M. Occurrence of low birthweight and preterm delivery among California infants before and after compulsory food fortification with folic acid. Public Health Rep 2004, 119, 170–173. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez, L.; Médico, M. Suplementos en embarazadas: controversias, evidencias y recomendaciones. Inf Ter Sist Nac Salud 2010, 34, 117–128. [Google Scholar]
- Mojtabai, R. Body mass index and serum folate in childbearing age women. Eur J Epidemiol 2004, 19, 1029–1036. [Google Scholar] [CrossRef]
- De-Regil, L.M.; Peña-Rosas, J.P.; Fernández-Gaxiola, A.C.; Rayco-Solon, P. Effects and safety of periconceptional oral folate supplementation for preventing birth defects. Cochrane Database Syst Rev 2015, 12, CD007950. [Google Scholar] [CrossRef]
- Lassi, Z.S.; Salam, R.A.; Haider, B.A.; Bhutta, Z.A. Folic acid supplementation during pregnancy for maternal health and pregnancy outcomes. Cochrane Database Syst Rev 2013, 3, CD006896. [Google Scholar] [CrossRef]
- Moussa, H.N.; Nasab, S.H.; Haidar, Z.A.; Blackwell, S.C.; Sibai, B.M. Folic acid supplementation: what is new? Fetal, obstetric, long-term benefits and risks. Future Sci OA 2016, 2, fsoa–2015. [Google Scholar] [CrossRef]
- Brolin, R.E.; Gorman, R.C.; Milgrim, L.M.; Kenler, H.A. Multivitamin prophylaxis in prevention of post-gastric bypass vitamin and mineral deficiencies. Int J Obes 1991, 15, 661–667. [Google Scholar]
- MacLean, L.D. Nutrition following intestinal bypass and gastric operations for morbid obesity. Canadian Journal of Surgery 1984, 27, 134–135. [Google Scholar]
- Gasteyger, C.; Suter, M.; Calmes, J.M.; Gaillard, R.C.; Giusti, V. Changes in body composition, metabolic profile and nutritional status 24 months after gastric banding. Obes Surg 2006, 16, 243–250. [Google Scholar] [CrossRef] [PubMed]
- Aasheim, E.T.; Bjo, S.; Hanvold, S.E.; Mala, T.; Olbers, T.; Bøhmer, T. Vitamin status after bariatric surgery : a randomized study of gastric bypass and duodenal switch 1 – 3. Am J Clin Nutr 2009, 90, 15–22. [Google Scholar] [CrossRef]
- Skroubis, G.; Sakellaropoulos, G.; Pouggouras, K.; Mead, N.; Nikiforidis, G.; Kalfarentzos, F. Comparison of nutritional deficiencies after Roux-en-Y gastric bypass and after biliopancreatic diversion with Roux-en-Y gastric bypass. Obes Surg 2002, 112, 551–558. [Google Scholar] [CrossRef] [PubMed]
- Weng, T.-C.; Chang, C.-H.; Dong, Y.-H.; Chang, Y.-C.; Chuang, L.-M. Anaemia and related nutrient deficiencies after Roux-en-Y gastric bypass surgery: a systematic review and meta-analysis. BMJ Open 2015, 5, e006964. [Google Scholar] [CrossRef] [PubMed]
- Moliterno, J.A.; DiLuna, M.L.; Sood, S.; Roberts, K.E.; Duncan, C.C. Gastric bypass: a risk factor for neural tube defects? Case report. J Neurosurg Pediatr 2008, 1, 406–409. [Google Scholar] [CrossRef]
- Pelizzo, G.; et al. Malnutrition in pregnancy following bariatric surgery: three clinical cases of fetal neural defects. Nutr J 2014, 13, 59. [Google Scholar] [CrossRef]
- Devlieger, R.; Guelinckx, I.; Jans, G.; Voets, W.; Vanholsbeke, C.; Vansant, G. Micronutrient levels and supplement intake in pregnancy after bariatric surgery: A prospective cohort study. PLoS One 2014, 9. [Google Scholar] [CrossRef]
- Bebber, F.E.; et al. Pregnancy after bariatric surgery: 39 Pregnancies follow-up in a multidisciplinary team. Obes Surg 2011, 21, 1546–1551. [Google Scholar] [CrossRef]
- Gonzalez, I.; et al. Maternal and Perinatal Outcomes After Bariatric Surgery: a Spanish Multicenter Study. Obes Surg 2015, 25, 436–442. [Google Scholar] [CrossRef]
- O’Leary, F.; Samman, S. Vitamin B12 in health and disease. Nutrients 2010. [CrossRef]
- Finkelstein, J.L.; Layden, A.J.; Stover, P.J. Vitamin B-12 and Perinatal Health. Advances in Nutrition 2015. [CrossRef]
- Rogne, T.; Tielemans, M.J.; Chong, M.F.F.; Yajnik, C.S.; Krishnaveni, G.V.; Poston, L.; Jaddoe, V.W.; Steegers, E.A.; Joshi, S.; Chong, Y.S.; Godfrey, K.M. Maternal vitamin B12 in pregnancy and risk of preterm birth and low birth weight: A systematic review and individual participant data meta-analysis. Am J Epidemiol. 2017. [CrossRef] [PubMed]
- Majumder, S.; Soriano, J.; Cruz, A.L.; Dasanu, C.A. Vitamin B12 deficiency in patients undergoing bariatric surgery: Preventive strategies and key recommendations. Surgery for Obesity and Related Diseases 2013, 9, 1013–1019. [Google Scholar] [CrossRef]
- Majumder, S.; Soriano, J.; Cruz, A.L.; Dasanu, C.A. Vitamin B12 deficiency in patients undergoing bariatric surgery: Preventive strategies and key recommendations. Surgery for Obesity and Related Diseases 2013. [CrossRef] [PubMed]
- Smelt, H.J.M.; Pouwels, S.; Smulders, J.F. Different Supplementation Regimes to Treat Perioperative Vitamin B12 Deficiencies in Bariatric Surgery: a Systematic Review. Obesity Surgery 2017. [CrossRef] [PubMed]
- Busetto, L.; et al. Obesity Management Task Force of the European Association for the Study of Obesity Released ‘Practical Recommendations for the Post-Bariatric Surgery Medical Management. Obes Surg 2018, 1–5. [Google Scholar] [CrossRef]
- Grange, D.K.; Finlay, J.L. Nutritional vitamin b12 deficiency in a breastfed infant following maternal gastric bypass. Pediatr Hematol Oncol 1994. [CrossRef]
- Wardinsky, T.D.; Montes, R.G.; Friederich, R.L.; Broadhurst, R.B.; Sinnhuber, V.; Bartholomew, D. Vitamin B12 Deficiency Associated with Low Breast-Milk Vitamin B12 Concentration in an Infant Following Maternal Gastric Bypass Surgery. Archives of Pediatrics & Adolescent Medicine 1995. [Google Scholar] [CrossRef]
- Celiker, M.Y.; Chawla, A. Congenital B12 deficiency following maternal gastric bypass. Journal of Perinatology 2009. [CrossRef]
- Gascoin, G.; et al. Risk of low birth weight and micronutrient deficiencies in neonates from mothers after gastric bypass: a case control study. Surgery for Obesity and Related Diseases 2017. [CrossRef]
- Mead, N.C.; Sakkatos, P.; Sakellaropoulos, G.C.; Adonakis, G.L.; Alexandrides, T.K.; Kalfarentzos, F. Pregnancy outcomes and nutritional indices after 3 types of bariatric surgery performed at a single institution. Surgery for Obesity and Related Diseases 2014. [CrossRef] [PubMed]
- Holick, M.F.; et al. Evaluation, treatment, and prevention of vitamin D deficiency: An endocrine society clinical practice guideline. Journal of Clinical Endocrinology and Metabolism 2011. [CrossRef] [PubMed]
- Wagner, C.L.; Hollis, B.W. The implications of vitamin D status during pregnancy on mother and her developing child. Frontiers in Endocrinology 2018. [CrossRef] [PubMed]
- Bodnar, L.M.; Catov, J.M.; Simhan, H.N.; Holick, M.F.; Powers, R.W.; Roberts, J.M. Maternal vitamin D deficiency increases the risk of preeclampsia. Journal of Clinical Endocrinology and Metabolism 2007. [CrossRef]
- Wei, S.-Q.; Qi, H.-P.; Luo, Z.-C.; Fraser, W.D. Maternal vitamin D status and adverse pregnancy outcomes: a systematic review and meta-analysis. J Matern Fetal Neonatal Med 2013, 26, 889–99. [Google Scholar] [CrossRef]
- Hu, K.L.; Zhang, C.X.; Chen, P.; Zhang, D.; Hunt, S. Vitamin D Levels in Early and Middle Pregnancy and Preeclampsia, a Systematic Review and Meta-Analysis. Nutrients 2022, 14, 999. [Google Scholar] [CrossRef]
- Perez-Ferre, N.; et al. Association of low serum 25-hydroxyvitamin D levels in pregnancy with glucose homeostasis and obstetric and newborn outcomes. Endocrine Practice 2012, 18. [Google Scholar] [CrossRef]
- Switzer, N.J.; et al. Long-term hypovitaminosis D and secondary hyperparathyroidism outcomes of the Roux-en-Y gastric bypass: a systematic review. Obesity Reviews 2017. [CrossRef]
- Chakhtoura, M.T.; Nakhoul, N.; Akl, E.A.; Mantzoros, C.S.; El Hajj Fuleihan, G.A. Guidelines on Vitamin D replacement in bariatric surgery: Identification and systematic appraisal. Metabolism 2016, 65, 589–597. [Google Scholar] [CrossRef]
- Medeiros, M.; Matos, A.C.; Pereira, S.E.; Saboya, C.; Ramalho, A. Vitamin D and its relation with ionic calcium, parathyroid hormone, maternal and neonatal characteristics in pregnancy after roux-en-Y gastric bypass. Arch Gynecol Obstet 2016. [CrossRef]
- Cruz, S.; de Matos, A.C.; da Cruz, S.P.; Pereira, S.; Saboya, C.; Ramalho, A. Maternal Anthropometry and Its Relationship with the Nutritional Status of Vitamin D, Calcium, and Parathyroid Hormone in Pregnant Women After Roux-en-Y Gastric Bypass. Obes Surg 2018. [CrossRef] [PubMed]
- Snoek, K.; et al. The Impact of Preconception Gastric Bypass Surgery on Maternal Micronutrient Status before and during Pregnancy: A Retrospective Cohort Study in the Netherlands between 2009 and 2019. Nutrients 2022, 14, 736. [Google Scholar] [CrossRef]
- Gröber, U.; Schmidt, J.; Kisters, K. Magnesium in prevention and therapy. Nutrients 2015, 7, 8199–8226. [Google Scholar] [CrossRef] [PubMed]
- de Baaij, J.H.F.; Hoenderop, J.G.J.; Bindels, R.J.M. Magnesium in Man: Implications for Health and Disease. Physiol Rev 2014. [CrossRef] [PubMed]
- Costello, R.B.; et al. Perspective: The Case for an Evidence-Based Reference Interval for Serum Magnesium: The Time Has Come. Advances in Nutrition: An International Review Journal 2016, 7, 977–993. [Google Scholar] [CrossRef] [PubMed]
- Lager, S.; Powell, T.L. Regulation of Nutrient Transport across the Placenta. J Pregnancy 2012. [CrossRef] [PubMed]
- Amaral, L.M.; Wallace, K.; Owens, M.; LaMarca, B. Pathophysiology and Current Clinical Management of Preeclampsia. Current Hypertension Reports 2017. [CrossRef]
- Holcberg, G.; et al. Selective Vasodilator Effect of Magnesium Sulfate in Human Placenta. American Journal of Reproductive Immunology 2004. [CrossRef]
- Dhariwal, N.K.; Lynde, G.C. Update in the Management of Patients with Preeclampsia. Anesthesiology Clinics 2017. [CrossRef]
- Dalton, L.M.; Fhloinn, D.M.N.; Gaydadzhieva, G.T.; Mazurkiewicz, O.M.; Leeson, H.; Wright, C.P. Magnesium in pregnancy. Nutr Rev 2016. [CrossRef]
- Makrides, M.; Crosby, D.D.; Bain, E.; Crowther, C.A. Magnesium supplementation in pregnancy. Cochrane Database of Systematic Reviews 2014. [CrossRef]
- Shepherd, E.; et al. Antenatal magnesium sulphate and adverse neonatal outcomes: A systematic review and meta-analysis. PLoS Medicine 2019, 16. [Google Scholar] [CrossRef] [PubMed]
- Gimenes, J.C.; et al. Pregnancy After Roux en Y Gastric Bypass: Nutritional and Biochemical Aspects. Obes Surg 2017. [CrossRef] [PubMed]
- Hazart, J.; et al. Maternal Nutritional Deficiencies and Small-for-Gestational-Age Neonates at Birth of Women Who Have Undergone Bariatric Surgery. J Pregnancy 2017. [CrossRef]
- Trumbo, P.; Yates, A.A.; Schlicker, S.; Poos, M. Dietary reference intakes: vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc. J Am Diet Assoc 2001. [CrossRef]
- Prasad, A.S. Discovery of Human Zinc Deficiency: Its Impact on Human Health and Disease. Advances in Nutrition 2013. [CrossRef]
- Roohani, N.; Hurrell, R.; Kelishadi, R.; Schulin, R. Zinc and its importance for human health: An integrative review. Journal of Research in Medical Sciences 2013.
- Wilson, R.; Grieger, J.; Bianco-Miotto, T.; Roberts, C. Association between Maternal Zinc Status, Dietary Zinc Intake and Pregnancy Complications: A Systematic Review. Nutrients 2016, 8, 641. [Google Scholar] [CrossRef] [PubMed]
- Walker, J.B.; et al. Maternal and umbilical cord blood levels of mercury, lead, cadmium, and essential trace elements in Arctic Canada. Environ Res 2006. [CrossRef]
- King, J.C. Determinants of maternal zinc status during pregnancy. American Journal of Clinical Nutrition 2000. [CrossRef]
- Hanachi, P.; Norrozi, M.; Moosavi, R.M. The correlation of prenatal zinc concentration and deficiency with anthropometric factors. J Family Reprod Health 2014.
- Shen, P.-J.; Gong, B.; Xu, F.-Y.; Luo, Y. Four trace elements in pregnant women and their relationships with adverse pregnancy outcomes. Eur Rev Med Pharmacol Sci 2015, 19, 4690–4697. [Google Scholar]
- Atazadegan, M.A.; Heidari-Beni, M.; Riahi, R.; Kelishadi, R. Association of selenium, zinc and copper concentrations during pregnancy with birth weight: A systematic review and meta-analysis. Journal of Trace Elements in Medicine and Biology 2022, 69. [Google Scholar] [CrossRef] [PubMed]
- Parrott, J.; Frank, L.; Rabena, R.; Craggs-Dino, L.; Isom, K.A.; Greiman, L. American Society for Metabolic and Bariatric Surgery Integrated Health Nutritional Guidelines for the Surgical Weight Loss Patient 2016 Update: Micronutrients. Surgery for Obesity and Related Diseases 2017, 13, 727–741. [Google Scholar] [CrossRef]
- Rojas, P.; et al. Alopecia in women with severe and morbid obesity who undergo bariatric surgery. Nutr Hosp 2011, 26, 856–862. [Google Scholar] [PubMed]
- Chagas, C.; Saunders, C.; Pereira, S.; Silva, J.; Saboya, C.; Ramalho, A. Vitamin A status and its relationship with serum zinc concentrations among pregnant women who have previously undergone Roux-en-Y gastric bypass. Int J Gynaecol Obstet 2016, 133, 94–97. [Google Scholar] [CrossRef]
- Ducarme, G.; Planche, L.; Abet, E.; Roure, V.D.D.; Ducet-Boiffard, A. A prospective study of association of micronutrients deficiencies during pregnancy and neonatal outcome among women after bariatric surgery. J Clin Med 2021, 10. [Google Scholar] [CrossRef]
- Scheiber, I.F.; Mercer, J.F.B.; Dringen, R. Metabolism and functions of copper in brain. Progress in Neurobiology 2014, 116, 33–57. [Google Scholar] [CrossRef]
- Tiffany-Castiglioni, E.; Hong, S.; Qian, Y. Copper handling by astrocytes: Insights into neurodegenerative diseases. International Journal of Developmental Neuroscience 2011, 29, 811–818. [Google Scholar] [CrossRef]
- Altarelli, M.; Ben-Hamouda, N.; Schneider, A.; Berger, M.M. Copper Deficiency: Causes, Manifestations, and Treatment. Nutrition in Clinical Practice 2019. [CrossRef]
- Uriu-Adams, J.Y.; Scherr, R.E.; Lanoue, L.; Keen, C.L. Influence of copper on early development: Prenatal and postnatal considerations. BioFactors 2010, 36, 136–152. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; et al. Gestational age-specific reference intervals for blood copper, zinc, calcium, magnesium, iron, lead, and cadmium during normal pregnancy. Clin Biochem 2013, 46, 777–780. [Google Scholar] [CrossRef] [PubMed]
- Alebic-Juretic, A.; Frkovic, A. Plasma copper concentrations in pathological pregnancies. Journal of Trace Elements in Medicine and Biology 2005, 19, 191–194. [Google Scholar] [CrossRef]
- Keen, C.L.; et al. Effect of copper deficiency on prenatal development and pregnancy outcome. Am J Clin Nutr 1998, 67, 1003S–1011S. [Google Scholar] [CrossRef]
- Saltzman, E.; Karl, J.P. Nutrient Deficiencies After Gastric Bypass Surgery. Annu Rev Nutr 2013. [CrossRef] [PubMed]
- Gletsu-Miller, N.; et al. Incidence and prevalence of copper deficiency following roux-en-y gastric bypass surgery. Int J Obes 2012. [CrossRef]
- Kumar, P.; et al. Copper Deficiency after Gastric Bypass for Morbid Obesity: a Systematic Review. Obesity Surgery 2016. [CrossRef] [PubMed]
- Balsa, J.A.; et al. Copper and zinc serum levels after derivative bariatric surgery: Differences between Roux-en-Y gastric bypass and biliopancreatic diversion. Obes Surg 2011, 21, 744–750. [Google Scholar] [CrossRef] [PubMed]
- Btaiche, I.F.; Yeh, A.Y.; Wu, I.J.; Khalidi, N. Neurologic dysfunction and pancytopenia secondary to acquired copper deficiency following duodenal switch: case report and review of the literature. Nutr Clin Pract 2011, 26, 583–592. [Google Scholar] [CrossRef]
- Griffith, D.P.; Liff, D.A.; Ziegler, T.R.; Esper, G.J.; Winton, E.F. Acquired copper deficiency: a potentially serious and preventable complication following gastric bypass surgery. Obesity (Silver Spring) 2009, 17, 827–831. [Google Scholar] [CrossRef]
- Rowin, J.; Lewis, S.L. Copper deficiency myeloneuropathy and pancytopenia secondary to overuse of zinc supplementation. J Neurol Neurosurg Psychiatry 2005, 76, 750–751. [Google Scholar] [CrossRef] [PubMed]
- Pieczyńska, J.; Grajeta, H. The role of selenium in human conception and pregnancy. Journal of Trace Elements in Medicine and Biology 2014. [CrossRef]
- Combs, G.F. Biomarkers of selenium status. Nutrients 2015, 7, 220–2236. [Google Scholar] [CrossRef]
- EFSA NDA Panel. Scientific Opinion on Dietary Reference Values for selenium. EFSA Journal 2014, 12, 3846. [Google Scholar] [CrossRef]
- Rayman, M.P.; Bode, P.; Redman, C.W.G. Low selenium status is associated with the occurrence of the pregnancy disease preeclampsia in women from the United Kingdom. Am J Obstet Gynecol 2003, 189, 1343–1349. [Google Scholar] [CrossRef]
- Xu, M.; Guo, D.; Gu, H.; Zhang, L.; Lv, S. Selenium and Preeclampsia: a Systematic Review and Meta-analysis. Biological Trace Element Research 2016, 171. [Google Scholar] [CrossRef] [PubMed]
- Hamdan, H.Z.; Hamdan, S.Z.; Adam, I. Association of Selenium Levels with Preeclampsia: A Systematic Review and Meta-analysis. Biol Trace Elem Res 2023. [CrossRef]
- Izquierdo Álvarez, S.; et al. Updating of normal levels of copper, zinc and selenium in serum of pregnant women. Journal of Trace Elements in Medicine and Biology 2007, 21, 49–52. [Google Scholar] [CrossRef]
- Bermúdez, L.; García-Vicent, C.; López, J.; Torró, M.I.; Lurbe, E. Assessment of ten trace elements in umbilical cord blood and maternal blood: association with birth weight. J Transl Med 2015, 13, 291. [Google Scholar] [CrossRef]
- Boldery, R.; Fielding, G.; Rafter, T.; Pascoe, A.L.; Scalia, G.M. Nutritional Deficiency of Selenium Secondary to Weight Loss (Bariatric) Surgery Associated with Life-Threatening Cardiomyopathy. Heart Lung Circ 2007, 16, 123–126. [Google Scholar] [CrossRef]
- Massoure, P.L.; Camus, O.; Fourcade, L.; Simon, F. Bilateral leg oedema after bariatric surgery: A selenium-deficient cardiomyopathy. Obes Res Clin Pract 2017. [CrossRef] [PubMed]
- Alasfar, F.; Ben-Nakhi, M.; Khoursheed, M.; Kehinde, E.O.; Alsaleh, M. Selenium is significantly depleted among morbidly obese female patients seeking bariatric surgery. Obes Surg 2011, 21, 1710–1713. [Google Scholar] [CrossRef] [PubMed]
- Freeth, A.; Prajuabpansri, P.; Victory, J.M.; Jenkins, P. Assessment of selenium in roux-en-Y gastric bypass and gastric banding surgery. Obes Surg 2012, 22, 1660–1665. [Google Scholar] [CrossRef] [PubMed]
- Papamargaritis, D.; Aasheim, E.T.; Sampson, B.; le Roux, C.W. Copper, selenium and zinc levels after bariatric surgery in patients recommended to take multivitamin-mineral supplementation. Journal of Trace Elements in Medicine and Biology 2015, 31, 167–172. [Google Scholar] [CrossRef]
- Eltweri, A.M.; Bowrey, D.J.; Sutton, C.D.; Graham, L.; Williams, R.N. An audit to determine if vitamin b12 supplementation is necessary after sleeve gastrectomy. Springerplus 2013, 2, 218. [Google Scholar] [CrossRef]
- Shahmiri, S.S.; et al. Selenium Deficiency After Bariatric Surgery, Incidence and Symptoms: a Systematic Review and Meta-Analysis. Obesity Surgery 2022, 32. [Google Scholar] [CrossRef]
- Hatch-McChesney, A.; Lieberman, H.R. Iodine and Iodine Deficiency: A Comprehensive Review of a Re-Emerging Issue. Nutrients 2022, 14. [Google Scholar] [CrossRef]
- Nazeri, P.; Shariat, M.; Azizi, F. Effects of iodine supplementation during pregnancy on pregnant women and their offspring: A systematic review and meta-analysis of trials over the past 3 decades. European Journal of Endocrinology 2021, 184. [Google Scholar] [CrossRef]
- Michalaki, M.; Volonakis, S.; Mamali, I.; Kalfarentzos, F.; Vagenakis, A.G.; Markou, K.B. The gastrointestinal absorption of iodine is not reduced after malabsorptive bariatric procedures. Eur Thyroid J 2013, 2. [Google Scholar]
- Lecube, A.; et al. Iodine Deficiency Is Higher in Morbid Obesity in Comparison with Late After Bariatric Surgery and Non-obese Women. Obes Surg 2015, 25. [Google Scholar] [CrossRef]
- Manousou, S.; et al. Iodine Status After Bariatric Surgery—a Prospective 10-Year Report from the Swedish Obese Subjects (SOS) Study. Obes Surg 2018, 28. [Google Scholar] [CrossRef]
- Sriram, K.; Manzanares, W.; Joseph, K. Thiamine in nutrition therapy. Nutrition in Clinical Practice 2012. [CrossRef]
- Ashraf, V.V.; Prijesh, J.; Praveenkumar, R.; Saifudheen, K. “Wernicke’s encephalopathy due to hyperemesis gravidarum: Clinical and magnetic resonance imaging characteristics. Journal of postgraduate medicine 2016, 62, 260–263. [Google Scholar] [CrossRef] [PubMed]
- Frank, L.L. Thiamin in Clinical Practice. Journal of Parenteral and Enteral Nutrition 2015. [CrossRef] [PubMed]
- Kareem, O.; Nisar, S.; Tanvir, M.; Muzaffer, U.; Bader, G.N. Thiamine deficiency in pregnancy and lactation: implications and present perspectives. Front Nutr. 2023. [CrossRef]
- Di Gangi, S.; Gizzo, S.; Patrelli, T.S.; Saccardi, C.; D’Antona, D.; Nardelli, G.B. Wernicke’s encephalopathy complicating hyperemesis gravidarum: from the background to the present. J Matern Fetal Neonatal Med 2012, 25, 1499–1504. [Google Scholar] [CrossRef] [PubMed]
- Finglas, P.M. Dietary Reference intakes for thiamin, riboflavin, niacin, vitamin B6, folate, vitamin B12, pantothenic acid, biotin and choline. Trends Food Sci Technol 2000, 11. [Google Scholar] [CrossRef]
- Kröll, D.; Laimer, M.; Borbély, Y.M.; Laederach, K.; Candinas, D.; Nett, P.C. Wernicke Encephalopathy: a Future Problem Even After Sleeve Gastrectomy? A Systematic Literature Review. Obesity Surgery 2016, 26, 205–212. [Google Scholar] [CrossRef]
- Ngene, N.C.; Moodley, J. Fatal encephalopathy complicating persistent vomiting in pregnancy: Importance of clinical awareness on the part of healthcare professionals. South African Medical Journal 2016, 106, 792–794. [Google Scholar] [CrossRef]
- Bahardoust, M.; et al. B1 Vitamin Deficiency After Bariatric Surgery, Prevalence, and Symptoms: a Systematic Review and Meta-analysis. Obesity Surgery 2022, 32. [Google Scholar] [CrossRef]
- Saab, R.O.; El Khoury, M.I.; Jabbour, R.A. Wernicke encephalopathy after Roux-en-Y gastric bypass and hyperemesis gravidarum. Surgery for Obesity and Related Diseases 2013. [CrossRef] [PubMed]
- World Health Organization. Global prevalence of vitamin A deficiency in populations at risk 1995-2005 : WHO global database on vitamin A deficiency. WHO Iris 2009. [Google Scholar]
- OMS. Concentraciones en suero de retinol para establecer la prevalencia de la carencia de vitamina A a escala poblacional. Sistema de Información Nutricional sobre Vitaminas y Minerales 2011. [Google Scholar]
- Cuesta, M.; et al. Fat-soluble vitamin deficiencies after bariatric surgery could be misleading if they are not appropriately adjusted. Nutr Hosp 2014, 30, 118–123. [Google Scholar] [CrossRef] [PubMed]
- Maia, S.B.; et al. Vitamin a and pregnancy: A narrative review. Nutrients. 2019. [CrossRef]
- Oliveira, J.M.; Michelazzo, F.B.; Stefanello, J.; Rondó, P.H.C. Influence of iron on vitamin a nutritional status. Nutr Rev 2008, 66, 141–147. [Google Scholar] [CrossRef]
- WHO. Guideline : Vitamin A supplementation in pregnant women. World Health Organization 2011, 1–30. [Google Scholar]
- Mary, E.M.; van den Broek, N.; Dou, L.; Othman, M. Vitamin A supplementation during pregnancy for maternal and newborn outcomes. Cochrane Database of Systematic Reviews 2015. [CrossRef]
- EFSA NDA Panel. Scientific Opinion on Dietary Reference Values for vitamin A. EFSA Journal 2015, 12, 1–24. [Google Scholar] [CrossRef]
- Slater, G.H.; et al. Serum fat-soluble vitamin deficiency and abnormal calcium metabolism after malabsorptive bariatric surgery. Journal of Gastrointestinal Surgery 2004, 8, 48–55. [Google Scholar] [CrossRef]
- Eckert, M.J.; et al. Incidence of low vitamin A levels and ocular symptoms after Roux-en-Y gastric bypass. Surgery for Obesity and Related Diseases 2010, 6, 653–657. [Google Scholar] [CrossRef]
- Pereira, S.; Saboya, C.; Chaves, G.; Ramalho, A. Class III obesity and its relationship with the nutritional status of vitamin A in pre- and postoperative gastric bypass. Obes Surg 2009, 19, 738–744. [Google Scholar] [CrossRef] [PubMed]
- Montero, M.V.; et al. Deficiencia cl??nica de vitamina A tras bypass g??strico. Descripci??n de un caso cl??nico y revisi??n de la literatura. Nutr Hosp 2016, 33, 1008–1011. [Google Scholar] [CrossRef]
- Ocón, J.; Cabrejas, C.; Altemir, J.; Moros, M. Phrynoderma: a rare dermatologic complication of bariatric surgery. JPEN J Parenter Enteral Nutr 2012, 36, 361–364. [Google Scholar] [CrossRef] [PubMed]
- Fok, J.S.; Li, J.Y.Z.; Yong, T.Y. Visual deterioration caused by vitamin A deficiency in patients after bariatric surgery. Eating and Weight Disorders 2012, 17. [Google Scholar] [CrossRef] [PubMed]
- Ramos-Leví, A.M.; Pérez-Ferre, N.; Sánchez-Pernaute, A.; García, A.J.; Herrera, M.A. Severe vitamin A deficiency after malabsortive bariatric surgery. Nutr Hosp 2013, 28, 1337–1340. [Google Scholar] [CrossRef]
- Stroh, C.; Weiher, C.; Hohmann, U.; Meyer, F.; Lippert, H.; Manger, T. Vitamin A deficiency (VAD) after a duodenal switch procedure: a case report. Obes Surg 2010, 20, 397–400. [Google Scholar] [CrossRef]
- CChagas, B.; Saunders, C.; Pereira, S.; Silva, J.; Saboya, C.; Ramalho, A. Vitamin A deficiency in pregnancy: Perspectives after BARIATRIC SURGERY. Obesity Surgery 2013, 23, 249–254. [Google Scholar] [CrossRef]
- Huerta, S.; Rogers, L.M.; Li, Z.; Heber, D.; Liu, C.; Livingston, E.H. Vitamin a deficiency in a newborn resulting from maternal hypovitaminosis A after biliopancreatic diversion for the treatment of morbid obesity. American Journal of Clinical Nutrition 2002, 76, 426–429. [Google Scholar] [CrossRef]
- Smets, K.J.; Barlow, T.; Vanhaesebrouck, P. Maternal vitamin A deficiency and neonatal microphthalmia: Complications of biliopancreatic diversion? Eur J Pediatr 2006, 165, 502–504 v. [Google Scholar] [CrossRef]
- Breton, J.O.; Sallan, L. Maternal and neonatal complications in a pregnant woman with biliopancreatic diversion. [Spanish] TT - Complicaciones maternas y neonatales en una mujer gestante con derivacion biliopancreatica. Nutricion hospitalaria : organo oficial de la Sociedad Espanola de Nutricion Parenteral y Enteral 2010. [Google Scholar]
- Mackie, F.L.; Cooper, N.S.; Whitticase, L.J.; Smith, A.; Martin, W.L.; Cooper, S.C. Vitamin A and micronutrient deficiencies post-bariatric surgery: aetiology, complications and management in a complex multiparous pregnancy. Eur J Clin Nutr 2018. [CrossRef]
- Cruz, S.; Matos, A.; Da Cruz, S.P.; Pereira, S.; Saboya, C.; Ramalho, A. Relationship between the nutritional status of vitamin a per trimester of pregnancy with maternal anthropometry and anemia after roux-en-y gastric bypass. Nutrients 2017. [CrossRef] [PubMed]
- Niki, E.; Traber, M.G. A history of vitamin e. Annals of Nutrition and Metabolism 2012. [CrossRef] [PubMed]
- Traber, M.G. Vitamin E Inadequacy in Humans: Causes and Consequences. Advances in Nutrition 2014. [CrossRef]
- Dietary Reference Intakes for Vitamin C, Vitamin E, Selenium, and Carotenoids. 2015. [CrossRef]
- Chen, K.; Zhang, X.; Wei, X.P.; Qu, P.; Liu, Y.X.; Li, T.Y. Antioxidant vitamin status during pregnancy in relation to cognitive development in the first two years of life. Early Hum Dev 2009. [CrossRef] [PubMed]
- Koscik, R.L.; et al. Preventing early, prolonged vitamin E deficiency: An opportunity for better cognitive outcomes via early diagnosis through neonatal screening. Journal of Pediatrics 2005. [CrossRef] [PubMed]
- Hovdenak, N.; Haram, K. Influence of mineral and vitamin supplements on pregnancy outcome. European Journal of Obstetrics and Gynecology and Reproductive Biology 2012. [CrossRef]
- Sitrin, M.D.; Lieberman, F.; Jensen, W.E.; Noronha, A.; Milburn, C.; Addington, W. Vitamin E deficiency and neurologic disease in adults with cystic fibrosis. Ann Intern Med 1987. [CrossRef]
- Wilson, R.D.; et al. Pre-conception Folic Acid and Multivitamin Supplementation for the Primary and Secondary Prevention of Neural Tube Defects and Other Folic Acid-Sensitive Congenital Anomalies. Journal of Obstetrics and Gynaecology Canada 2015, 37, 534–549. [Google Scholar] [CrossRef] [PubMed]
- Gascoin, G.; et al. Risk of low birth weight and micronutrient deficiencies in neonates from mothers after gastric bypass: a case control study. Surgery for Obesity and Related Diseases 2017. [Google Scholar] [CrossRef] [PubMed]
- Harshman, S.G.; Saltzman, E.; Booth, S.L. Vitamin K: Dietary intake and requirements in different clinical conditions. Current Opinion in Clinical Nutrition and Metabolic Care 2014. [CrossRef] [PubMed]
- Pearson, D.A. Bone health and osteoporosis: The role of vitamin K and potential antagonism by anticoagulants. Nutrition in Clinical Practice 2007. [CrossRef] [PubMed]
- Shahrook, S.; Ota, E.; Hanada, N.; Sawada, K.; Mori, R. Vitamin K supplementation during pregnancy for improving outcomes: a systematic review and meta-analysis. Sci Rep 2018. [CrossRef]
- Homan, J.; Ruinemans-Koerts, J.; Aarts, E.O.; Janssen, I.M.C.; Berends, F.J.; De Boer, H. Management of Vitamin K deficiency after biliopancreatic diversion with or without duodenal switch. Surgery for Obesity and Related Diseases 2016, 12, 338–344. [Google Scholar] [CrossRef]
- Van Mieghem, T.; Van Schoubroeck, D.; Depiere, M.; Debeer, A.; Hanssens, M. Fetal cerebral hemorrhage caused by vitamin K deficiency after complicated bariatric surgery. Obstetrics and gynecology 2008, 112, 434–436. [Google Scholar] [CrossRef]
- Bersani, I.; De Carolis, M.P.; Salvi, S.; Zecca, E.; Romagnoli, C.; De Carolis, S. Maternal-neonatal vitamin K deficiency secondary to maternal biliopancreatic diversion. Blood Coagul Fibrinolysis 2011, 22, 334–336. [Google Scholar] [CrossRef]
- Jans, G.; et al. Vitamin K1 monitoring in pregnancies after bariatric surgery: a prospective cohort study. Surg Obes Relat Dis 2014, 10, 885–890. [Google Scholar] [CrossRef]

| Clinical consequences of maternal obesity and excess weight gain in pregnancy | |
|---|---|
| Maternal | |
| Pre-conception | Higher risk of type 2 diabetes, high blood pressure, and infertility. |
| Pregnancy | Previous metabolic diseases, gestational diabetes, hypertension, deep vein thrombosis, pulmonary thromboembolism, depression. |
| Delivery | Higher risk of complications, instrumental delivery, caesarean, higher anesthetic risk. |
| Postpartum | Infection, depression, failure in breastfeeding, weight retain, obesity |
| New-born and infant | |
| Macrosomia, large for gestational age newborn, prematurity, shoulder dystocia, birth defects, neonatal hypoglycemia. | |
| Long-term | |
| Higher risk of obesity, metabolic complications. Higher vascular risk for both the mother and offspring. | |
| Risk factors for micronutrient deficiency after bariatric surgery | |
|---|---|
| Micronutrient deficiency prior to surgery | Eating disorder, unbalanced diet, depression Vitamin D, Iron, Folate, Zinc, Thiamine |
| Decreased intake | Food intolerance, taste alterations, GI symptoms Eating pattern (Ej, vegan), food allergy Eating disorders (previous or de novo) Others (depression, socio-economic situation) |
| Malabsorption | Gastrectomy/gastric exclusion, pylorus preservation Length of bilio-pancreatic, alimentary, and common limbs Revisional surgery Complications, Fistula, bacterial overgrowth (Vit. B12) |
| Other clinical conditions | GI disease, any other acute or chronic disease Drug therapy (PPI, metformin, steroids, etc) Alcoholism Pregnancy, lactation Old age |
| Micronutrient | Clinical consequences of deficiency on maternal/fetal health |
|---|---|
| Iron | Increased maternal and fetal morbidity and mortality, miscarriage, decreased weight and fetal development |
| Folate | Neural tube defects, miscarriage, abruptio placentae, prematurity |
| Vitamin B12 | Abortion, prematurity, growth retardation, neural tube defects, cognitive impairment |
| Vitamin D | Gestational diabetes, preeclampsia, low birth weight, long-term complications |
| Iodine | Alteration in the development of central nervous system, mental retardation |
| Zinc | Delayed fetal growth and maturation, prematurity |
| Copper | Abortion, prematurity, low weight |
| Selenium | Preeclampsia |
| Thiamine | Risk of thiamine deficiency in hyperemesis gravidarum |
| Vitamin A | Fetal malformations, pulmonary dysplasia, anemia |
| Vitamin E | Pre-eclampsia, neural tube defects, cognitive impairment, hemolytic disease of the newborn |
| Vitamin K | Periventricular and intraventricular hemorrhage |
| Micronutrient | Dose | Comment |
|---|---|---|
| Iron | 100-200 mg | Ferritin > 30 mg/L Gradual increase of dose. |
| Folate | 400-800 mg | Higher dose in women with obesity |
| Vitamin B12 | 10002000 μg | Can be administered orally (> 350-500 mcg/d) |
| Calcium | 1500-2000 mg | Increase dietary intake. Separated from iron supplement |
| Vitamin D | 2000-4000UI | Vitamin D > 30 ng/ml |
| Magnesium | 350 mg | Multivitamins usually contain a low dose |
| Zinc | 12-30 mg | Can decrease copper absorption |
| Copper | 1-2 μg | Separated from zinc supplements |
| Selenium | 50-60 μg | Monitoring in malabsorptive techniques |
| Iodine | 200-250 μg | The same dose to that of normal pregnancy |
| Thiamine | 12 mg | Increase to 100-300 mg if nausea/vomiting |
| Vitamin A | 800-1500 μg | A dose below 3000 μg (10.000 UI) is safe in pregnancy |
| Vitamin E | 15 mg | Monitoring in malabsorptive techniques |
| Vitamin K | 50-120 | Higher risk of deficiency in premature new-borns |
| Pregnancy in women with previous bariatric surgery: summary of recommendations |
|---|
| Appropriate selection of the bariatric surgical technique. Non-malabsorptive techniques should be preferred. |
| Appropriate follow-up after bariatric surgery, with the necessary supplementation to prevent and treat possible nutritional deficiencies. |
| Preferably, the onset of pregnancy should be delayed by 12-18 months after bariatric surgery. Pre-conceptional clinical and nutritional assessment is recommended. |
| Follow-up during pregnancy should be carried out by a multidisciplinary team. |
| Close monitoring of the patient if oral tolerance is inadequate or vomiting occurs. It is advisable to increase the thiamine dose to 100-300 mg/day. |
| Monitoring of maternal weight gain and intrauterine growth. Consider oral nutritional supplements and/or pancreatic enzymes. |
| Preventive supplementation with minerals and micronutrients, at the necessary dose, depending on the type of bariatric surgery and clinical and analytical evolution. |
| Iodine recommendations are similar to those for women who have not undergone surgery |
| Screening for gestational complications, following specific protocols. In the case of gestational diabetes, it is recommended to avoid oral glucose overload. |
| Monitoring for the occurrence of surgical complications, such as internal hernia, a serious but rare clinical condition that requires a specific diagnostic approach and treatment. |
| Encourage lactation, with a close clinical and nutritional follow-up. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
