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Abstract: Machining titanium alloy (Ti6Al4V) used in orthopedic implants by conventional metal cutting 
processes is challenging due to excessive cutting forces, low surface integrity and tool wear. To overcome these 
difficulties and for ensuring high-quality products, various industries employ wire electrical discharge 
machining (WEDM) for precise machining of intricate shapes in titanium alloy. The objective is to make WEDM 
machining parameters as efficient as possible for machining the bio-compatible alloy Ti6Al4V using box-
behnken design (BBD) and Non-dominated Sorting Genetic Algorithm II (NSGA II). A quadratic mathematical 
model is created to represent the productivity and the quality factor (MRR and surface roughness) in terms of 
varying input parameters, such as pulse active (Ton) time, pulse inactive (Toff) time, peak amplitude (A) 
current and applied servo (V) voltage. The established regression models and related prediction plots provide 
a reliable approach for predicting how the process variables affect the two responses viz MRR and SR. The 
effects of four process variables on both the responses were examined, and the findings revealed that the pulse 
duration and voltage has a major influence on the rate at which material is removed (MRR) whereas pulse 
duration influence quality (SR).  The trade-off between MRR and SR, when significant process factors are 
included emphasizes the need for a reliable multi-objective optimization method. The intelligent metaheuristic 
optimization method named non-dominated sorting genetic algorithm II (NSGA II) is utilized to provide 
pareto optimum solutions in order to achieve high material removal rate (MRR) and low surface roughness 
(SR).   

Keywords: WEDM; Box-behnken design; NSGA-II; material removal rate; surface roughness; 
Titanium alloy. 

 

1. Introduction 

The Ti6Al4V or Titanium Grade 5 is biocompatible, meaning it is well-tolerated by the human 
body and makes it suitable for medical implants like orthopedic implants, dental implants and 
prosthetics [1–3]. The superior corrosion resistance, formability and weldability makes titanium 
alloys to be used extensively in a wide range of industries like aerospace, automotive, chemical, and 
marine industries [4–8]. Titanium and its alloys are difficult to machine / process and expensive when 
utilized in conventional machining methods because of their high chemical reactivity (cause tool 
deformation) and poor thermal conductivity [9–12]. In several industries, wire electric discharge 
machining (WEDM) which utilizes thermo-mechanical energy can process with excellent accuracy 
and provide a good surface finish, is often employed to deal with such high-strength materials [13–
15]. In the WEDM process, a conductive wire (electrode) that travels continually and the heat results 
in an electric spark which erodes the conductive work material [16,17]. During the process, dielectric 
fluid is utilized as a medium for ionization to create the electrical arc across the workpiece and the 
wire (electrode). The steady flow of dielectric fluid acts as cooling agent and helps in flushing the 
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removed material away. The heat energy from these electrical sparks removes material in the form 
of micro debris. An illustration of the WEDM cutting concept is shown in Figure 1. 

 

Figure 1. WEDM cutting concept. 

The WEDM equipment's conservative technical data or the operator's expertise were 
traditionally used to choose the appropriate parameters for the maximum material removal rate and 
minimum surface roughness during the EDM process, which resulted in inconsistent machining 
performance. Devarasiddappa et al. [18] focused on reducing surface roughness of Ti6Al4V alloy 
processed using WEDM. They obtained 2.6% reduction in SR for ideal process variables of the WEDM 
process. Muhammad Umar Farooq et al. [19] manufacture convex and concave shapes in Ti6Al4V 
using the WEDM technique and  found that servo voltage, wire feed, pulse-on-time and pulse-off-
time affects the precision of geometrical profiles and the diameter of corners. The pulse duration were 
shown to be the most important variables driving overcut in convex profiles. Chaudhari et al. [20] 
employed Taguchi's L9 array to machine Ti6Al4V alloy using WEDM technique and found that pulse 
duration and current have impact on MRR and SR. Lin et al. [21] emphasized the benefits of using 
the grey-Taguchi technique to optimize a number of quality variables like electrode depletion, MRR, 
and overcut for micro-EDM finish quality of the Ti6Al4V alloy. According to the experimental 
findings, the peak current and pulse duration play a key role in the micro-EDM of Ti6Al4V alloy. 
Priyadarshini et al. [22] studied the use of Ti6Al4V alloy using EDM for various pulse parameters 
and chosen MRR, SR, and TWR (tool wear rate) as output factors utilizing taguchi orthogonal array 
for the experiment.  

Material removal rate and surface roughness were the output parameters utilised by Gupta et 
al. [23] while using the WEDM process to machine a Ti6Al4V alloy, whereas the process parameters 
were pulse duration, wire speed, servo voltage, wire tension, pulse current, and feed rate. They 
observed that pulse duration has significant effect on MRR and SR. When using the WEDM method 
to cut Ti6Al4V alloy, Mouralova et al. [24] evaluated the current, voltage, pulse duration and wire 
speed as the process parameters. They determined using experiments that a quicker pulse-on time 
and longer pulse-off time resulted in a better surface quality. Ti6Al4V was studied as a work material 
by Pramanik et al. [25] and machined utilising the WEDM method while taking the effect of wire 
tension, pulse-on time, and pulse-off time as process parameters into consideration. They reached the 
conclusion that shorter pulse-on times and longer pulse-off times produced better results. Bisaria and 
Shandilya [26] studied the influence of pulse duration and spark gap voltage on MRR (material 
removal rate) and SR (surface roughness). They discovered that although MRR and SR values 
decreased with a rise in voltage and pulse off time, they increased drastically with a rise in pulse on 
time. Many experimental investigations have sought to investigate the impact of various process 
factors on the performance of the WEDM machining. The majority of the experiments, however, had 
limitations on the variety of process variables they were able to investigate or the range of values 
they can investigate and it can be suggested that there is still scope for improvement in terms of 
collecting data by piloting an in-depth and comprehensive investigation of the impact of a wide 
variety of WEDM process variables and their levels on the productivity and surface quality generated 
when processing Ti6Al4V alloy.  

Workpiec

Wire 
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The selection of the appropriate process parameters is vital for sustainable production and the 
parameters associated with WEDM for the machining of the Ti6Al4V alloy have been optimised by a 
number of researchers. To collect data from experiments with the least amount of waste of time, 
money, raw materials, etc., systematic experiment design is crucial. Among the tools for designing 
experiments are taguchi techniques employing an orthogonal array, response surface methodology 
(RSM) and fractional factorial. A comprehensive review of the literature revealed that several 
researchers from all over the the world have contributed to the process parameter optimisation of the 
WEDM method for the machining of titanium-based alloys. WEDM is a process with multiple inputs 
and multiple outputs that has complex relationships on each parameter and how they interact with 
each other. When multiple objectives are dealt with, many conflicting circumstances develop that 
demand a solution. The best representation of this tradeoff is optimum pareto points obtained 
through evolutionary optimization which finds the solution near global optimum with less time and 
computing effort. So there arises a need for multi-response optimization which includes grey 
relational analysis (GRA) [27–29], heat transfer search (HTS) algorithm [30,31], teacher learning-
based algorithm [32], particle swarm algorithm [33], genetic algorithm [34], artificial neural networks 
[35], etc., has been tested in order to find the tread-off solution in terms of optimized process 
parameters.  

Deb et al. [36] implemented NSGA-II (Non sorted genetic algorithm II), a newly developed 
approach that was designed to handle multi-objective problems and search for a variety of solutions 
that efficiently reflect the trade-off between contrasting objectives.  NSGA II can effectively explore 
the solution space, maintain diversity and provide optimum or near-optimal solutions for the 
optimization of two conflicting objectives viz. maximum material removal rate (MRR) and minimal 
surface roughness in WEDM.  AISI 5160 steel [37], high-speed steel [38], and AISI D3 tool steel 
[39,40] are a few materials that are being processed in WEDM and their results are optimized using 
NSGA-II. Based on the literature, it has been found that limited study has been done to minimize SR 
and maximize MRR in WEDM of Ti6Al4V alloy using the NSGA II algorithm which can select the 
most dominant solution.  

The goal of this study was to optimize the machining settings in order to maximize MRR 
whereas minimizing SR. Therefore, the entire study may be broken into three sections.  The first 
section involves conducting experiments based on box–behnken design and collecting data regarding 
the responses, namely MRR and SR, to various input parameters, including pulse active (Ton) time, 
pulse inactive (Toff) time, peak amplitude of current (A), and applied servo voltage (V). In the second 
section, the effect and influence of the parameters on the responses are examined and discussed. The 
third section is to develop the multi-objective metaheuristics algorithm NSGA-II, which can search 
for the most optimal parameter for the conflicting objective i.e. maximize MRR and minimize SR. 
Comparisons are made between the results obtained by using these different methods, and validation 
is carried out via the use of confirmation tests.   

2. Materials and Methods 

In this work, CNC wire cut EDM DK7732 with 3kVA power and BMW 3000 controller shown in 
Figure 2 was used to cut the profile shown in Figure 3 on the commercial titanium Ti6Al4V alloy of 
5 mm thickness. Table 1 presents a list of the chemical components of the titanium Ti6Al4V alloy that 
was utilized in this investigation. Deionized water was utilized to eject away the waste particles 
produced during the machining process, and a Ф 0.25 mm zinc-coated brass wire was utilized as the 
electrode for cutting purposes. 

Table 1. Chemical constituents of Ti6Al4V alloy. 

Element  Ti Al V Fe O 

Weight (%)  90 6 4 0.25 0.2 
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Figure 2. DK7732 wire-cut electro-discharge machine. 

 

Figure 3. Profile. 

RSM is an abbreviation for response surface methodology, which is a powerful mathematical 
and statistical tool that can investigate and optimize complicated systems. Researchers have utilized 
extensive use of the box–behnken design (BBD), which is a method of response surface methodology 
(RSM), in order to optimize experimental trials [41]. The box-behnken design is advantageous since 
it does not contain any points at the extremities of the cubic region produced by the two-level factorial 
combinations that are either costly to test or difficult to test due to physical restrictions in 
experimentation [42]. It is widely used in a variety of sectors, including agrochemicals, 
pharmaceuticals, bioprocessing and others [43].  

The experiments used a two-level design with four parameters viz. pulse active time  (Ton) 
ranging from 110 to 120µs, pulse inactive time (Toff) ranging from 50 to 60µs, applied servo voltage 
(V) ranging from 40 to 50 V and peak amplitude of current (A) ranging from 40 to 42 A. The box-
behnken design was employed to generate a total of 29 experiments, and the corresponding values 
of the response characteristics were determined. Table 2 depicts the range of input parameters that 
were chosen based on preliminary pilot experiments and an extensive investigation of the literature.  

Table 2. Control factors and its levels. 

Parameters and their levels  -1 level  +1 level 

Pulse active (Ton) time (µs) 110 120 

Pulse inactive (Toff) time (µs) 50 60 

Servo Voltage (SV) (v) 40 50 

Peak amplitude of current (PC) (A) 40 42 

The response characteristics evaluated in the present study are the MRR and average SR. After 
cleaning roughness tester with acetone, it was used to measure the SR at three different locations. The 
average of all three values was then selected. Equation (1) was used to determine the MRR after the 
machining time was measured using a stopwatch [44,45]. 

𝑀𝑀𝑀𝑀𝑀𝑀 =  
𝐿𝐿 𝐻𝐻𝑡𝑡                                                                                      (1) 
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Where,  
L - Cutting length  
H - Workpiece thickness and  
t - Machining time (in mins).  

3. Results and discussion 

3.1. Response surface methodology (RSM) 

A statistical and mathematical approach called response surface methodology (RSM) is used to 
optimise and investigate the interaction between a number of input variables (factors) and one or 
more output variables (responses). It is commonly used in the field of experimental design and 
process optimization which is particularly useful when the association between the input variables 
and the response variables is intricate and nonlinear. By systematically varying the levels of the input 
variables and measuring the corresponding response, RSM helps to model and understand the 
relationship, and subsequently, determine the optimal values of the input variables to achieve 
desirable responses. 

3.1.1. Multivariate analysis (ANOVA) 

Table 3 depicts the BBD and experimental findings of the WEDM process's machining 
capabilities. For a 5% significance level (α = 0.05), the "P value" must be less than or equal to 0.05 to 
be stated significant and the backward elimination method excludes irrelevant factors. The model's 
potential for predicting an optimal response value for correlation coefficient R has been evaluated in 
the most favorable conditions possible. Regression analysis was used to determine the optimum 
region to investigate the responses under study by fitting mathematical models to the experimental 
data. The data from the experiment runs was analyzed and obtained with the use of Design expert 
software V 13.0 and the list of significance of each coefficient's for MRR and SR is depicted in Tables 
4 and 5. 

Table 3. Box-Behnken design and response values. 

Expt 

No. 

Input Parameters Responses 

A-Ton 

µs 

B-Toff 

µs 
C-SV (V) D-PC (A) 

MRR 

mm3/min 

Ra 

µm 

1.  115 60 45 40 5.011 2.48 

2.  110 55 45 40 3.849 1.92 

3.  115 55 50 42 4.41 2.30 

4.  110 55 50 41 3.957 1.79 

5.  115 50 40 41 4.103 2.09 

6.  120 55 45 40 6.423 2.98 

7.  120 55 40 41 6.345 2.88 

8.  115 55 45 41 4.51 2.29 

9.  115 55 45 41 4.423 2.13 

10.  120 55 45 42 5.873 2.77 

11.  115 55 50 40 4.484 2.00 

12.  115 55 45 41 4.429 2.04 

13.  115 50 45 42 4.327 1.85 

14.  115 55 45 41 5.173 2.34 

15.  115 60 45 42 4.956 2.42 
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16.  115 55 45 41 4.792 2.31 

17.  120 55 50 40 6.145 2.88 

18.  115 60 40 40 5.446 2.57 

19.  115 55 40 42 4.805 2.25 

20.  115 50 45 40 4.36 2.11 

21.  115 55 40 40 5.512 2.60 

22.  115 50 50 41 4.209 1.85 

23.  120 60 45 41 6.639 3.23 

24.  110 55 40 41 4.087 1.84 

25.  110 60 45 41 4.041 1.94 

26.  110 55 45 42 4.808 2.38 

27.  110 50 45 41 3.916 1.75 

28.  120 50 45 41 5.838 2.60 

29.  115 60 50 41 5.006 2.35 

Table 4. ANOVA results for MRR. 

Source 
Sum of 

Squares 
Df 

Mean 

Square 
F Value p-Value 

Model 17.75 14 1.27 18.5 < 0.0001 

A-T on 11.88 1 11.88 173.37 < 0.0001 

B-T off 1.42 1 1.42 20.68 0.0005 

C-SV 0.3557 1 0.3557 5.19 0.0589 

D-PC 0.004 1 0.004 0.0588 0.8119 

AB 0.0888 1 0.0888 1.3 0.274 

AC 0.0181 1 0.0181 0.264 0.6154 

AD 0.5798 1 0.5798 8.46 0.0114 

BC 0.0076 1 0.0076 0.1108 0.7441 

BD 0.001 1 0.001 0.0148 0.905 

CD 0.0911 1 0.0911 1.33 0.2681 

A² 1.34 1 1.34 19.61 0.0006 

B² 0.0251 1 0.0251 0.3664 0.5546 

C² 0.0026 1 0.0026 0.0379 0.8484 

D² 0.0929 1 0.0929 1.36 0.2636 

Residual 0.9591 14 0.0685   

Lack of Fit 0.6636 10 0.0664 0.8983 0.5972 

Pure Error 0.2955 4 0.0739   

Cor Total 18.71 28    

Table 5. ANOVA results for SR. 

Source 
Sum of 

Squares 
Df 

Mean 

Square 
F Value p-Value 

Model 3.93 14 0.2806 10.02 < 0.0001 
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A-T on 2.26 1 2.26 80.8 < 0.0001 

B-T off 0.6684 1 0.6684 23.86 0.0002 

C-SV 0.0564 1 0.0564 2.01 0.1777 

D-PC 0.0256 1 0.0256 0.9138 0.3553 

AB 0.0156 1 0.0156 0.5579 0.4675 

AC 0.042 1 0.042 1.5 0.2409 

AD 0.0465 1 0.0465 1.66 0.2183 

BC 0.0344 1 0.0344 1.23 0.2866 

BD 0.0136 1 0.0136 0.4866 0.4969 

CD 0.0494 1 0.0494 1.76 0.2054 

A² 0.3023 1 0.3023 10.79 0.0054 

B² 0.0066 1 0.0066 0.2349 0.6354 

C² 0.041 1 0.041 1.46 0.2464 

D² 0.0076 1 0.0076 0.2706 0.6111 

Residual 0.3921 14 0.028   

Lack of Fit 0.2206 10 0.0221 0.5147 0.8203 

Pure Error 0.1715 4 0.0429   

Cor Total 4.32 28    

An experimental relationship expressed by an equation of second-order polynomial with 
interaction terms was utilized to fit the data from the BBD model. Following is the final (equation 2 
and 3) result in coded factors: 𝑀𝑀𝑀𝑀𝑀𝑀 = 4.60 + 1.02 × 𝐴𝐴 +  0.3522 × 𝐵𝐵 − 0.1804 × 𝐶𝐶 − 0.0177 × 𝐷𝐷 + 0.1490 × 𝐴𝐴𝐵𝐵 − 0.0721 × 𝐴𝐴𝐶𝐶 − 0.3641 × 𝐴𝐴𝐷𝐷− 0.0467 × 𝐵𝐵𝐶𝐶 + 0.0152 × 𝐵𝐵𝐷𝐷 + 0.1394 × 𝐶𝐶𝐷𝐷 + 0.4589 × 𝐴𝐴2 − 0.0627 × 𝐵𝐵2 − 0.0200 × 𝐶𝐶2

+ 0.1211 × 𝐷𝐷2                                                            (2) 𝑀𝑀𝑅𝑅 =   +3.64  + 0.445 × 𝐴𝐴  + 0.2419 × 𝐵𝐵  − 0.0718 × 𝐶𝐶  − 0.0447 × 𝐷𝐷 + 0.0625 × 𝐴𝐴𝐵𝐵 − 0.1099 × 𝐴𝐴𝐶𝐶  − 0.1031 × 𝐴𝐴𝐷𝐷 + 0.0994 × 𝐴𝐴𝐶𝐶  − 0.0558 × 𝐵𝐵𝐷𝐷  + 0.1027 × 𝐶𝐶𝐷𝐷 + 0.2176 × 𝐴𝐴² − 0.0321 × 𝐵𝐵²  − 0.0796 × 𝐶𝐶²  + 0.0346 × 𝐷𝐷²                                              (3) 

Analysis of variance (ANOVA) was implemented to analyze the data, and Table 4 and 5 shows 
the significance of the experimental findings to different models along with the related p-values. Four 
linear correlation coefficients (A, B, C and D), six interaction coefficients (AB, AC, AD, BC, BD and 
CD) and four quadratic coefficients (A2, B2, C2 and D2) were found to be substantial. The p-values of 
each model term is investigated to depict the interaction patterns between the variables, for p < 0.0001, 
the model's F-value of 18.5 for MRR and 10.02 for SR showed that it was very significant. Due to the 
relative pure error, the lack of fit F value of 0.8983 for MRR and 0.5147 for SR was not significant (p = 
0.0702). Overall, unless the model is adequately fit to make validating its suitability for use needed, 
inadequate or inaccurate results may be obtained through the investigation and optimization of the 
fitted response surface. [46]. The P-value is used to determine the significance of each coefficient and 
the degree of the interaction between variables. Effects that are less than 0.05 are considered 
significant. The degree of correlation between the values observed and predicted is better when the 
significance level is greater [47]. The "Pred R-Squared" of 0.9175 and the "Adj R-Squared" of 0.9342 
for MRR and The "Pred R-Squared" of 0.9021 and the "Adj R-Squared" of 0.9278 for SR are reasonably 
in compatible in the current examination. In addition, a correlation coefficient with a high value (R2 
for MRR is 0.9687 and SR is 0.9542) showed a significant relationship between the values of the 
anticipated and experimental responses. The low CV value (5.42% for MRR and 4.52% for SR) made 
it evident that there were minor deviations between the predicted and experimental, and it also 
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demonstrated that the experiments were very precise and reliable. The adequate precision ratio in 
the current investigation was determined to be 14.91 for MRR and 12.13 for SR, indicating a sufficient 
indicator and the present model may be utilized to move about the design space. 

3.1.2. Diagnostic graphs 

The data statistics are shown in (Figure 4 and 5) in which analyzing the experimental and the 
model observation diagnostic plots enabled the determination of the models' accuracy. The Figure 
4A & 5A is the residual plot for the response which exhibits a normal% probability distribution, the 
points are logically closer to to the straight line, with no significant deviations, the current model 
significantly improved the interaction between the response and the process variables. 

   

   

Figure 4. Diagnostic graphs for the Box-Behnken model for MRR (A) Normal plot of residuals; (B) 
Residuals (versus) Predicted; (C) Residuals (versus) Run; (D) Predicted (versus) Actual; (E) Box-Cox 
plot - power transformations; (F) Perturbation. 
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Figure 5. Diagnostic graphs for the Box-Behnken model for SR (A) Normal plot of residuals; (B) 
Residuals (versus) Predicted; (C) Residuals (versus) Run; (D) Predicted (versus) Actual; (E) Box-Cox 
plot - power transformations; (F) Perturbation. 

The predicted values were extremely similar to that of the observed values, as shown in Figure 
4B & 5B. By establishing a satisfactory fit of the model, the externally studentized residuals vs 
experimental runs were examined and the results show that all of the data points fit inside the limits 
(Figure 3C & 4C). For each run, the values of the predicted and actual responses were regularly 
distributed and almost straight lines shown in Figure 4D & 5D. The Figures 4E, 5E and 4F, 5F shows 
the box-cox plots (for power transforms of variables), which indicate the perturbation of variables are 
within the specified range. 

3.1.3.3. D Response surface plot 

In order to understand the major impacts of two variables as well as their interactions, it is useful 
to compare the effects of the two components using 3D surface plots. 

   

 
  

Figure 6. 3D Response surface plot for MRR vs (A) Ton and Toff; (B) servo voltage and Ton; (C) peak 
current and Ton; (D) servo voltage and Toff; (E) peak current and Toff; (F) peak current and servo 
voltage. 

The Figure 6 illustrates the 3D response surface plot for the MRR, from which it was observed 
that the maximum MRR (6.62 mm3/min) was observed for maximum Ton (120 µs) and Toff (60 µs) 
whereas medium voltage (45 V) and current (41 A). When the titanium (Ti6Al4V) alloy was processed 
using WEDM, the combined effects of the Ton with Toff, Ton with current and Ton with servo voltage 
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(Figure 6A, 6B and 6C) resulted in better spark creation and improved characteristics, which 
increased workpiece vaporization and melting thereby resulted in increased MRR. Therefore 
combination of higher values for these combination of input parameters results in increase in the 
EDM process's overall productivity. Whereas in case of the interaction of Toff with current and Toff 
with voltage (Figure 6D and 6E), it was evident that there was little variation with these two factors 
and there is a gradual increase in MRR. The interaction of current and voltage (Figure 6F) has 
negligible impact on the WEDM productivity. 

   

   

Figure 7. 3D Response surface plot for SR vs (A) Ton and Toff; (B) servo voltage and Ton; (C) peak 
current and Ton; (D) servo voltage and Toff; (E) peak current and Toff; (F) peak current and servo 
voltage. 

From the 3D response surface plot of SR (Figure 6) it was observed that the surface roughness is 
minimum (3.18 µm) is observed for maximum voltage (50 V), minimum Toff (50 µs) and Medium 
Ton (115 µs) and current (41 A). In general, it can be observed that interactions between the various 
machining parameters are much simpler than the simple rule of thumb, and their combined impact 
on the process response is quite ambiguous. Figure 7A, 7B and 7C shows how roughness varies with 
Ton & Toff, Ton & current and Ton & servo voltage. According to the Figure, superior quality (i.e., 
smaller SR values) may essentially be achieved by combining lower values of Ton and Toff, Ton & 
current and Ton & servo voltage in contrast to their impact on process productivity (MRR). Whereas 
in case of the interaction of Toff with current and Toff with voltage (Figure 7D and 7E), it was evident 
that there was little variation with these two factors and there is a gradual decrease in SR for 
decreasing inputs. The interaction of current and voltage (Figure 7F) has negligible impact on the 
roughness.  

3.2. Multi-Objective Optimization using Non-Dominated Sorting Generic Algorithm-II (NSGA-II) 

NSGA II is a powerful multi-objective optimization algorithm that uses non-dominated sorting 
to find the optimal solutions that satisfy multiple objectives simultaneously. In this case, the 
objectives are to maximize MRR and minimize Ra for WEDM parameters, which are dependent on 
Ton, Toff, V, and A. However, MRR and Ra are conflicting objectives, and optimizing one may lead 
to the degradation of the other. To address this issue, NSGA II practices elitist non-dominated 
selection to obtain a non-dominated set of solutions. The selection of the non-dominated is done 
based on the ranking of the non-dominated level, which is done using the crowd comparing operator 
and crowd distance. These methods help to maintain population diversity and prevent the algorithm 
from premature convergence to a local optimum.  
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NSGA-II procedure: 
Step 1: Based on the maximum and minimum values of the input parameters, initialize the 

population (N); 
Step 2: Determine the fitness functions for every individual, including MRR and surface 

roughness; 
Step 3: Sort the initialized population using non-dominated criteria; 
Step 4: Choose the individuals based on crowding distance and ranking, then produce offspring 

by doing cross-over operations with a factor of 0.95 and mutation operations with a factor of 0.01; 
Step 5: Add the populations of the parents and offspring together and determine who belongs 

in the next generation based on ranking and crowding distance; 
Step 6: If the maximum generation (500) has been achieved, stop; if not, go to Step 4. 
Since the nature of MRR and Ra conflicts and the dependence on Ton, Toff, PC and SV, is 

resolved by assigning a negative sign (indicating minimization) to MRR.  
So , Maximize MRR = Minimize (-MRR) = f(Ton, Toff, SV, PC) and minimize Ra = f(Ton, Toff, V, 

A) 
Subjected to: 
110 ≤ Ton ≤ 120 µs;  
50 ≤ Toff ≤ 60 µs; 
 40 ≤ SV ≤ 50 V and  
40 ≤ PC ≤ 42 A 
Once ANOVA was performed using Equation (2) and Equation (3) to obtain objective functions 

for MRR and SR, The table 4 represents the Pareto optimal solutions obtained in a study aimed at 
achieving superior surface finish and increased material removal rate (MRR). The study was 
conducted by varying four machining parameters, namely pulse active  (Ton) time, pulse inactive 
(Toff) time, servo voltage and peak amplitude of current, using pareto fraction of 0.1 and a population 
size of 1000. The table includes 23 solution sets, with the optimal solution being solution number 
2.Each solution set is characterized by its corresponding values of Ton, Toff, Servo Voltage, Peak 
Current, MRR (in mm3/min), and Ra (surface roughness in µm). The MRR and Ra are the two 
objective functions obtained after conducting ANOVA. The table shows that the values of Ton, Toff, 
Servo Voltage, and Peak Current vary across the solution sets, leading to different values of MRR and 
SR. The Figure 8 illustrates the 23 results of pareto optimum frontal, which illustrates the better 
convergence of the results. Depending on the specific product requirements, any solution from the 
set in Table 4 is acceptable. The most desirable set, on the other hand, is chosen with the primary goal 
of achieving superior Productivity factor and quality factor (MRR and roughness) and in this case, 
solution 2 is preferable to other Pareto optimal solution sets. To validate the findings of the NSGA II, 
a confirmation experiment was performed on the optimal solution set 2 in Table 6. MRR and Ra had 
1.06% and 1.24% deviations between experimental and predicted results, respectively. 

Table 6. Pareto optimum frontal solutions. 

S. No. Ton T off Servo Voltage Peak Current MRR Ra 

1.  120.0412 58.77586 49.96319 40.06579 8.995111 1.789038 

2.  120.1492 56.58296 49.99996 40.05555 9.712588 1.60152 

3.  120.1389 56.93179 49.9999 40.0267 9.630805 1.608884 

4.  120.0575 59.71887 49.97326 40.07279 8.612424 1.987299 

5.  120.0313 59.75359 49.97836 40.00503 8.573463 1.99937 
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6.  120.0153 58.25391 49.97986 40.03768 9.160236 1.714015 

7.  120.0785 57.06381 49.99911 40.08462 9.553325 1.61439 

8.  120.028 58.49976 49.97089 40.02401 9.085653 1.746697 

9.  120.0645 56.61391 49.98191 40.01006 9.643118 1.60284 

10.  120.0774 58.73727 49.99318 40.06843 9.037575 1.77747 

11.  120.0865 59.6101 49.98075 40.07363 8.686113 1.954955 

12.  120.0275 59.98092 49.96993 40.02472 8.463633 2.066013 

13.  120.0422 59.18336 49.94574 40.05737 8.835108 1.866152 

14.  120.0161 59.90732 49.96901 40.08943 8.488892 2.045831 

15.  120.043 57.81518 49.98133 40.06418 9.323258 1.665676 

16.  120.015 59.38865 49.96638 40.00027 8.7235 1.911485 

17.  120.0272 57.20975 49.97581 40.07966 9.479039 1.623467 

18.  120.0219 59.24189 49.96685 40.01432 8.791831 1.87836 

19.  120.0211 59.46681 49.97204 40.07836 8.694218 1.928456 

20.  120.021 58.60729 49.97019 40.07 9.040872 1.76309 

21.  120.0088 59.85303 49.96829 40.04466 8.508329 2.03119 

22.  120.0741 57.62292 49.99341 40.09495 9.403723 1.647672 

23.  120.0081 59.99954 49.9693 40.02337 8.43774 2.074575 

 

Figure 8. Pareto optimal front. 
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4. Conclusions 

The current study utilized BBD-NSGA II, to optimize MRR and Ra in WEDM of Ti6Al4V alloy. 
Mathematical equations, which were quadratic in nature, were obtained as a function of WEDM 
parameters for MRR and SR. Based on the results of the study, the following conclusions can be 
drawn: 

• This study provides valuable insights into the optimization of the WEDM process for 
biocompatible titanium alloy Ti6Al4V. 

• The non-linear behavior in the responses MRR and SR in WEDM of Ti6Al4V alloy was found to 
be suitable for modelling and characterized by a quadratic model. 

• The models developed for MRR and SR were adequate as it has high F-value and reasonably 
decent association with trial results, accounting R2 for MRR is 96.87% and for SR is 95.42%. 

• Pulse active (Ton) time was identified as the foremost WEDM parameter affecting MRR and SR 
with a maximum percentage, followed by pulse inactive time (Toff). 

• The confirmation experiments used to evaluate the optimization result generated by NSGA II 
show good agreement between the experimental value and the predicted value, with absolute 
errors of 1.06% and 1.24% for MRR and SR, respectively. 

• The NSGA II optimization technique proved to be a more effective method for optimizing 
multiple objectives and the technique NSGA II provided pareto-optimal solutions that offered 
most favorable balance between surface characteristics and material removal rate. 
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