Submitted:
15 June 2023
Posted:
16 June 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
3. Results and discussion
3.1. Response surface methodology (RSM)
3.1.1. Multivariate analysis (ANOVA)
3.1.2. Diagnostic graphs
3.1.3. 3D Response surface plot
3.2. Multi-Objective Optimization using Non-Dominated Sorting Generic Algorithm-II (NSGA-II)
4. Conclusions
- This study provides valuable insights into the optimization of the WEDM process for biocompatible titanium alloy Ti6Al4V.
- The non-linear behavior in the responses MRR and SR in WEDM of Ti6Al4V alloy was found to be suitable for modelling and characterized by a quadratic model.
- The models developed for MRR and SR were adequate as it has high F-value and reasonably decent association with trial results, accounting R2 for MRR is 96.87% and for SR is 95.42%.
- Pulse active (Ton) time was identified as the foremost WEDM parameter affecting MRR and SR with a maximum percentage, followed by pulse inactive time (Toff).
- The confirmation experiments used to evaluate the optimization result generated by NSGA II show good agreement between the experimental value and the predicted value, with absolute errors of 1.06% and 1.24% for MRR and SR, respectively.
- The NSGA II optimization technique proved to be a more effective method for optimizing multiple objectives and the technique NSGA II provided pareto-optimal solutions that offered most favorable balance between surface characteristics and material removal rate.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gogolewski, D.; Kozior, T.; Zmarzły, P.; Mathia, T.G. Morphology of Models Manufactured by SLM Technology and the Ti6Al4V Titanium Alloy Designed for Medical Applications. Materials 2021, 14, 6249. [Google Scholar] [CrossRef]
- Meto, A.; Conserva, E.; Liccardi, F.; Colombari, B.; Consolo, U.; Blasi, E. Differential efficacy of two dental implant decontamination techniques in reducing microbial biofilm and re-growth onto titanium disks in vitro. Appl. Sci. 2019, 9, 3191. [Google Scholar] [CrossRef]
- Jhong, Y.T.; Chao, C.Y.; Hung, W.C.; Du, J.K. Effects of Various Polishing Techniques on the Surface Characteristics of the Ti-6Al-4V Alloy and on Bacterial Adhesion. Coatings 2020, 10, 1057. [Google Scholar] [CrossRef]
- Li, S.; Zhang, D.; Liu, C.; Shao, Z.; Ren, L. Influence of dynamic angles and cutting strain on chip morphology and cutting forces during titanium alloy Ti-6Al-4V vibration-assisted drilling. J. Mater. Process. Technol. 2021, 288, 116898. [Google Scholar] [CrossRef]
- Lui, E.W.; Medvedev, A.E.; Edwards, D.; Qian, M.; Leary, M.; Brandt, M. Microstructure modification of additive manufactured Ti-6Al-4V plates for improved ballistic performance properties. J. Mater. Process. Technol. 2021, 301, 117436. [Google Scholar] [CrossRef]
- Liu, C.; Liu, D.; Zhang, X.; Yu, S.; Zhao, W. Effect of the ultrasonic surface rolling process on the fretting fatigue behavior of Ti-6Al-4V alloy. Materials 2017, 10, 833. [Google Scholar] [CrossRef] [PubMed]
- Somani, N.; Tyagi, Y.K.; Kumar, P.; Srivastava, V.; Bhowmick, H. Enhanced tribological properties of SiC reinforced copper metal matrix composites. Mater. Res. Express 2019, 6, 016549. [Google Scholar] [CrossRef]
- Kumar, A.; Kumar, V.; Kumar, J. Investigation of machining characterization for wire wear ratio & MRR on pure titanium in WEDM process through response surface methodology. Proc. Inst. Mech. Eng. Part E J. Process. Mech. Eng. 2018, 232, 108–126. [Google Scholar]
- Sarıkaya, M.; Gupta, M.K.; Tomaz, I.; Pimenov, D.Y.; Kuntoğlu, M.; Khanna, N.; Yıldırım, Ç.V.; Krolczyk, G.M. A State-of-the-Art Review on Tool Wear and Surface Integrity Characteristics in Machining of Superalloys. CIRP J. Manuf. Sci. Technol. 2021, 35, 624–658. [Google Scholar] [CrossRef]
- Revuru, R.S.; Zhang, J.Z.; Posinasetti, N.R.; Kidd, T. Optimization of titanium alloys turning operation in varied cutting fluid conditions with multiple machining performance characteristics. Int. J. Adv. Manuf. Technol. 2018, 95, 1451–1463. [Google Scholar] [CrossRef]
- Saketi, S.; Odelros, S.; Östby, J.; Olsson, M. Experimental Study of Wear Mechanisms of Cemented Carbide in the Turning of Ti6Al4V. Materials 2019, 12, 2822. [Google Scholar] [CrossRef]
- García-Martínez, E.; Miguel, V.; Martínez-Martínez, A.; Manjabacas, M.C.; Coello, J. Sustainable Lubrication Methods for the Machining of Titanium Alloys: An Overview. Materials 2019, 12, 3852. [Google Scholar] [CrossRef]
- Maurya, R.; Porwal, R.K.; Singh, R. Concerning drifts to optimization techniques of wire-EDM process for titanium based super alloys: A review. Mater. Today Proc. 2019, 18, 4509–4514. [Google Scholar] [CrossRef]
- Chaudhari, R.; Vora, J.J.; Mani Prabu, S.; Palani, I.; Patel, V.K.; Parikh, D.; de Lacalle, L.N.L. Multi-response optimization of WEDM process parameters for machining of superelastic nitinol shape-memory alloy using a heat-transfer search algorithm. Materials 2019, 12, 1277. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Cao, S.; Zhao, Y.J.; Qi, H.; Liu, X.; Liu, G.; Guo, J.; Li, H.N. Preheating assisted wire EDM of semi-conductive CFRPs: Principle and anisotropy. J. Mater. Process. Technol. 2021, 288, 116915. [Google Scholar] [CrossRef]
- Rathi, P.; Ghiya, R.; Shah, H.; Srivastava, P.; Patel, S.; Chaudhari, R.; Vora, J. Multi-response optimization of Ni55.8Ti shape memory alloy using taguchi–grey relational analysis approach. In Recent Advances in Mechanical Infrastructure: Proceedings of the ICRAM 2019, Ahmedabad, India, 20–21 April 2019; Springer: Singapore, 2019; pp. 13–23. [Google Scholar]
- Chaudhari, R.; Ayesta, I.; Doshi, M.; Khanna, S.; Patel, V.K.; Vora, J.; De Lacalle, L.N.L. Effect of Multi-walled carbon nanotubes on the performance evaluation of Nickel-based super-alloy–Udimet 720 machined using WEDM process. Int. J. Adv. Manuf. Technol. 2022, 123, 2087–2105. [Google Scholar] [CrossRef]
- Devarasiddappa, D.; Chandrasekaran, M.; Arunachalam, R. Experimental investigation and parametric optimization for minimizing surface roughness during WEDM of Ti6Al4V alloy using modified TLBO algorithm. J. Braz. Soc. Mech. Sci. Eng. 2020, 42, 128. [Google Scholar] [CrossRef]
- Farooq, M.U.; Ali, M.A.; He, Y.; Khan, A.M.; Pruncu, C.I.; Kashif, M.; Ahmed, N.; Asif, N. Curved profiles machining of Ti6Al4V alloy through WEDM: Investigations on geometrical errors. J. Mater. Res. Technol. 2020, 9, 16186–16201. [Google Scholar] [CrossRef]
- Vora, J.; Prajapati, N.; Patel, S.; Sheth, S.; Patel, A.; Khanna, S.; Ayesta, I.; de Lacalle, L.L.; Chaudhari, R. Multi-response optimization and effect of alumina mixed with dielectric fluid on WEDM process of Ti6Al4V. In Recent Advances in Mechanical Infrastructure: Proceedings of the ICRAM 2021; Springer: Singapore, 2022; pp. 277–287. [Google Scholar]
- Lin, M.; Tsao, C.; Huang, H.; Wu, C.; Hsu, C. Use of the grey-Taguchi method to optimise the micro-electrical discharge machining (micro-EDM) of Ti-6Al-4V alloy. Int. J. Comput. Integr. Manuf. 2015, 28, 569–576. [Google Scholar] [CrossRef]
- Priyadarshini, M.; Pal, K. Multi-objective optimisation of EDM process using hybrid Taguchi-based methodologies for Ti-6Al-4V alloy. Int. J. Manuf. Res. 2016, 11, 144–166. [Google Scholar] [CrossRef]
- Gupta, N.K.; Pandey, P.; Mehta, S.; Swati, S.; Mishra, S.K.; Tom, K.J. Characterization of ABS Material in Hybrid Composites: A Review. In Advances in Engineering Design; Lecture Notes in Mechanical Engineering; Prasad, A., Gupta, S., Tyagi, R., Eds.; Springer: Singapore, 2019. [Google Scholar]
- Mouralova, K.; Kovar, J.; Karpisek, Z.; Kousa, P. Optimization Machining of Titanium Alloy Ti-6Al-4V by WEDM with Emphasis on the Quality of the Machined Surface. J. Manuf. Technol. 2016, 16, 1326–1331. [Google Scholar] [CrossRef]
- Pramanik, A.; Basak, A.K. Effect of wire electric discharge machining (EDM) parameters on fatigue life of Ti-6Al-4V alloy. Int. J. Fatigue 2019, 128, 105186. [Google Scholar] [CrossRef]
- Bisaria, H.; Shandilya, P. Experimental studies on electrical discharge wire cutting of Ni-rich NiTi shape memory alloy. Mater. Manuf. Process. 2018, 33, 977–985. [Google Scholar] [CrossRef]
- Sheth, M.; Gajjar, K.; Jain, A.; Shah, V.; Patel, H.; Chaudhari, R.; Vora, J. Multi-objective optimization of inconel 718 using Combined approach of taguchi—Grey relational analysis. In Advances in Mechanical Engineering; Springer: Singapore, 2021; pp. 229–235. [Google Scholar]
- Rathi, P.; Ghiya, R.; Shah, H.; Srivastava, P.; Patel, S.; Chaudhari, R.; Vora, J. Multi-Response Optimization of Ni55.8Ti Shape Memory Alloy Using Taguchi–Grey Relational Analysis Approach. In Recent Advances in Mechanical Infrastructure; Springer: Singapore, 2020; pp. 13–23. [Google Scholar]
- Patel, S.; Fuse, K.; Gangvekar, K.; Badheka, V. Multi-response optimization of dissimilar Al-Ti alloy FSW using Taguchi-Grey relational analysis. In Key Engineering Materials; Trans Tech Publications Ltd.: Bäch, Switzerland, 2020. [Google Scholar]
- Chaudhari, R.; Vora, J.J.; Prabu, S.M.; Palani, I.; Patel, V.K.; Parikh, D. Pareto optimization of WEDM process parameters for machining a NiTi shape memory alloy using a combined approach of RSM and heat transfer search algorithm. Adv. Manuf. 2019, 9, 64. [Google Scholar] [CrossRef]
- Vora, J.; Patel, V.K.; Srinivasan, S.; Chaudhari, R.; Pimenov, D.Y.; Giasin, K.; Sharma, S. Optimization of Activated Tungsten Inert Gas Welding Process Parameters Using Heat Transfer Search Algorithm: With Experimental Validation Using Case Studies. Metals 2021, 11, 981. [Google Scholar] [CrossRef]
- Chaudhari, R.; Khanna, S.; Vora, J.; Patel, V.K.; Paneliya, S.; Pimenov, D.Y.; Wojciechowski, S. Experimental investigations and optimization of MWCNTs-mixed WEDM process parameters of nitinol shape memory alloy. J. Mater. Res. Technol. 2021, 15, 2152–2169. [Google Scholar] [CrossRef]
- Nain, S.S.; Garg, D.; Kumar, S. Investigation for obtaining the optimal solution for improving the performance of WEDM of super alloy Udimet-L605 using particle swarm optimization. Eng. Sci. Technol. Int. J. 2018, 21, 261–273. [Google Scholar] [CrossRef]
- Sharma, N.; Khanna, R.; Gupta, R.D. WEDM process variables investigation for HSLA by response surface methodology and genetic algorithm. Eng. Sci. Technol. Int. J. 2015, 18, 171–177. [Google Scholar] [CrossRef]
- Phate, M.R.; Toney, S.B. Modeling and prediction of WEDM performance parameters for Al/SiCp MMC using dimensional analysis and artificial neural network. Eng. Sci. Technol. Int. J. 2019, 22, 468–476. [Google Scholar] [CrossRef]
- Deb, K.; Member, A.; Pratap, A.; Agarwal, S.; Meyarivan, T. A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II. IEEE Trans. Evol. Comput. 2002, 6, 182–197. [Google Scholar] [CrossRef]
- Khullar, V.R.; Sharma, N.; Kishore, S.; Sharma, R. RSM- and NSGA-II-Based Multiple Performance Characteristics Optimization of EDM Parameters for AISI 5160. Arab. J. Sci. Eng. 2017, 42, 1917–1928. [Google Scholar] [CrossRef]
- Kumar, K.; Agarwal, S. Multi-objective parametric optimization on machining with wire electric discharge machining. Int. J. Adv. Manuf. Technol. 2012, 62, 617–633. [Google Scholar] [CrossRef]
- Krishnan, S.A.; Samuel, G.L. Multi-objective optimization of material removal rate and surface roughness in wire electrical discharge turning. Int. J. Adv. Manuf. Technol. 2012, 67, 2021–2032. [Google Scholar] [CrossRef]
- Golshan, A.; Gohari, S.; Ayob, A. Modeling and optimization of cylindrical wire electro discharge machining of AISI D3 tool steel using non-dominated sorting genetic algorithm. In Proceedings of the 2011 International Conference on Graphic and Image Processing, Cairo, Egypt, 1–2 October 2011. [Google Scholar]
- Bezerra, M.A.; Santelli, R.E.; Oliveira, E.P.; Villar, L.S.; Escaleira, L.A. Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta 2008, 76, 965–977. [Google Scholar] [CrossRef] [PubMed]
- Maruyama, S.A.; Palombini, S.V.; Claus, T.; Carbonera, F.; Montanher, P.F.; de Souza, N.E.; Visentainer, J.V.; Gomes, S.T.M.; Matsushita, M. Application of Box-Behnken design to the study of fatty acids and antioxidant activity from enriched white bread. J. Braz. Chem. Soc. 2013, 24, 1520–1529. [Google Scholar] [CrossRef]
- Ahmad, A.; Alkharfy, K.M.; Wani, T.A.; Raish, M. Application of Box-Behnken design for ultrasonic-assisted extraction of polysaccharides from Paeonia emodi. Int. J. Biol. Macromol. 2015, 72, 990–997. [Google Scholar] [CrossRef]
- Zhang, G.; Li, W.; Zhang, Y.; Huang, Y.; Zhang, Z.; Chen, Z. Analysis and reduction of process energy consumption and thermal deformation in a micro-structure wire electrode electric discharge machining thin-wall component. Journal of Cleaner Production 2020, 244, 18763. [Google Scholar] [CrossRef]
- Chen, Z.; Zhou, H.; Wu, C.; Zhang, G.; Yan, H. A New Wire Electrode for Improving the Machining Characteristics of High-Volume Fraction SiCp/Al Composite in WEDM. Materials 2022, 15, 4098. [Google Scholar] [CrossRef]
- Chen, F.; Peng, J.; Lei, D.; Liu, J.; Zhao, G. Optimization of genistein solubilization by κ-carrageenan hydrogel using response surface methodology. Food Sci. Hum. Well 2013, 2, 124–131. [Google Scholar] [CrossRef]
- Morelli, L.L.; Prado, M.A. Extraction optimization for antioxidant phenolic compounds in red grape jam using ultrasound with a response surface methodology. Ultrason. Sonochem. 2012, 19, 1144–1149. [Google Scholar] [CrossRef]








| Element | Ti | Al | V | Fe | O |
|---|---|---|---|---|---|
| Weight (%) | 90 | 6 | 4 | 0.25 | 0.2 |
| Parameters and their levels | −1 level | +1 level |
|---|---|---|
| Pulse active (Ton) time (µs) | 110 | 120 |
| Pulse inactive (Toff) time (µs) | 50 | 60 |
| Servo Voltage (SV) (v) | 40 | 50 |
| Peak amplitude of current (PC) (A) | 40 | 42 |
| Expt No. | Input Parameters | Responses | ||||
|---|---|---|---|---|---|---|
| A-Ton µs | B-Toff µs | C-SV (V) | D-PC (A) | MRR mm3/min | Ra µm | |
| 1. | 115 | 60 | 45 | 40 | 5.011 | 2.48 |
| 2. | 110 | 55 | 45 | 40 | 3.849 | 1.92 |
| 3. | 115 | 55 | 50 | 42 | 4.41 | 2.30 |
| 4. | 110 | 55 | 50 | 41 | 3.957 | 1.79 |
| 5. | 115 | 50 | 40 | 41 | 4.103 | 2.09 |
| 6. | 120 | 55 | 45 | 40 | 6.423 | 2.98 |
| 7. | 120 | 55 | 40 | 41 | 6.345 | 2.88 |
| 8. | 115 | 55 | 45 | 41 | 4.51 | 2.29 |
| 9. | 115 | 55 | 45 | 41 | 4.423 | 2.13 |
| 10. | 120 | 55 | 45 | 42 | 5.873 | 2.77 |
| 11. | 115 | 55 | 50 | 40 | 4.484 | 2.00 |
| 12. | 115 | 55 | 45 | 41 | 4.429 | 2.04 |
| 13. | 115 | 50 | 45 | 42 | 4.327 | 1.85 |
| 14. | 115 | 55 | 45 | 41 | 5.173 | 2.34 |
| 15. | 115 | 60 | 45 | 42 | 4.956 | 2.42 |
| 16. | 115 | 55 | 45 | 41 | 4.792 | 2.31 |
| 17. | 120 | 55 | 50 | 40 | 6.145 | 2.88 |
| 18. | 115 | 60 | 40 | 40 | 5.446 | 2.57 |
| 19. | 115 | 55 | 40 | 42 | 4.805 | 2.25 |
| 20. | 115 | 50 | 45 | 40 | 4.36 | 2.11 |
| 21. | 115 | 55 | 40 | 40 | 5.512 | 2.60 |
| 22. | 115 | 50 | 50 | 41 | 4.209 | 1.85 |
| 23. | 120 | 60 | 45 | 41 | 6.639 | 3.23 |
| 24. | 110 | 55 | 40 | 41 | 4.087 | 1.84 |
| 25. | 110 | 60 | 45 | 41 | 4.041 | 1.94 |
| 26. | 110 | 55 | 45 | 42 | 4.808 | 2.38 |
| 27. | 110 | 50 | 45 | 41 | 3.916 | 1.75 |
| 28. | 120 | 50 | 45 | 41 | 5.838 | 2.60 |
| 29. | 115 | 60 | 50 | 41 | 5.006 | 2.35 |
| Source | Sum of Squares | Df | Mean Square | F Value | p-Value |
|---|---|---|---|---|---|
| Model | 17.75 | 14 | 1.27 | 18.5 | < 0.0001 |
| A-T on | 11.88 | 1 | 11.88 | 173.37 | < 0.0001 |
| B-T off | 1.42 | 1 | 1.42 | 20.68 | 0.0005 |
| C-SV | 0.3557 | 1 | 0.3557 | 5.19 | 0.0589 |
| D-PC | 0.004 | 1 | 0.004 | 0.0588 | 0.8119 |
| AB | 0.0888 | 1 | 0.0888 | 1.3 | 0.274 |
| AC | 0.0181 | 1 | 0.0181 | 0.264 | 0.6154 |
| AD | 0.5798 | 1 | 0.5798 | 8.46 | 0.0114 |
| BC | 0.0076 | 1 | 0.0076 | 0.1108 | 0.7441 |
| BD | 0.001 | 1 | 0.001 | 0.0148 | 0.905 |
| CD | 0.0911 | 1 | 0.0911 | 1.33 | 0.2681 |
| A2 | 1.34 | 1 | 1.34 | 19.61 | 0.0006 |
| B2 | 0.0251 | 1 | 0.0251 | 0.3664 | 0.5546 |
| C2 | 0.0026 | 1 | 0.0026 | 0.0379 | 0.8484 |
| D2 | 0.0929 | 1 | 0.0929 | 1.36 | 0.2636 |
| Residual | 0.9591 | 14 | 0.0685 | ||
| Lack of Fit | 0.6636 | 10 | 0.0664 | 0.8983 | 0.5972 |
| Pure Error | 0.2955 | 4 | 0.0739 | ||
| Cor Total | 18.71 | 28 |
| Source | Sum of Squares | Df | Mean Square | F Value | p-Value |
|---|---|---|---|---|---|
| Model | 3.93 | 14 | 0.2806 | 10.02 | < 0.0001 |
| A-T on | 2.26 | 1 | 2.26 | 80.8 | < 0.0001 |
| B-T off | 0.6684 | 1 | 0.6684 | 23.86 | 0.0002 |
| C-SV | 0.0564 | 1 | 0.0564 | 2.01 | 0.1777 |
| D-PC | 0.0256 | 1 | 0.0256 | 0.9138 | 0.3553 |
| AB | 0.0156 | 1 | 0.0156 | 0.5579 | 0.4675 |
| AC | 0.042 | 1 | 0.042 | 1.5 | 0.2409 |
| AD | 0.0465 | 1 | 0.0465 | 1.66 | 0.2183 |
| BC | 0.0344 | 1 | 0.0344 | 1.23 | 0.2866 |
| BD | 0.0136 | 1 | 0.0136 | 0.4866 | 0.4969 |
| CD | 0.0494 | 1 | 0.0494 | 1.76 | 0.2054 |
| A2 | 0.3023 | 1 | 0.3023 | 10.79 | 0.0054 |
| B2 | 0.0066 | 1 | 0.0066 | 0.2349 | 0.6354 |
| C2 | 0.041 | 1 | 0.041 | 1.46 | 0.2464 |
| D2 | 0.0076 | 1 | 0.0076 | 0.2706 | 0.6111 |
| Residual | 0.3921 | 14 | 0.028 | ||
| Lack of Fit | 0.2206 | 10 | 0.0221 | 0.5147 | 0.8203 |
| Pure Error | 0.1715 | 4 | 0.0429 | ||
| Cor Total | 4.32 | 28 |
| S. No. | Ton | T off | Servo Voltage | Peak Current | MRR | Ra |
|---|---|---|---|---|---|---|
| 1. | 120.0412 | 58.77586 | 49.96319 | 40.06579 | 8.995111 | 1.789038 |
| 2. | 120.1492 | 56.58296 | 49.99996 | 40.05555 | 9.712588 | 1.60152 |
| 3. | 120.1389 | 56.93179 | 49.9999 | 40.0267 | 9.630805 | 1.608884 |
| 4. | 120.0575 | 59.71887 | 49.97326 | 40.07279 | 8.612424 | 1.987299 |
| 5. | 120.0313 | 59.75359 | 49.97836 | 40.00503 | 8.573463 | 1.99937 |
| 6. | 120.0153 | 58.25391 | 49.97986 | 40.03768 | 9.160236 | 1.714015 |
| 7. | 120.0785 | 57.06381 | 49.99911 | 40.08462 | 9.553325 | 1.61439 |
| 8. | 120.028 | 58.49976 | 49.97089 | 40.02401 | 9.085653 | 1.746697 |
| 9. | 120.0645 | 56.61391 | 49.98191 | 40.01006 | 9.643118 | 1.60284 |
| 10. | 120.0774 | 58.73727 | 49.99318 | 40.06843 | 9.037575 | 1.77747 |
| 11. | 120.0865 | 59.6101 | 49.98075 | 40.07363 | 8.686113 | 1.954955 |
| 12. | 120.0275 | 59.98092 | 49.96993 | 40.02472 | 8.463633 | 2.066013 |
| 13. | 120.0422 | 59.18336 | 49.94574 | 40.05737 | 8.835108 | 1.866152 |
| 14. | 120.0161 | 59.90732 | 49.96901 | 40.08943 | 8.488892 | 2.045831 |
| 15. | 120.043 | 57.81518 | 49.98133 | 40.06418 | 9.323258 | 1.665676 |
| 16. | 120.015 | 59.38865 | 49.96638 | 40.00027 | 8.7235 | 1.911485 |
| 17. | 120.0272 | 57.20975 | 49.97581 | 40.07966 | 9.479039 | 1.623467 |
| 18. | 120.0219 | 59.24189 | 49.96685 | 40.01432 | 8.791831 | 1.87836 |
| 19. | 120.0211 | 59.46681 | 49.97204 | 40.07836 | 8.694218 | 1.928456 |
| 20. | 120.021 | 58.60729 | 49.97019 | 40.07 | 9.040872 | 1.76309 |
| 21. | 120.0088 | 59.85303 | 49.96829 | 40.04466 | 8.508329 | 2.03119 |
| 22. | 120.0741 | 57.62292 | 49.99341 | 40.09495 | 9.403723 | 1.647672 |
| 23. | 120.0081 | 59.99954 | 49.9693 | 40.02337 | 8.43774 | 2.074575 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
