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Abstract: Machining titanium alloy (Ti6Al4V) used in orthopedic implants by conventional metal cutting
processes is challenging due to excessive cutting forces, low surface integrity and tool wear. To overcome these
difficulties and for ensuring high-quality products, various industries employ wire electrical discharge
machining (WEDM) for precise machining of intricate shapes in titanium alloy. The objective is to make WEDM
machining parameters as efficient as possible for machining the bio-compatible alloy Ti6Al4V using box-
behnken design (BBD) and Non-dominated Sorting Genetic Algorithm II (NSGA 1II). A quadratic mathematical
model is created to represent the productivity and the quality factor (MRR and surface roughness) in terms of
varying input parameters, such as pulse active (Ton) time, pulse inactive (Toff) time, peak amplitude (A)
current and applied servo (V) voltage. The established regression models and related prediction plots provide
a reliable approach for predicting how the process variables affect the two responses viz MRR and SR. The
effects of four process variables on both the responses were examined, and the findings revealed that the pulse
duration and voltage has a major influence on the rate at which material is removed (MRR) whereas pulse
duration influence quality (SR). The trade-off between MRR and SR, when significant process factors are
included emphasizes the need for a reliable multi-objective optimization method. The intelligent metaheuristic
optimization method named non-dominated sorting genetic algorithm II (NSGA 1I) is utilized to provide
pareto optimum solutions in order to achieve high material removal rate (MRR) and low surface roughness
(SR).

Keywords: WEDM; Box-behnken design;, NSGA-II; material removal rate; surface roughness;
Titanium alloy.

1. Introduction

The Ti6Al4V or Titanium Grade 5 is biocompatible, meaning it is well-tolerated by the human
body and makes it suitable for medical implants like orthopedic implants, dental implants and
prosthetics [1-3]. The superior corrosion resistance, formability and weldability makes titanium
alloys to be used extensively in a wide range of industries like aerospace, automotive, chemical, and
marine industries [4-8]. Titanium and its alloys are difficult to machine / process and expensive when
utilized in conventional machining methods because of their high chemical reactivity (cause tool
deformation) and poor thermal conductivity [9-12]. In several industries, wire electric discharge
machining (WEDM) which utilizes thermo-mechanical energy can process with excellent accuracy
and provide a good surface finish, is often employed to deal with such high-strength materials [13—
15]. In the WEDM process, a conductive wire (electrode) that travels continually and the heat results
in an electric spark which erodes the conductive work material [16,17]. During the process, dielectric
fluid is utilized as a medium for ionization to create the electrical arc across the workpiece and the
wire (electrode). The steady flow of dielectric fluid acts as cooling agent and helps in flushing the
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removed material away. The heat energy from these electrical sparks removes material in the form
of micro debris. An illustration of the WEDM cutting concept is shown in Figure 1.
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The WEDM equipment's conservative technical data or the operator's expertise were
traditionally used to choose the appropriate parameters for the maximum material removal rate and
minimum surface roughness during the EDM process, which resulted in inconsistent machining
performance. Devarasiddappa et al. [18] focused on reducing surface roughness of Ti6Al4V alloy
processed using WEDM. They obtained 2.6% reduction in SR for ideal process variables of the WEDM
process. Muhammad Umar Farooq et al. [19] manufacture convex and concave shapes in Ti6Al4V
using the WEDM technique and found that servo voltage, wire feed, pulse-on-time and pulse-off-
time affects the precision of geometrical profiles and the diameter of corners. The pulse duration were
shown to be the most important variables driving overcut in convex profiles. Chaudhari et al. [20]
employed Taguchi's L9 array to machine Ti6Al4V alloy using WEDM technique and found that pulse
duration and current have impact on MRR and SR. Lin et al. [21] emphasized the benefits of using
the grey-Taguchi technique to optimize a number of quality variables like electrode depletion, MRR,
and overcut for micro-EDM finish quality of the Ti6Al4V alloy. According to the experimental
findings, the peak current and pulse duration play a key role in the micro-EDM of Ti6Al4V alloy.
Priyadarshini et al. [22] studied the use of Ti6Al4V alloy using EDM for various pulse parameters
and chosen MRR, SR, and TWR (tool wear rate) as output factors utilizing taguchi orthogonal array
for the experiment.

Figure 1. WEDM cutting concept.

Material removal rate and surface roughness were the output parameters utilised by Gupta et
al. [23] while using the WEDM process to machine a Ti6Al4V alloy, whereas the process parameters
were pulse duration, wire speed, servo voltage, wire tension, pulse current, and feed rate. They
observed that pulse duration has significant effect on MRR and SR. When using the WEDM method
to cut Ti6Al4V alloy, Mouralova et al. [24] evaluated the current, voltage, pulse duration and wire
speed as the process parameters. They determined using experiments that a quicker pulse-on time
and longer pulse-off time resulted in a better surface quality. Ti6Al4V was studied as a work material
by Pramanik et al. [25] and machined utilising the WEDM method while taking the effect of wire
tension, pulse-on time, and pulse-off time as process parameters into consideration. They reached the
conclusion that shorter pulse-on times and longer pulse-off times produced better results. Bisaria and
Shandilya [26] studied the influence of pulse duration and spark gap voltage on MRR (material
removal rate) and SR (surface roughness). They discovered that although MRR and SR values
decreased with a rise in voltage and pulse off time, they increased drastically with a rise in pulse on
time. Many experimental investigations have sought to investigate the impact of various process
factors on the performance of the WEDM machining. The majority of the experiments, however, had
limitations on the variety of process variables they were able to investigate or the range of values
they can investigate and it can be suggested that there is still scope for improvement in terms of
collecting data by piloting an in-depth and comprehensive investigation of the impact of a wide
variety of WEDM process variables and their levels on the productivity and surface quality generated
when processing Ti6Al4V alloy.
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The selection of the appropriate process parameters is vital for sustainable production and the
parameters associated with WEDM for the machining of the Ti6Al4V alloy have been optimised by a
number of researchers. To collect data from experiments with the least amount of waste of time,
money, raw materials, etc., systematic experiment design is crucial. Among the tools for designing
experiments are taguchi techniques employing an orthogonal array, response surface methodology
(RSM) and fractional factorial. A comprehensive review of the literature revealed that several
researchers from all over the the world have contributed to the process parameter optimisation of the
WEDM method for the machining of titanium-based alloys. WEDM is a process with multiple inputs
and multiple outputs that has complex relationships on each parameter and how they interact with
each other. When multiple objectives are dealt with, many conflicting circumstances develop that
demand a solution. The best representation of this tradeoff is optimum pareto points obtained
through evolutionary optimization which finds the solution near global optimum with less time and
computing effort. So there arises a need for multi-response optimization which includes grey
relational analysis (GRA) [27-29], heat transfer search (HTS) algorithm [30,31], teacher learning-
based algorithm [32], particle swarm algorithm [33], genetic algorithm [34], artificial neural networks
[35], etc., has been tested in order to find the tread-off solution in terms of optimized process
parameters.

Deb et al. [36] implemented NSGA-II (Non sorted genetic algorithm II), a newly developed
approach that was designed to handle multi-objective problems and search for a variety of solutions
that efficiently reflect the trade-off between contrasting objectives. NSGA II can effectively explore
the solution space, maintain diversity and provide optimum or near-optimal solutions for the
optimization of two conflicting objectives viz. maximum material removal rate (MRR) and minimal
surface roughness in WEDM. AISI 5160 steel [37], high-speed steel [38], and AISI D3 tool steel
[39,40] are a few materials that are being processed in WEDM and their results are optimized using
NSGA-II. Based on the literature, it has been found that limited study has been done to minimize SR
and maximize MRR in WEDM of Ti6Al4V alloy using the NSGA II algorithm which can select the
most dominant solution.

The goal of this study was to optimize the machining settings in order to maximize MRR
whereas minimizing SR. Therefore, the entire study may be broken into three sections. The first
section involves conducting experiments based on box-behnken design and collecting data regarding
the responses, namely MRR and SR, to various input parameters, including pulse active (Ton) time,
pulse inactive (Toff) time, peak amplitude of current (A), and applied servo voltage (V). In the second
section, the effect and influence of the parameters on the responses are examined and discussed. The
third section is to develop the multi-objective metaheuristics algorithm NSGA-II, which can search
for the most optimal parameter for the conflicting objective i.e. maximize MRR and minimize SR.
Comparisons are made between the results obtained by using these different methods, and validation
is carried out via the use of confirmation tests.

2. Materials and Methods

In this work, CNC wire cut EDM DK7732 with 3kVA power and BMW 3000 controller shown in
Figure 2 was used to cut the profile shown in Figure 3 on the commercial titanium Ti6 Al4V alloy of
5 mm thickness. Table 1 presents a list of the chemical components of the titanium Ti6Al4V alloy that
was utilized in this investigation. Deionized water was utilized to eject away the waste particles
produced during the machining process, and a @ 0.25 mm zinc-coated brass wire was utilized as the
electrode for cutting purposes.

Table 1. Chemical constituents of Ti6Al4V alloy.

Element Ti Al \Y% Fe O
Weight (%) 90 6 4 0.25 0.2
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Figure 2. DK7732 wire-cut electro-discharge machine.
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Figure 3. Profile.

RSM is an abbreviation for response surface methodology, which is a powerful mathematical
and statistical tool that can investigate and optimize complicated systems. Researchers have utilized
extensive use of the box-behnken design (BBD), which is a method of response surface methodology
(RSM), in order to optimize experimental trials [41]. The box-behnken design is advantageous since
it does not contain any points at the extremities of the cubic region produced by the two-level factorial
combinations that are either costly to test or difficult to test due to physical restrictions in
experimentation [42]. It is widely used in a variety of sectors, including agrochemicals,
pharmaceuticals, bioprocessing and others [43].

The experiments used a two-level design with four parameters viz. pulse active time (Ton)
ranging from 110 to 120us, pulse inactive time (Toff) ranging from 50 to 60us, applied servo voltage
(V) ranging from 40 to 50 V and peak amplitude of current (A) ranging from 40 to 42 A. The box-
behnken design was employed to generate a total of 29 experiments, and the corresponding values
of the response characteristics were determined. Table 2 depicts the range of input parameters that
were chosen based on preliminary pilot experiments and an extensive investigation of the literature.

Table 2. Control factors and its levels.

Parameters and their levels -1 level +1 level
Pulse active (Ton) time (us) 110 120
Pulse inactive (Toff) time (us) 50 60
Servo Voltage (SV) (v) 40 50
Peak amplitude of current (PC) (A) 40 42

The response characteristics evaluated in the present study are the MRR and average SR. After
cleaning roughness tester with acetone, it was used to measure the SR at three different locations. The
average of all three values was then selected. Equation (1) was used to determine the MRR after the
machining time was measured using a stopwatch [44,45].

LH
MRR = T (1)
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Where,

L - Cutting length

H - Workpiece thickness and
t - Machining time (in mins).

3. Results and discussion

3.1. Response surface methodology (RSM)

A statistical and mathematical approach called response surface methodology (RSM) is used to
optimise and investigate the interaction between a number of input variables (factors) and one or
more output variables (responses). It is commonly used in the field of experimental design and
process optimization which is particularly useful when the association between the input variables
and the response variables is intricate and nonlinear. By systematically varying the levels of the input
variables and measuring the corresponding response, RSM helps to model and understand the
relationship, and subsequently, determine the optimal values of the input variables to achieve
desirable responses.

3.1.1. Multivariate analysis (ANOVA)

Table 3 depicts the BBD and experimental findings of the WEDM process's machining
capabilities. For a 5% significance level (a = 0.05), the "P value" must be less than or equal to 0.05 to
be stated significant and the backward elimination method excludes irrelevant factors. The model's
potential for predicting an optimal response value for correlation coefficient R has been evaluated in
the most favorable conditions possible. Regression analysis was used to determine the optimum
region to investigate the responses under study by fitting mathematical models to the experimental
data. The data from the experiment runs was analyzed and obtained with the use of Design expert
software V 13.0 and the list of significance of each coefficient's for MRR and SR is depicted in Tables
4 and 5.

Table 3. Box-Behnken design and response values.

Input Parameters Responses

Expt
No. A-Ton B-Toft C-SV(V)  D-PC(A) VIRR ta
us us mm?/min um
1. 115 60 45 40 5.011 2.48
2. 110 55 45 40 3.849 1.92
3. 115 55 50 42 4.41 2.30
4. 110 55 50 41 3.957 1.79
5. 115 50 40 41 4.103 2.09
6. 120 55 45 40 6.423 2.98
7. 120 55 40 41 6.345 2.88
8. 115 55 45 41 4.51 2.29
9. 115 55 45 41 4.423 2.13
10. 120 55 45 42 5.873 2.77
11. 115 55 50 40 4.484 2.00
12. 115 55 45 41 4.429 2.04
13. 115 50 45 42 4.327 1.85
14. 115 55 45 41 5.173 2.34
15. 115 60 45 42 4.956 2.42

doi:10.20944/preprints202306.1168.v1
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16. 115 55 45 41 4.792 2.31
17. 120 55 50 40 6.145 2.88
18. 115 60 40 40 5.446 2.57
19. 115 55 40 42 4.805 2.25
20. 115 50 45 40 4.36 211
21. 115 55 40 40 5.512 2.60
22. 115 50 50 41 4.209 1.85
23. 120 60 45 41 6.639 3.23
24. 110 55 40 41 4.087 1.84
25. 110 60 45 41 4.041 1.94
26. 110 55 45 42 4.808 2.38
27. 110 50 45 41 3.916 1.75
28. 120 50 45 41 5.838 2.60
29. 115 60 50 41 5.006 2.35

Table 4. ANOVA results for MRR.

Source Sum of Df Mean F Value p-Value
Squares Square
Model 17.75 14 1.27 18.5 <0.0001
A-Ton 11.88 1 11.88 173.37 <0.0001
B-T off 1.42 1 1.42 20.68 0.0005
C-SvV 0.3557 1 0.3557 5.19 0.0589
D-PC 0.004 1 0.004 0.0588 0.8119
AB 0.0888 1 0.0888 1.3 0.274
AC 0.0181 1 0.0181 0.264 0.6154
AD 0.5798 1 0.5798 8.46 0.0114
BC 0.0076 1 0.0076 0.1108 0.7441
BD 0.001 1 0.001 0.0148 0.905
CD 0.0911 1 0.0911 1.33 0.2681
A? 1.34 1 1.34 19.61 0.0006
B2 0.0251 1 0.0251 0.3664 0.5546
2 0.0026 1 0.0026 0.0379 0.8484
D2 0.0929 1 0.0929 1.36 0.2636
Residual 0.9591 14 0.0685
Lack of Fit 0.6636 10 0.0664 0.8983 0.5972
Pure Error 0.2955 4 0.0739
Cor Total 18.71 28

Table 5. ANOVA results for SR.

Sum of Mean
Source Df F Value p-Value
Squares Square

Model 3.93 14 0.2806 10.02 <0.0001
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A-Ton 2.26 1 2.26 80.8 <0.0001
B-T off 0.6684 1 0.6684 23.86 0.0002
C-Sv 0.0564 1 0.0564 2.01 0.1777
D-PC 0.0256 1 0.0256 0.9138 0.3553
AB 0.0156 1 0.0156 0.5579 0.4675
AC 0.042 1 0.042 1.5 0.2409
AD 0.0465 1 0.0465 1.66 0.2183
BC 0.0344 1 0.0344 1.23 0.2866
BD 0.0136 1 0.0136 0.4866 0.4969
CD 0.0494 1 0.0494 1.76 0.2054
A2 0.3023 1 0.3023 10.79 0.0054
B? 0.0066 1 0.0066 0.2349 0.6354
2 0.041 1 0.041 1.46 0.2464
D2 0.0076 1 0.0076 0.2706 0.6111
Residual 0.3921 14 0.028
Lack of Fit 0.2206 10 0.0221 0.5147 0.8203
Pure Error 0.1715 4 0.0429
Cor Total 4.32 28

An experimental relationship expressed by an equation of second-order polynomial with
interaction terms was utilized to fit the data from the BBD model. Following is the final (equation 2
and 3) result in coded factors:

MRR = 4.60+1.02 XA + 0.3522 X B —0.1804 X C — 0.0177 X D + 0.1490 x AB — 0.0721 X AC — 0.3641 X AD

—0.0467 x BC 4 0.0152 X BD + 0.1394 x CD + 0.4589 X A% — 0.0627 x B2 — 0.0200 x C2
+0.1211 x D2 )

Ra = +3.64 +0445xA +02419XB —0.0718 X C — 0.0447 x D + 0.0625 x AB — 0.1099 x AC
—0.1031 X AD +0.0994 X AC — 0.0558 x BD +0.1027 X CD + 0.2176 X A% — 0.0321 X B?

—0.0796 X C* + 0.0346 x D? 3)

Analysis of variance (ANOVA) was implemented to analyze the data, and Table 4 and 5 shows
the significance of the experimental findings to different models along with the related p-values. Four
linear correlation coefficients (A, B, C and D), six interaction coefficients (AB, AC, AD, BC, BD and
CD) and four quadratic coefficients (A2 B2 C2 and D?) were found to be substantial. The p-values of
each model term is investigated to depict the interaction patterns between the variables, for p <0.0001,
the model's F-value of 18.5 for MRR and 10.02 for SR showed that it was very significant. Due to the
relative pure error, the lack of fit F value of 0.8983 for MRR and 0.5147 for SR was not significant (p =
0.0702). Overall, unless the model is adequately fit to make validating its suitability for use needed,
inadequate or inaccurate results may be obtained through the investigation and optimization of the
fitted response surface. [46]. The P-value is used to determine the significance of each coefficient and
the degree of the interaction between variables. Effects that are less than 0.05 are considered
significant. The degree of correlation between the values observed and predicted is better when the
significance level is greater [47]. The "Pred R-Squared" of 0.9175 and the "Adj R-Squared" of 0.9342
for MRR and The "Pred R-Squared" of 0.9021 and the "Adj R-Squared" of 0.9278 for SR are reasonably
in compatible in the current examination. In addition, a correlation coefficient with a high value (R?
for MRR is 0.9687 and SR is 0.9542) showed a significant relationship between the values of the
anticipated and experimental responses. The low CV value (5.42% for MRR and 4.52% for SR) made
it evident that there were minor deviations between the predicted and experimental, and it also
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demonstrated that the experiments were very precise and reliable. The adequate precision ratio in
the current investigation was determined to be 14.91 for MRR and 12.13 for SR, indicating a sufficient
indicator and the present model may be utilized to move about the design space.

3.1.2. Diagnostic graphs

The data statistics are shown in (Figure 4 and 5) in which analyzing the experimental and the
model observation diagnostic plots enabled the determination of the models' accuracy. The Figure
4A & 5A is the residual plot for the response which exhibits a normal% probability distribution, the
points are logically closer to to the straight line, with no significant deviations, the current model
significantly improved the interaction between the response and the process variables.
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Figure 4. Diagnostic graphs for the Box-Behnken model for MRR (A) Normal plot of residuals; (B)
Residuals (versus) Predicted; (C) Residuals (versus) Run; (D) Predicted (versus) Actual; (E) Box-Cox
plot - power transformations; (F) Perturbation.
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Perturbation

Predicted vs. Actual Box-Cox Plot for Power Transforms
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Figure 5. Diagnostic graphs for the Box-Behnken model for SR (A) Normal plot of residuals; (B)
Residuals (versus) Predicted; (C) Residuals (versus) Run; (D) Predicted (versus) Actual; (E) Box-Cox
plot - power transformations; (F) Perturbation.

The predicted values were extremely similar to that of the observed values, as shown in Figure
4B & 5B. By establishing a satisfactory fit of the model, the externally studentized residuals vs
experimental runs were examined and the results show that all of the data points fit inside the limits
(Figure 3C & 4C). For each run, the values of the predicted and actual responses were regularly
distributed and almost straight lines shown in Figure 4D & 5D. The Figures 4E, 5E and 4F, 5F shows
the box-cox plots (for power transforms of variables), which indicate the perturbation of variables are
within the specified range.

3.1.3.3. D Response surface plot

In order to understand the major impacts of two variables as well as their interactions, it is useful
to compare the effects of the two components using 3D surface plots.
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Figure 6. 3D Response surface plot for MRR vs (A) Ton and Toff; (B) servo voltage and Ton; (C) peak
current and Ton; (D) servo voltage and Toff; (E) peak current and Toff; (F) peak current and servo

voltage.

The Figure 6 illustrates the 3D response surface plot for the MRR, from which it was observed
that the maximum MRR (6.62 mm?3min) was observed for maximum Ton (120 us) and Toff (60 us)
whereas medium voltage (45 V) and current (41 A). When the titanium (Ti6 Al4V) alloy was processed
using WEDM, the combined effects of the Ton with Toff, Ton with current and Ton with servo voltage
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(Figure 6A, 6B and 6C) resulted in better spark creation and improved characteristics, which
increased workpiece vaporization and melting thereby resulted in increased MRR. Therefore
combination of higher values for these combination of input parameters results in increase in the
EDM process's overall productivity. Whereas in case of the interaction of Toff with current and Toff
with voltage (Figure 6D and 6E), it was evident that there was little variation with these two factors
and there is a gradual increase in MRR. The interaction of current and voltage (Figure 6F) has
negligible impact on the WEDM productivity.

Ra (miero meter)

Ra [micro meter]

BT aff pmicro seconds) 50 11200 AT on (micio seconc]
T2 AT o fimicro secands)

Ha (micre meter)
R (micea mtcr)
Raificre meter]

P 000

: Peak Current i) i @ Serva vottage (V)

Figure 7. 3D Response surface plot for SR vs (A) Ton and Toff; (B) servo voltage and Ton; (C) peak
current and Ton; (D) servo voltage and Toff; (E) peak current and Toff; (F) peak current and servo
voltage.

From the 3D response surface plot of SR (Figure 6) it was observed that the surface roughness is
minimum (3.18 pum) is observed for maximum voltage (50 V), minimum Toff (50 us) and Medium
Ton (115 ps) and current (41 A). In general, it can be observed that interactions between the various
machining parameters are much simpler than the simple rule of thumb, and their combined impact
on the process response is quite ambiguous. Figure 7A, 7B and 7C shows how roughness varies with
Ton & Toff, Ton & current and Ton & servo voltage. According to the Figure, superior quality (i.e.,
smaller SR values) may essentially be achieved by combining lower values of Ton and Toff, Ton &
current and Ton & servo voltage in contrast to their impact on process productivity (MRR). Whereas
in case of the interaction of Toff with current and Toff with voltage (Figure 7D and 7E), it was evident
that there was little variation with these two factors and there is a gradual decrease in SR for
decreasing inputs. The interaction of current and voltage (Figure 7F) has negligible impact on the
roughness.

3.2. Multi-Objective Optimization using Non-Dominated Sorting Generic Algorithm-1I (NSGA-II)

NSGA 1II is a powerful multi-objective optimization algorithm that uses non-dominated sorting
to find the optimal solutions that satisfy multiple objectives simultaneously. In this case, the
objectives are to maximize MRR and minimize Ra for WEDM parameters, which are dependent on
Ton, Toff, V, and A. However, MRR and Ra are conflicting objectives, and optimizing one may lead
to the degradation of the other. To address this issue, NSGA II practices elitist non-dominated
selection to obtain a non-dominated set of solutions. The selection of the non-dominated is done
based on the ranking of the non-dominated level, which is done using the crowd comparing operator
and crowd distance. These methods help to maintain population diversity and prevent the algorithm
from premature convergence to a local optimum.


https://doi.org/10.20944/preprints202306.1168.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 June 2023

11

NSGA-II procedure:

Step 1: Based on the maximum and minimum values of the input parameters, initialize the
population (N);

Step 2: Determine the fitness functions for every individual, including MRR and surface
roughness;

Step 3: Sort the initialized population using non-dominated criteria;

Step 4: Choose the individuals based on crowding distance and ranking, then produce offspring
by doing cross-over operations with a factor of 0.95 and mutation operations with a factor of 0.01;

Step 5: Add the populations of the parents and offspring together and determine who belongs
in the next generation based on ranking and crowding distance;

Step 6: If the maximum generation (500) has been achieved, stop; if not, go to Step 4.

Since the nature of MRR and Ra conflicts and the dependence on Ton, Toff, PC and SV, is
resolved by assigning a negative sign (indicating minimization) to MRR.

So, Maximize MRR = Minimize (-MRR) = f(Ton, Toff, SV, PC) and minimize Ra = f(Ton, Toff, V,
A)

Subjected to:

110 < Ton <120 ps;

50 < Toff < 60 us;

40<SV<50Vand

40<PC<42 A

Once ANOVA was performed using Equation (2) and Equation (3) to obtain objective functions
for MRR and SR, The table 4 represents the Pareto optimal solutions obtained in a study aimed at
achieving superior surface finish and increased material removal rate (MRR). The study was
conducted by varying four machining parameters, namely pulse active (Ton) time, pulse inactive
(Toff) time, servo voltage and peak amplitude of current, using pareto fraction of 0.1 and a population
size of 1000. The table includes 23 solution sets, with the optimal solution being solution number
2.Each solution set is characterized by its corresponding values of Ton, Toff, Servo Voltage, Peak
Current, MRR (in mm3/min), and Ra (surface roughness in pm). The MRR and Ra are the two
objective functions obtained after conducting ANOVA. The table shows that the values of Ton, Toff,
Servo Voltage, and Peak Current vary across the solution sets, leading to different values of MRR and
SR. The Figure 8 illustrates the 23 results of pareto optimum frontal, which illustrates the better
convergence of the results. Depending on the specific product requirements, any solution from the
set in Table 4 is acceptable. The most desirable set, on the other hand, is chosen with the primary goal
of achieving superior Productivity factor and quality factor (MRR and roughness) and in this case,
solution 2 is preferable to other Pareto optimal solution sets. To validate the findings of the NSGA 1,
a confirmation experiment was performed on the optimal solution set 2 in Table 6. MRR and Ra had
1.06% and 1.24% deviations between experimental and predicted results, respectively.

Table 6. Pareto optimum frontal solutions.

S. No. Ton T off Servo Voltage Peak Current MRR Ra

1. 120.0412 58.77586 49.96319 40.06579 8.995111 1.789038
2. 120.1492 56.58296 49.99996 40.05555 9.712588 1.60152
3. 120.1389 56.93179 49.9999 40.0267 9.630805 1.608884
4. 120.0575 59.71887 49.97326 40.07279 8.612424 1.987299

5. 120.0313 59.75359 49.97836 40.00503 8.573463 1.99937

doi:10.20944/preprints202306.1168.v1
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6. 120.0153 58.25391 49.97986 40.03768 9.160236 1.714015
7. 120.0785 57.06381 49.99911 40.08462 9.553325 1.61439
8. 120.028 58.49976 49.97089 40.02401 9.085653 1.746697
9. 120.0645 56.61391 49.98191 40.01006 9.643118 1.60284
10. 120.0774 58.73727 49.99318 40.06843 9.037575 1.77747
11. 120.0865 59.6101 49.98075 40.07363 8.686113 1.954955
12. 120.0275 59.98092 49.96993 40.02472 8.463633 2.066013
13. 120.0422 59.18336 49.94574 40.05737 8.835108 1.866152
14. 120.0161 59.90732 49.96901 40.08943 8.488892 2.045831
15. 120.043 57.81518 49.98133 40.06418 9.323258 1.665676
16. 120.015 59.38865 49.96638 40.00027 8.7235 1.911485
17. 120.0272 57.20975 49.97581 40.07966 9.479039 1.623467
18. 120.0219 59.24189 49.96685 40.01432 8.791831 1.87836
19. 120.0211 59.46681 49.97204 40.07836 8.694218 1.928456
20. 120.021 58.60729 49.97019 40.07 9.040872 1.76309
21. 120.0088 59.85303 49.96829 40.04466 8.508329 2.03119
22. 120.0741 57.62292 49.99341 40.09495 9.403723 1.647672
23. 120.0081 59.99954 49.9693 40.02337 8.43774 2.074575

Pareto optimal front

& MRR,9.712588

MRR, cumm/min

%7 Ra, 1.60152

0.5 1 15 2 25

Ra, pm

Figure 8. Pareto optimal front.
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4. Conclusions

The current study utilized BBD-NSGA 11, to optimize MRR and Ra in WEDM of Ti6Al4V alloy.
Mathematical equations, which were quadratic in nature, were obtained as a function of WEDM
parameters for MRR and SR. Based on the results of the study, the following conclusions can be
drawn:

e This study provides valuable insights into the optimization of the WEDM process for
biocompatible titanium alloy Ti6Al4V.

e  The non-linear behavior in the responses MRR and SR in WEDM of Ti6Al4V alloy was found to
be suitable for modelling and characterized by a quadratic model.

e  The models developed for MRR and SR were adequate as it has high F-value and reasonably
decent association with trial results, accounting R? for MRR is 96.87% and for SR is 95.42%.

e  Pulse active (Ton) time was identified as the foremost WEDM parameter affecting MRR and SR
with a maximum percentage, followed by pulse inactive time (Toff).

e  The confirmation experiments used to evaluate the optimization result generated by NSGA 1II
show good agreement between the experimental value and the predicted value, with absolute
errors of 1.06% and 1.24% for MRR and SR, respectively.

e The NSGA II optimization technique proved to be a more effective method for optimizing
multiple objectives and the technique NSGA II provided pareto-optimal solutions that offered
most favorable balance between surface characteristics and material removal rate.
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