Submitted:
14 June 2023
Posted:
15 June 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Microwave absorption mechanisms
2.1. Conductivity Loss
2.2. Polarization Relaxation
2.3. Magnetic Effect
2.4. Multireflection and Scattering
3. Low-dimensional EMW absorption materials
3.1. 0D EMW materials
3.2. 1D EMW materials
3.3. 2D EMW materials
4. Perspectives
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Cao, M.S.; Wang, X.X.; Zhang, M.; Shu, J.C.; Cao, W.Q.; Yang, H.J.; Fang, X.Y.; Yuan, J. , Electromagnetic Response and Energy Conversion for Functions and Devices in Low-Dimensional Materials. Adv. Funct. Mater. 2019, 29, 1807398. [Google Scholar] [CrossRef]
- Faisal, S.; Mohamed, A.; Christine, B.H.; Babak. ; Soon, M.; Chong, M.K.; Yury, G., Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 2016, 353, 1137–1140. [Google Scholar]
- Aamir, I.; Faisal, S.; Kanit, H.; Myung-Ki, K.; Jisung, K.; Junpyo, H.; Hyerim, K.; Daesin, K.; Yury, G.; Chong, M.K. , Anomalous absorption of electromagnetic waves by 2D transition metal carbonitride Ti3CNTx (MXene). Science 2020, 369, 446–450. [Google Scholar]
- Balci, O.; Polat, E.O.; Kakenov, N.; Kocabas, C. , Graphene-enabled electrically switchable radar-absorbing surfaces. Nat. Commun. 2015, 6, 6628. [Google Scholar] [CrossRef]
- Hong, S.K.; Kim, K.Y.; Kim, T.Y.; Kim, J.H.; Park, S.W.; Kim, J.H.; Cho, B.J. , Electromagnetic Interference Shielding Effectiveness of Monolayer Graphene. Nanotechnology 2012, 23, 455704. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Fang, J.; Xu, C.; Cao, H.; Zhang, R.; Zhao, B.; Huang, M.; Wang, X.; Lv, H.; Che, R. , One-Dimensional Magnetic FeCoNi Alloy Toward Low-Frequency Electromagnetic Wave Absorption. Nanomicro. Lett. 2022, 14, 170. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Wei, J.; Zhang, Y.; Qian, B.; Jia, Q.; Liu, J.; Zhao, X.; Shao, G. , Ultralight Magnetic and Dielectric Aerogels Achieved by Metal-Organic Framework Initiated Gelation of Graphene Oxide for Enhanced Microwave Absorption. Nanomicro. Lett. 2022, 14, 107. [Google Scholar] [CrossRef]
- Borchers, A.; Pieler, T. , Programming pluripotent precursor cells derived from Xenopus embryos to generate specific tissues and organs. Nanomaterials 2010, 1, 413–26. [Google Scholar] [CrossRef]
- You, W.; Pei, K.; Yang, L.; Li, X.; Shi, X.; Yu, X.; Guo, H.; Che, R. , In situ dynamics response mechanism of the tunable length-diameter ratio nanochains for excellent microwave absorber. Nano Res. 2019, 13, 72–78. [Google Scholar] [CrossRef]
- Hashemi, S.A.; Ghaffarkhah, A.; Hosseini, E.; Bahrani, S.; Najmi, P.; Omidifar, N.; Mousavi, S.M.; Amini, M.; Ghaedi, M.; Ramakrishna, S.; Arjmand, M. , Recent progress on hybrid fibrous electromagnetic shields: Key protectors of living species against electromagnetic radiation. Matter 2022, 5, 3807–3868. [Google Scholar] [CrossRef]
- Jia, Z.; Zhang, M.; Liu, B.; Wang, F.; Wei, G.; Su, Z. , Graphene Foams for Electromagnetic Interference Shielding: A Review. ACS Appl. Nano Mater. 2020, 3(7), 6140–6155. [Google Scholar] [CrossRef]
- Su, X.; Liu, Y.; Liao, Z.; Bi, Y.; Chen, Y.; Ma, Y.; Chung, K.L.; Wan, F.; Ma, M. , A review of 1D magnetic nanomaterials in microwave absorption. J Mater Sci 2023, 58, 636–663. [Google Scholar] [CrossRef]
- Cao, W.Q.; Wang, X.X.; Yuan, J.; Wang, W.Z.; Cao, M.S. , Temperature Dependent Microwave Absorption of Ultrathin Graphene Composites. J. Mater. Chem. C 2015, 3, 10017–10022. [Google Scholar] [CrossRef]
- Zhang, S.; Cheng, B.; Gao, Z.; Lan, D.; Zhao, Z.; Wei, F.; Zhu, Q.; Lu, X.; Wu, G. , Two-Dimensional Nanomaterials for High-Efficiency Electromagnetic Wave Absorption: An Overview of Recent Advances and Prospects. J. Alloys Compounds 2022, 893, 162343. [Google Scholar] [CrossRef]
- Jiang, Y.; Fu, X.; Zhang, Z.; Du, W.; Xie, P.; Cheng, C.; Fan, R. , Enhanced Microwave Absorption Properties of Fe3C/C Nanofibers Prepared by Electrospinning. J. Alloys Compounds 2019, 804, 305–313. [Google Scholar] [CrossRef]
- Voiry, D.; Shin, H.S.; Loh, K.P.; Chhowalla, M. , Low-Dimensional Catalysts for Hydrogen Evolution and CO2 Reduction. Nat. Rev. Chem. 2018, 2, 0105. [Google Scholar] [CrossRef]
- Bi, Y.; Ma, M.; Liao, Z.; Tong, Z.; Chen, Y.; Wang, R.; Ma, Y.; Wu, G. , One-dimensional Ni@Co/C@PPy Composites for Superior Electromagnetic Wave Absorption. J. Colloid Interface Sci. 2022, 605, 483–492. [Google Scholar] [CrossRef]
- Han, X.; Huang, Y.; Wang, J.; Zhang, G.; Li, T.; Liu, P. , Flexible Hierarchical ZnO/AgNWs/Carbon Cloth-based Film for Efficient Microwave Absorption, High Thermal Conductivity and Strong Electro-thermal Effect. Composites Part B: Engineering 2022, 229, 109458. [Google Scholar] [CrossRef]
- Cao, M.S.; Cai, Y.Z.; He, P.; Shu, J.C.; Cao, W.-Q.; Yuan, J. , 2D MXenes: Electromagnetic Property for Microwave Absorption and Electromagnetic Interference Shielding. Chem. Eng. J. 2019, 359, 1265–1302. [Google Scholar] [CrossRef]
- Zhang, X.; Dong, Y.; Pan, F.; Xiang, Z.; Zhu, X.; Lu, W. , Electrostatic Self-Assembly Construction of 2D MoS2 Wrapped Hollow Fe3O4 Nanoflowers@1D Carbon Tube Hybrids for Self-Cleaning High-Performance Microwave Absorbers. Carbon 2021, 177, 332–343. [Google Scholar] [CrossRef]
- Wang, F.; Sun, Y.; Li, D.; Zhong, B.; Wu, Z.; Zuo, S.; Yan, D.; Zhuo, R.; Feng, J.; Yan, P. , Microwave Absorption Properties of 3D Cross-Linked Fe/C Porous Nanofibers Prepared by Electrospinning. Carbon 2018, 134, 264–273. [Google Scholar] [CrossRef]
- Huo, J.; Wang, L.; Yu, H. , Polymeric Nanocomposites for Electromagnetic Wave Absorption. J. Mater. Sci. 2009, 44, 3917–3927. [Google Scholar] [CrossRef]
- Liao, J.; Ye, M.; Han, A.; Guo, J.; Liu, Q.; Yu, G. , Boosted Electromagnetic Wave Absorption Performance from Multiple Loss Mechanisms in Flower-like Cu9S5/RGO Composites. Carbon 2021, 177, 115–127. [Google Scholar] [CrossRef]
- Dreyer, D.R.; Ruoff, R.S.; Bielawski, C.W. , From Conception to Realization: an Historial Account of Graphene and some Perspectives for its Future. Angew. Chem. Int. Ed. 2010, 49, 9336–44. [Google Scholar] [CrossRef] [PubMed]
- Xia, Y.; Gao, W.; Gao, C. , A Review on Graphene-Based Electromagnetic Functional Materials: Electromagnetic Wave Shielding and Absorption. Adv. Funct. Mater. 2022, 3, 2204591. [Google Scholar] [CrossRef]
- Wang, M.; Fang, P.F.; Chen, Y.; Leng, X.Y.; Yan, Y.; Yang, S.B.; Xu, P.; Yan, C. , Synthesis of Highly Stable LTO/rGO/SnO2 Nanocomposite via In Situ Electrostatic Self-Assembly for High-performance Lithium-Ion Batteries. Adv. Funct. Mater. 2023, 221390. [Google Scholar] [CrossRef]
- Song, Q.; Ye, F.; Kong, L.; Shen, Q.; Han, L.; Feng, L.; Yu, G.; Pan, Y.; Li, H. , Graphene and MXene Nanomaterials: Toward High-Performance Electromagnetic Wave Absorption in Gigahertz Band Range. Adv. Funct. Mater. 2020, 30, 2000475. [Google Scholar] [CrossRef]
- Wen, B.; Cao, M.S.; Hou, Z.L.; Song, W.L.; Zhang, L.; Lu, M.M.; Jin, H.B.; Fang, X.Y.; Wang, W.Z.; Yuan, J. , Temperature Dependent Microwave Attenuation Behavior for Carbon-Nanotube/Silica composites. Carbon 2013, 65, 124–139. [Google Scholar] [CrossRef]
- Cao, M.; Wang, X.; Cao, W.; Fang, X.; Wen, B.; Yuan, J. , Thermally Driven Transport and Relaxation Switching Self-Powered Electromagnetic Energy Conversion. Small 2018, e1800987. [Google Scholar] [CrossRef]
- Song, W.L.; Cao, M.S.; Hou, Z.L.; Fang, X.Y.; Shi, X.L.; Yuan, J. , High Dielectric Loss and its Monotonic Dependence of Conducting-Dominated Multiwalled Carbon Nanotubes/Silica Nanocomposite on Temperature Ranging from 373 to 873 K in X-band. Appl. Phys. Lett. 2009, 94, 233110. [Google Scholar] [CrossRef]
- Wen, B.; Cao, M.; Lu, M.; Cao, W.; Shi, H.; Liu, J.; Wang, X.; Jin, H.; Fang, X.; Wang, W.; Yuan, J. , Reduced Graphene Oxides: Light-Weight and High-Efficiency Electromagnetic Interference Shielding at Elevated Temperatures. Adv. Mater. 2014, 26, 3484–3489. [Google Scholar] [CrossRef]
- Shu, J.C.; Cao, W.Q.; Cao, M.S. , Diverse Metal–Organic Framework Architectures for Electromagnetic Absorbers and Shielding. Adv. Funct. Mater. 2021, 31, 2100470. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, L.; Zang, D.; Wu, H. , A Competitive Reaction Strategy toward Binary Metal Sulfides for Tailoring Electromagnetic Wave Absorption. Adv. Funct. Mater. 2021, 31, 2105018. [Google Scholar] [CrossRef]
- Qin, M.; Zhang, L.; Zhao, X.; Wu, H. , Defect Induced Polarization Loss in Multi-Shelled Spinel Hollow Spheres for Electromagnetic Wave Absorption Application. Adv. Sci. 2021, 8, 2004640. [Google Scholar] [CrossRef]
- Wang, X.X.; Ma, T.; Shu, J.C.; Cao, M.S. , Confinedly Tailoring Fe3O4 Clusters-NG to Tune Electromagnetic Parameters and Microwave Absorption with Broadened Bandwidth. Chem. Eng. J. 2018, 332, 321–330. [Google Scholar] [CrossRef]
- Wu, Z.; Cheng, H.W.; Jin, C.; Yang, B.; Xu, C.; Pei, K.; Zhang, H.; Yang, Z.; Che, R. , Dimensional Design and Core-Shell Engineering of Nanomaterials for Electromagnetic Wave Absorption. Adv. Mater. 2022, 34, e2107538. [Google Scholar] [CrossRef]
- Liang, L.; Gu, W.; Wu, Y.; Zhang, B.; Wang, G.; Yang, Y.; Ji, G. , Heterointerface Engineering in Electromagnetic Absorbers: New Insights and Opportunities. Adv. Mater. 2022, 34, e2106195. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, X.; Cao, M. , Confinedly Implanted NiFe2O4-rGO: Cluster Tailoring and Highly Tunable Electromagnetic Properties for Selective-Frequency Microwave Absorption. Nano Res. 2018, 11, 1426–1436. [Google Scholar] [CrossRef]
- Liang, L.; Li, Q.; Yan, X.; Feng, Y.; Wang, Y.; Zhang, H.B.; Zhou, X.; Liu, C.; Shen, C.; Xie, X. , Multifunctional Magnetic Ti3C2Tx MXene/Graphene Aerogel with Superior Electromagnetic Wave Absorption Performance. ACS Nano 2021, 15, 6622–6632. [Google Scholar] [CrossRef]
- Zhang, Y.R.; Wang, B.C.; Gao, S.L.; Qiu, L.P.; Zheng, Q.H.; Cheng, G.T.; Han, W.P.; Ramakrishna, S.; Long, Y.Z. , Electrospun MXene Nanosheet/Polymer Composites for Electromagnetic Shielding and Microwave Absorption: A Review. ACS Appl. Nano Mater. 2022, 5, 12320–12342. [Google Scholar] [CrossRef]
- Wang, X.X.; Zhang, M.; Shu, J.C.; Wen, B.; Cao, W.Q.; Cao, M.S. , Thermally-Tailoring Dielectric “Genes” in Graphene-based Heterostructure to Manipulate Electromagnetic Response. Carbon 2021, 184, 136–145. [Google Scholar] [CrossRef]
- Wang, C.; Murugadoss, V.; Kong, J.; He, Z.; Mai, X.; Shao, Q.; Chen, Y.; Guo, L.; Liu, C.; Angaiah, S.; Guo, Z. , Overview of Carbon Nanostructures and Nanocomposites for Electromagnetic Wave Shielding. Carbon 2018, 140, 696–733. [Google Scholar] [CrossRef]
- Yang, J.; Liang, Y.; Li, K.; Yang, G.; Yin, S. , One-Step Low-Temperature Synthesis of 0D CeO2 Quantum Dots/2D BiOX (X = Cl, Br) Nanoplates Heterojunctions for Highly Boosting Photo-Oxidation and Reduction Ability. Appl. Cat. B: Environ. 2019, 250, 17–30. [Google Scholar] [CrossRef]
- Moharana, S.; Mahaling, R.N. , Green Synthetic Route of Carbon Quantum Dot-Reinforced Graphene Oxide-Poly(Vinylidene Fluoride-Co-Hexa Fluoropropylene) Nanocomposites: Toward High Dielectric Constant and Suppressed Loss. J. Appl. Poly. Sci. 2019, 136, 47850. [Google Scholar] [CrossRef]
- Gao, Z.; Xu, B.; Ma, M.; Feng, A.; Zhang, Y.; Liu, X.; Jia, Z.; Wu, G. , Electrostatic Self-Assembly Synthesis of ZnFe2O4 Quantum Dots (ZnFe2O4@C) and Electromagnetic Microwave Absorption. Composites Part B: Engineering 2019, 179, 107417. [Google Scholar] [CrossRef]
- Li, J.; Ma, J.; Chen, S.; Huang, Y.; He, J. , Adsorption of Lysozyme by Alginate/Graphene Oxide Composite Beads with Enhanced Stability and Mechanical Property. Mater. Sci. Eng. C Mater. Biol. Appl. 2018, 89, 25–32. [Google Scholar] [CrossRef]
- Lv, H.; Yang, Z.; Wang, P.L.; Ji, G.; Song, J.; Zheng, L.; Zeng, H.; Xu, Z.J. , A Voltage-Boosting Strategy Enabling a Low-Frequency, Flexible Electromagnetic Wave Absorption Device. Adv. Mater. 2018, 30, e1706343. [Google Scholar] [CrossRef]
- Salonitis, K.; Pandremenos, J.; Paralikas, J.; Chryssolouris, G. , Multifunctional Materials: Engineering Applications and Processing Challenges. Int. J. Adv. Manufact. Tech. 2009, 49, 803–826. [Google Scholar] [CrossRef]
- Narayana, K.J.; Gupta Burela, R. , A Review of Recent Research on Multifunctional Composite Materials and Structures with Their Applications. Mater. Today: Proc. 2018, 5, 5580–5590. [Google Scholar] [CrossRef]
- Rahal, M.; Atassi, Y.; Ali, N.N.; Alghoraibi, I. , Novel Microwave Absorbers Based on Polypyrrole and Carbon Quantum Dots. Mater. Chem. Phys. 2020, 255, 123491. [Google Scholar] [CrossRef]
- Wei, Y.; Zhang, L.; Gong, C.; Liu, S.; Zhang, M.; Shi, Y.; Zhang, J. , Fabrication of Tin/Carbon Nanofibers by Electrospinning and Their Electromagnetic Wave Absorption Properties. J. Alloys. Compounds 2018, 735, 1488–1493. [Google Scholar] [CrossRef]
- Bhaumik, M.; Maity, A.; Mahule, T.S.; Srinivasu, V.V. , Low Field Microwave Absorption in Iron Nanoparticles Embedded Polyaniline Nanofibers Composite. Synth. Metals 2019, 249, 63–68. [Google Scholar] [CrossRef]
- Ghasemi, A.; Reza Gordani, G.; Ghasemi, E. , Co2W Hexaferrite Nanoparticles-Carbon Nanotube Microwave Absorbing Nanocomposite. J. Magn. Magn. Mater. 2019, 469, 391–397. [Google Scholar] [CrossRef]
- Peng, K.; Wang, R.; Chen, H.; Li, S.; Huang, F.; Wang, B.; Zhang, H. , Prussian Blue Derived Fe/C Anchoring on Multiwalled Carbon Nanotubes Forming Chain-Like Efficient Electromagnetic Wave Absorbent. J. Electron. Mater. 2020, 49, 6631–6642. [Google Scholar] [CrossRef]
- Yusuf, J.Y.; Soleimani, H.; Noorhana, y.; Sanusi, Y.K.; Adebayo, L.L.; Sikiru, S.; Wahaab, F.A. , Recent Advances and Prospect of Cobalt Based Microwave Absorbing Materials. Ceram. Int. 2020, 46, 26466–26485. [Google Scholar] [CrossRef]
- Han, C.; Zhang, M.; Cao, W.Q.; Cao, M.S. , Electrospinning and In-Situ Hierarchical Thermal Treatment to Tailor C-NiCo2O4 Nanofibers for Tunable Microwave Absorption. Carbon 2021, 171, 953–962. [Google Scholar] [CrossRef]
- Wang, Z.; Bi, H.; Wang, P.; Wang, M.; Liu, Z.; Shen, L.; Liu, X. , Magnetic and Microwave Absorption Properties of Self-Assemblies Composed of Core-Shell Cobalt-Cobalt Oxide Nanocrystals. Phys. Chem. Chem. Phys. 2015, 17, 3796–801. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Lv, H.; Wu, R. , Rational Construction of Graphene Oxide with Mof-Derived Porous NiFe@C Nanocubes for High-Performance Microwave Attenuation. Nano Res. 2016, 9, 3671–3682. [Google Scholar] [CrossRef]
- Yan, L.; Zhang, M.; Zhao, S.; Sun, T.; Zhang, B.; Cao, M.; Qin, Y. , Wire-in-Tube ZnO@Carbon by Molecular Layer Deposition: Accurately Tunable Electromagnetic Parameters and Remarkable Microwave Absorption. Chem. Eng. J. 2020, 382, 122860. [Google Scholar] [CrossRef]
- Feng, A.; Ma, M.; Jia, Z.; Zhang, M.; Wu, G. , Fabrication of NiFe2O4@Carbon Fiber Coated with Phytic Acid-Doped Polyaniline Composite and Its Application as an Electromagnetic Wave Absorber. RSC Adv. 2019, 9, 25932–25941. [Google Scholar] [CrossRef]
- Ma, M.; Li, W.; Tong, Z.; Huang, W.; Wang, R.; Lyu, P.; Ma, Y.; Wu, G.; Yan, Q.; Li, P.; Yao, X. , Facile Synthesis of the One-Dimensional Flower-Like Yolk-Shell Fe3O4@SiO2@NiO Nanochains Composites for High-Performance Microwave Absorption. J. Alloys Compounds 2020, 843, 155199. [Google Scholar] [CrossRef]
- Ma, M.; Li, W.; Tong, Z.; Ma, Y.; Bi, Y.; Liao, Z.; Zhou, J.; Wu, G.; Li, M.; Yue, J.; Song, X.; Zhang, X. , NiCo2O4 Nanosheets Decorated on One-Dimensional ZnFe2O4@SiO2@C Nanochains with High-Performance Microwave Absorption. J Colloid Interface Sci, 2020, 578, 58–68. [Google Scholar] [CrossRef]
- Li, Q.; Zhao, Y.; Li, X.; Wang, L.; Li, X.; Zhang, J.; Che, R. , MOF Induces 2D GO to Assemble into 3D Accordion-Like Composites for Tunable and Optimized Microwave Absorption Performance. Small 2020, 16, 2003905. [Google Scholar] [CrossRef]
- Anasori, B.; Lukatskaya, M.R.; Gogotsi, Y. , 2D Metal Carbides and Nitrides (Mxenes) for Energy Storage. Nat. Rev. Mater. 2017; 2, 16098. [Google Scholar]
- Xiang, Z.; Shi, Y.; Zhu, X.; Cai, L.; Lu, W. , Flexible and Waterproof 2D/1D/0D Construction of Mxene-Based Nanocomposites for Electromagnetic Wave Absorption, Emi Shielding, and Photothermal Conversion. Nanomicro. Lett. 2021, 13, 150. [Google Scholar] [CrossRef] [PubMed]
- Guan, X.; Yang, Z.; Zhou, M.; Yang, L.; Peymanfar, R.; Aslibeiki, B.; Ji, G. , 2D Mxene Nanomaterials: Synthesis, Mechanism, and Multifunctional Applications in Microwave Absorption. Small Struct. 2022, 3, 2200102. [Google Scholar] [CrossRef]
- Qiao, J.; Zhang, X.; Xu, D.; Kong, L.; Lv, L.; Yang, F.; Wang, F.; Liu, W.; Liu, J. , Design and Synthesis of TiO2/Co/Carbon Nanofibers with Tunable and Efficient Electromagnetic Absorption. Chem. Eng. J. 2020, 380, 122591. [Google Scholar] [CrossRef]
- Shu, R.; Zhang, G.; Wang, X.; Gao, X.; Wang, M.; Gan, Y.; Shi, J.; He, J. , Fabrication of 3D Net-Like Mwcnts/ZnFe2O4 Hybrid Composites as High-Performance Electromagnetic Wave Absorbers. Chem. Eng. J. 2018, 337, 242–255. [Google Scholar] [CrossRef]
- Li, B.; Mao, B.; Wang, X.; He, T.; Huang, H. , Novel, Hierarchical Sic Nanowire-Reinforced SiC/Carbon Foam Composites: Lightweight, Ultrathin, and Highly Efficient Microwave Absorbers. J. Alloys Compounds 2020, 829, 154609. [Google Scholar] [CrossRef]
- Zhang, Y.; Huang, Y.; Zhang, T.; Chang, H.; Xiao, P.; Chen, H.; Huang, Z.; Chen, Y. , Broadband and Tunable High-Performance Microwave Absorption of an Ultralight and Highly Compressible Graphene Foam. Adv. Mater. 2015, 27, 2049–2053. [Google Scholar] [CrossRef]
- Chen, H.; Ma, W.; Huang, Z.; Zhang, Y.; Huang, Y.; Chen, Y. , Graphene-Based Materials toward Microwave and Terahertz Absorbing Stealth Technologies. Adv. Opt. Mater. 2019, 7, 1801318. [Google Scholar] [CrossRef]
- Cao, M.; Han, C.; Wang, X.; Zhang, M.; Zhang, Y.; Shu, J.; Yang, H.; Fang, X.; Yuan, J. , Graphene Nanohybrids: Excellent Electromagnetic Properties for the Absorbing and Shielding of Electromagnetic Waves. J. Mater. Chem. C 2018, 6, 4586–4602. [Google Scholar] [CrossRef]
- Wang, L.; Li, X.; Li, Q.; Yu, X.; Zhao, Y.; Zhang, J.; Wang, M.; Che, R. , Oriented Polarization Tuning Broadband Absorption from Flexible Hierarchical Zno Arrays Vertically Supported on Carbon Cloth. Small 2019, 15, e1900900. [Google Scholar] [CrossRef]
- She, W.; Bi, H.; Wen, Z.; Liu, Q.; Zhao, X.; Zhang, J.; Che, R. , Tunable Microwave Absorption Frequency by Aspect Ratio of Hollow Polydopamine@Alpha-MnO2 Microspindles Studied by Electron Holography. ACS Appl. Mater. Interfaces 2016, 8, 9782–9789. [Google Scholar] [CrossRef]
- Suresh, R.; Ponnuswamy, V.; Mariappan, R. , Effect of Annealing Temperature on the Microstructural, Optical and Electrical Properties of CeO2 Nanoparticles by Chemical Precipitation Method. Appl. Surf. Sci. 2013, 273, 457–464. [Google Scholar] [CrossRef]
- Wu, Y.; Shu, R.; Zhang, J.; Sun, R.; Chen, Y.; Yuan, J. , Oxygen Vacancy Defects Enhanced Electromagnetic Wave Absorption Properties of 3D Net-Like Multi-Walled Carbon Nanotubes/Cerium Oxide Nanocomposites. J. Alloys Compounds 2019, 785, 616–626. [Google Scholar] [CrossRef]
- Xu, L.; Huang, W.Q.; Wang, L.L.; Huang, G.F. , Interfacial Interactions of Semiconductor with Graphene and Reduced Graphene Oxide: CeO2 as a Case Study. ACS Appl. Mater. Interfaces 2014, 6, 20350–20357. [Google Scholar] [CrossRef]
- Ma, J.; Li, W.; Fan, Y.; Yang, J.; Yang, Q.; Wang, J.; Luo, W.; Zhou, W.; Nomura, N.; Wang, L.; Jiang, W. , Ultrathin and Light-Weight Graphene Aerogel with Precisely Tunable Density for Highly Efficient Microwave Absorbing. ACS Appl. Mater. Interfaces 2019, 11, 46386–46396. [Google Scholar] [CrossRef]
- Wu, G.; Sun, S.; Zhu, X.; Ma, Z.; Zhang, Y.; Bao, N. , Microfluidic Fabrication of Hierarchical-Ordered ZIF-L(Zn)@Ti3C2Tx Core-Sheath Fibers for High-Performance Asymmetric Supercapacitors. Angew. Chem. Int. Ed. 2022, 61, e202115559. [Google Scholar] [CrossRef]
- Zhou, Z.; Li, P.; Man, Z.; Zhu, X.; Ye, S.; Lu, W.; Wu, G.; Chen, W. , Multiscale Dot-Wire-Sheet Heterostructured Nitrogen-Doped Carbon Dots-Ti3C2Tx/Silk Nanofibers for High-Performance Fiber-Shaped Supercapacitors. Angew. Chem. Int. Ed. 2023, 62, e202301618. [Google Scholar] [CrossRef]
- Wu, G.; Ma, Z.; Wu, X.; Zhu, X.; Man, Z.; Lu, W.; Xu, J. , Interfacial Polymetallic Oxides and Hierarchical Porous Core-Shell Fibres for High Energy-Density Electrochemical Supercapacitors. Angew. Chem. Int. Ed. 2022, 61, e202203765. [Google Scholar] [CrossRef]
- Wu, X.; Zhu, X.; Tao, H.; Wu, G.; Xu, J.; Bao, N. , Covalently Aligned Molybdenum Disulfide-Carbon Nanotubes Heteroarchitecture for High-Performance Electrochemical Capacitors. Angew. Chem. Int. Ed. 2021, 60, 21295–21303. [Google Scholar] [CrossRef] [PubMed]
- Qing, Y.; Zhou, W.; Luo, F.; Zhu, D. , Titanium Carbide (Mxene) Nanosheets as Promising Microwave Absorbers. Ceram. Int. 2016, 42, 16412–16416. [Google Scholar] [CrossRef]
- Deng, B.; Liu, Z.; Pan, F.; Xiang, Z.; Zhang, X.; Lu, W. , Electrostatically Self-Assembled Two-Dimensional Magnetized Mxene/Hollow Fe3O4 Nanoparticle Hybrids with High Electromagnetic Absorption Performance and Improved Impendence Matching. J. Mater. Chem. A 2021, 9, 3500–3510. [Google Scholar] [CrossRef]
- Cui, Y.; Liu, Z.; Zhang, Y.; Liu, P.; Ahmad, M.; Zhang, Q.; Zhang, B. , Wrinkled Three-Dimensional Porous Mxene/Ni Composite Microspheres for Efficient Broadband Microwave Absorption. Carbon 2021, 181, 58–68. [Google Scholar] [CrossRef]
- Cai, L.; Pan, F.; Zhu, X.; Dong, Y.; Shi, Y.; Xiang, Z.; Cheng, J.; Jiang, H.; Shi, Z.; Lu, W. , Etching Engineering and Electrostatic Self-Assembly of N-Doped Mxene/Hollow Co-ZIF Hybrids for High-Performance Microwave Absorbers. Chem. Eng. J. 2022, 434, 133865. [Google Scholar] [CrossRef]
- Chen, F.; Zhang, S.; Ma, B.; Xiong, Y.; Luo, H.; Cheng, Y.; Li, X.; Wang, X.; Gong, R. , Bimetallic CoFe-MOF@ Ti3C2Tx Mxene Derived Composites for Broadband Microwave Absorption. Chem. Eng. J. 2022, 431, 134007. [Google Scholar] [CrossRef]
- Liang, L.; Zhang, Z.; Song, F.; Zhang, W.; Li, H.; Gu, J.; Liu, Q.; Zhang, D. , Ultralight, Flexible Carbon Hybrid Aerogels from Bacterial Cellulose for Strong Microwave Absorption. Carbon 2020, 162, 283–291. [Google Scholar] [CrossRef]
- Li, X.; Yin, X.; Song, C.; Han, M.; Xu, H.; Duan, W.; Cheng, L.; Zhang, L. , Self-Assembly Core-Shell Graphene-Bridged Hollow Mxenes Spheres 3D Foam with Ultrahigh Specific Em Absorption Performance. Adv. Funct. Mater. 2018, 28, 1803938. [Google Scholar] [CrossRef]
- Shui, W.; Li, J.; Wang, H.; Xing, Y.; Li, Y.; Yang, Q.; Xiao, X.; Wen, Q.; Zhang, H. , Ti3C2Tx Mxene Sponge Composite as Broadband Terahertz Absorber. Adv. Opt. Mater. 2020, 8, 2001120. [Google Scholar] [CrossRef]
- Zhang, X.J.; Zhu, J.Q.; Yin, P.G.; Guo, A.P.; Huang, A.P.; Guo, L.; Wang, G.S. , Tunable High-Performance Microwave Absorption of Co1-XS Hollow Spheres Constructed by Nanosheets within Ultralow Filler Loading. Adv. Funct. Mater. 2018, 28, 1800761. [Google Scholar] [CrossRef]
- Liu, Q.; Cao, Q.; Bi, H.; Liang, C.; Yuan, K.; She, W.; Yang, Y.; Che, R. , CoNi@SiO2@TiO2 and CoNi@Air@TiO2 Microspheres with Strong Wideband Microwave Absorption. Adv. Mater. 2016, 28, 486–490. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.; Zheng, Y.; Liang, X.; Huang, Q.; Xu, X.; Ding, P.; Liu, J.; Wang, D. , Mos2 Nanostructures with the 1T Phase for Electromagnetic Wave Absorption. ACS Appl. Nano Mater. 2021, 4, 11042–11051. [Google Scholar] [CrossRef]
- Wu, M.; Liang, X.; Zheng, Y.; Qian, C.; Wang, D. , Excellent Microwave Absorption Performances Achieved by Optimizing Core@Shell Structures of Fe3O4@1T/2H-MoS2 Composites. J. Alloys Compounds 2022, 910, 164881. [Google Scholar] [CrossRef]
- Man, Z.; Li, P.; Zhou, D.; Wang, Y.; Liang, X.; Zang, R.; Li, P.; Zuo, Y.; Lam, Y.M.; Wang, G. , Two Birds with One Stone: FeS2@C Yolk-Shell Composite for High-Performance Sodium-Ion Energy Storage and Electromagnetic Wave Absorption. Nano Lett. 2020, 20, 3769–3777. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Zhang, H.; Cheng, J.; Raza, H.; Liu, T.; Liu, B.; Ba, X.; Zheng, G.; Chen, G.; Cao, M. , Customizing Coaxial Stacking VS2 Nanosheets for Dual-Band Microwave Absorption with Superior Performance in the C- and Ku-Bands. J.Mater. Chem. C 2020, 8, 5923–5933. [Google Scholar] [CrossRef]
- Zen. H.; Wang, H.; Huang, Z.; Zheng, Q.; Zheng, G.; Zhang, D.; Che, R.; Cao, M., Initiating Vb-Group Laminated NbS2 Electromagnetic Wave Absorber toward Superior Absorption Bandwidth as Large as 6.48 Ghz through Phase Engineering Modulation. Adv. Funct. Mater. 2022, 32, 2108194. [Google Scholar] [CrossRef]
- Wu, M.; Wang, H.; Liang, X.; Wang, D. , Efficient and Tunable Microwave Absorbers of the Flower-Like 1T/2H-MoS2 with Hollow Nanostructures. J. Alloys Compounds 2023, 933, 167763. [Google Scholar] [CrossRef]
- Wu, M.; Wang, H.; Liang, X.; Wang, D. , Flower-Like 1T/2H-MoS2@A-Fe2O3 with Enhanced Electromagnetic Wave Absorption Capabilities in the Low Frequency Range. J. Mater. Chem. C 2023, 11, 2897–2910. [Google Scholar] [CrossRef]
- Wu, M.; Wang, H.; Liang, X.; Wang, D. , Optimized Electromagnetic Wave Absorption Ofalpha-Fe2O3@MoS2 Nanocomposites with Core-Shell Structure. Nanotechnology 2023, 34, 145703. [Google Scholar] [CrossRef]









Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
