Submitted:
06 June 2023
Posted:
07 June 2023
You are already at the latest version
Abstract
Keywords:
1. Fischer-Tropsch synthesis
2. Catalysts
3. Fe-based catalysts
4. Product distribution
5. Reaction mechanism
6. Fe carburization kinetics and C hydrogenation mechanisms on Fe-carbide
7. Promoters
8. Deactivation of Fe-based catalysts
9. Structure-activity relationships
10. Summary and outlook
Funding
Conflicts of Interest
References
- F. Fischer, H. F. Fischer, H. Tropsch, The Synthesis of Petroleum at Atmospheric Pressures from Gasification Products of Coal, Brennst. Chem. 7 (1926) 97-104.
- F. Fischer, H. F. Fischer, H. Tropsch, Development of Noval Catalysts for Fischer-Tropsch Synthesis, Brennst. Chem. 4 (1923) 276-285.
- Office of Fossil Energy and Carbon Management, 2000, https://www.energy.gov/fecm/early-days-coal-research.
- Zhang, Q.; Kang, J.; Wang, Y. Development of Novel Catalysts for Fischer–Tropsch Synthesis: Tuning the Product Selectivity. ChemCatChem 2010, 2, 1030–1058. [Google Scholar] [CrossRef]
- E. de Smit, B. M. E. de Smit, B. M. Weckhuysen, The Renaissance of Iron-based Fischer-Tropsch Synthesis: on the Multifaceted Catalyst Deactivation Behaviour, Chem. Soc. Rev., 37 (2008) 2758-2781.
- D. L. King, A. D. L. King, A. de Klerk, Overview of Feed-to-Liquid (XTL) Conversion, ACS Symp. Ser., 1084 (2011) 1-24.
- Hao, X.; Dong, G.; Yang, Y.; Xu, Y.; Li, Y. Coal to Liquid (CTL): Commercialization Prospects in China. Chem. Eng. Technol. 2007, 30, 1157–1165. [Google Scholar] [CrossRef]
- Y. Cao, Z. Y. Cao, Z. Gao, J. Jin, H. Zhou, M. Cohron, H. Zhao, H. Liu, W. Pan, Synthesis Gas Production with an Adjustable H2/CO Ratio through the Coal Gasification Process: Effects of Coal Ranks And Methane Addition, Energy Fuels, 22 (2008) 1720-1730.
- P. Wang, W. P. Wang, W. Chen, F. K. Chiang, A. I. Dugulan, Y. Song, R. Pestman, K. Zhang, J. Yao, B. Feng, P. Miao, W. Xu, E. J. M. Hensen, Synthesis of Stable and Low-CO2 Selective Iron carbide Fischer-Tropsch Catalysts, Sci. Adv., 4 (2018) eaau2947.
- M. E. Dry, The Fischer-Tropsch process: 1950-2000, Catal. Today, 71 (2002) 227-241.
- Dry, M.E.; Hoogendoorn, J.C. Technology of the Fischer-Tropsch Process. Catal. Rev. 1981, 23, 265–278. [Google Scholar] [CrossRef]
- Steynberg, A.; Espinoza, R.; Jager, B.; Vosloo, A. High temperature Fischer–Tropsch synthesis in commercial practice. Appl. Catal. A: Gen. 1999, 186, 41–54. [Google Scholar] [CrossRef]
- M. E. Dry, Practical and Theoretical Aspects of the Ccatalytic Fischer-Tropsch Process, Appl. Catal. A: Gen., 138 (1996) 319-344.
- Karre, A.V.; Kababji, A.; Kugler, E.L.; Dadyburjor, D.B. Effect of addition of zeolite to iron-based activated-carbon-supported catalyst for Fischer–Tropsch synthesis in separate beds and mixed beds. Catal. Today 2012, 198, 280–288. [Google Scholar] [CrossRef]
- Martínez, A.; López, C. The influence of ZSM-5 zeolite composition and crystal size on the in situ conversion of Fischer–Tropsch products over hybrid catalysts. Appl. Catal. A: Gen. 2005, 294, 251–259. [Google Scholar] [CrossRef]
- Tobisch, S.; Ziegler, T. Catalytic Oligomerization of Ethylene to Higher Linear α-Olefins Promoted by Cationic Group 4 Cyclopentadienyl-Arene Active Catalysts: Toward the Computational Design of Zirconium- and Hafnium-Based Ethylene Trimerization Catalysts. Organometallics 2004, 24, 256–265. [Google Scholar] [CrossRef]
- Galvis, H.M.T.; Bitter, J.H.; Khare, C.B.; Ruitenbeek, M.; Dugulan, A.I.; de Jong, K.P. Supported Iron Nanoparticles as Catalysts for Sustainable Production of Lower Olefins. Science 2012, 335, 835–838. [Google Scholar] [CrossRef]
- Y. Xu, X. Y. Xu, X. Li, J. Gao, J. Wang, G. Ma, X. Wen, Y. Yang, Y. Li, M. Ding, A Hydrophobic FeMn@Si Catalyst Increases Olefins from Syngas by Suppressing C1 by-products, Science, 371 (2021) 610-613.
- J. Xie, P. P. J. Xie, P. P. Palalanen, T. W. van Deelen, B. M. Wechhuysen, M. J. Louwerse, K. P. de Jong, Promoted Cobalt Metal Catalysts Suitable for the Production of Lower Olefins from Natural Gas, Nat. Commun., 10 (2019) 167.
- Jiao, F.; Li, J.; Pan, X.; Xiao, J.; Li, H.; Ma, H.; Wei, M.; Pan, Y.; Zhou, Z.; Li, M.; et al. Selective conversion of syngas to light olefins. Science 2016, 351, 1065–1068. [Google Scholar] [CrossRef]
- Cheng, K.; Gu, B.; Liu, X.; Kang, J.; Zhang, Q.; Wang, Y. Direct and Highly Selective Conversion of Synthesis Gas into Lower Olefins: Design of a Bifunctional Catalyst Combining Methanol Synthesis and Carbon–Carbon Coupling. Angew. Chem. Int. Ed. 2016, 55, 4725–4728. [Google Scholar] [CrossRef]
- Belov, G.P. Tetramerization of ethylene to octene-1 (a review). Pet. Chem. 2012, 52, 139–154. [Google Scholar] [CrossRef]
- Filot, I.A.W.; van Santen, R.A.; Hensen, E.J.M. Quantum chemistry of the Fischer–Tropsch reaction catalysed by a stepped ruthenium surface. Catal. Sci. Technol. 2014, 4, 3129–3140. [Google Scholar] [CrossRef]
- Zhao, Z.-J.; Liu, S.; Zha, S.; Cheng, D.; Studt, F.; Henkelman, G.; Gong, J. Theory-guided design of catalytic materials using scaling relationships and reactivity descriptors. Nat. Rev. Mater. 2019, 4, 792–804. [Google Scholar] [CrossRef]
- J. A. van Bokhoven, J. T. J. A. van Bokhoven, J. T. Miller, d Electron Density and Reactivity of the d Band as a Function of Particle Size in Supported Gold Catalysts, J. Phys. Chem. C, 111 (2007) 9245-9249.
- Schulz, H. Short history and present trends of Fischer–Tropsch synthesis. Appl. Catal. A Gen. 1999, 186, 3–12. [Google Scholar] [CrossRef]
- W. Ma, A. K. W. Ma, A. K. Dalai, Effects of Structure and Particle Size of Iron, Cobalt and Ruthenium Catalysts on Fischer-Tropsch Synthesis, Reactions, 2 (2021) 62-77.
- G. P. van der Laan, A. A. C. M. G. P. van der Laan, A. A. C. M. Beenackers, Kinetics and Selectivity of the Fischer-Tropsch Synthesis: A Literature Review, Catal. Rev., 41 (1999) 255-318.
- Khodakov, A.Y.; Chu, W.; Fongarland, P. Advances in the Development of Novel Cobalt Fischer−Tropsch Catalysts for Synthesis of Long-Chain Hydrocarbons and Clean Fuels. Chem. Rev. 2007, 107, 1692–1744. [Google Scholar] [CrossRef] [PubMed]
- H. Schulz, Comparing Fischer-Tropsch Synthesis on Iron-and Cobalt Catalysts: The Dynamics of Structure and Function, Fischer-Tropsch Sythesis, Catalysts and Catalysis, 163 (2007) 177-199.
- C. Yang, B. C. Yang, B. Zhao, R. Gao, S. Yao, P. Zhai, S. Li, J. Yu, Y. Hou, D. Ma, Construction of Synergistic Fe5C2/Co Heterostructured Nanoparticles as an Enhanced Low Temperature Fischer-Tropsch Synthesis Catalyst, ACS Catal., 7 (2017) 5661-5667.
- S. M. Ismail, M. S. M. Ismail, M. Casavola, B. Liu, A. Gloter, T. W. van Deelen, M. Versluijs, J. D. Meeldijk, O. Stephan, ́ K. P. de Jong, F. M. F. de Groot, Atomic-Scale Investigation of the Structural and Electronic Properties of Cobalt-Iron Bimetallic Fischer-Tropsch Catalysts, ACS Catal., 9 (2019) 7998-8011.
- V. R. Calderone, N. R. V. R. Calderone, N. R. Shiju, D. C. Ferre´, G. Rothenberg, Bimetallic catalysts for the Fischer-Tropsch reaction, Green Chem., 13 (2011) 1950-1959.
- Zhang, J.; Abbas, M.; Chen, J. The evolution of Fe phases of a fused iron catalyst during reduction and Fischer–Tropsch synthesis. Catal. Sci. Technol. 2017, 7, 3626–3636. [Google Scholar] [CrossRef]
- Espinoza, R.; Steynberg, A.; Jager, B.; Vosloo, A. Low temperature Fischer–Tropsch synthesis from a Sasol perspective. Appl. Catal. A: Gen. 1999, 186, 13–26. [Google Scholar] [CrossRef]
- E. de Smit, F. E. de Smit, F. Cinquini, A. M. Beale, O. V. Safonova, W. van Beek, P. Sautet, B. M. Weckhuysen, Stability and Reactivity of ϵ-χ-θ Iron Carbide Catalyst Phases in Fischer-Tropsch Synthesis: Controlling μC, J. Am. Chem. Soc., 132 (2010) 14928-14941.
- J. W. Niemantsverdriet, A. M. J. W. Niemantsverdriet, A. M. van der Kraan, Behavior of Metallic Iron Catalysts during Fischer-Tropsch Synthesis Studied with Mössbauer Spectroscopy, X-ray Diffraction, Carbon Content Determination, and Reaction Kinetic Measurements, J. Phys. Chem. B, 84 (1980) 3363-3370.
- Chen, W.; Fan, Z.; Pan, X.; Bao, X. Effect of Confinement in Carbon Nanotubes on the Activity of Fischer−Tropsch Iron Catalyst. J. Am. Chem. Soc. 2008, 130, 9414–9419. [Google Scholar] [CrossRef]
- Janbroers, S.; Louwen, J.; Zandbergen, H.; Kooyman, P. Insights into the nature of iron-based Fischer–Tropsch catalysts from quasi in situ TEM-EELS and XRD. J. Catal. 2009, 268, 235–242. [Google Scholar] [CrossRef]
- D. M. Shroff, A. K. D. M. Shroff, A. K. Datye, The Importance of Passivation in the Study of Iron Fischer-Tropsch Catalysts, Catal. Lett., 37 (1996) 101-106.
- Moyer, M.M.; Karakaya, C.; Kee, R.J.; Trewyn, B.G. In Situ Formation of Metal Carbide Catalysts. ChemCatChem 2017, 9, 3090–3101. [Google Scholar] [CrossRef]
- Y. Zhang, N. Y. Zhang, N. Sirimanothan, R. J. O’Brien, H. H. Hamdeh, B. H. Davis, Study of Deactivation of Iron-Based Fischer-Tropsch Synthesis Catalysts, Stud. Surf. Sci. Catal.,139 (2001) 125-132.
- R. J. P. Broos, B. R. J. P. Broos, B. Zijlstra, I. A. W. Filot, E. J. M. Hensen, Quantum-Chemical DFT Study of Direct and H- and C-Assisted CO Dissociation on the χ-Fe5C2 Hägg Carbide, J. Phys. Chem. C, 122 (2018) 9929-9938.
- Liu, X.-W.; Cao, Z.; Zhao, S.; Gao, R.; Meng, Y.; Zhu, J.-X.; Rogers, C.; Huo, C.-F.; Yang, Y.; Li, Y.-W.; et al. Iron Carbides in Fischer–Tropsch Synthesis: Theoretical and Experimental Understanding in Epsilon-Iron Carbide Phase Assignment. J. Phys. Chem. C 2017, 121, 21390–21396. [Google Scholar] [CrossRef]
- K. Xu, B. K. Xu, B. Sun, J. Lin, W. Wen, Y. Pei, S. Yan, M. Qiao, X. Zhang, B. Zong, ε-Iron Carbide as a Low-Temperature Fischer-Tropsch Synthesis Catalyst, Nat. Commun., 5 (2014) 5783.
- Bukur, D.; Okabe, K.; Rosynek, M.; Li, C.; Wang, D.; Rao, K.; Huffman, G. Activation Studies with a Precipitated Iron Catalyst for Fischer-Tropsch Synthesis: I. Characterization Studies. J. Catal. 1995, 155, 353–365. [Google Scholar] [CrossRef]
- Jung, H.; Thomson, W.J. Dynamic X-ray diffraction study of an unsupported iron catalyst in Fischer-Tropsch synthesis. J. Catal. 1992, 134, 654–667. [Google Scholar] [CrossRef]
- Nagakura, S. Study of Metallic Carbides by Electron Diffraction Part III. Iron Carbides. J. Phys. Soc. Jpn. 1959, 14, 186–195. [Google Scholar] [CrossRef]
- Wezendonk, T.A.; Santos, V.P.; Nasalevich, M.A.; Warringa, Q.S.; Dugulan, A.I.; Chojecki, A.; Koeken, A.C.J.; Ruitenbeek, M.; Meima, G.R.; Islam, H.-U.; et al. Elucidating the Nature of Fe Species during Pyrolysis of the Fe-BTC MOF into Highly Active and Stable Fischer–Tropsch Catalysts. ACS Catal. 2016, 6, 3236–3247. [Google Scholar] [CrossRef]
- Königer, A.; Hammerl, C.; Zeitler, M.; Rauschenbach, B. Formation of metastable iron carbide phases after high-fluence carbon ion implantation into iron at low temperatures. Phys. Rev. B 1997, 55, 8143–8147. [Google Scholar] [CrossRef]
- Herranz, T.; Rojas, S.; Perezalonso, F.; Ojeda, M.; Terreros, P.; Fierro, J.L.G. Genesis of iron carbides and their role in the synthesis of hydrocarbons from synthesis gas. J. Catal. 2006, 243, 199–211. [Google Scholar] [CrossRef]
- de Smit, E.; Beale, A.M.; Nikitenko, S.; Weckhuysen, B.M. Local and long range order in promoted iron-based Fischer–Tropsch catalysts: A combined in situ X-ray absorption spectroscopy/wide angle X-ray scattering study. J. Catal. 2009, 262, 244–256. [Google Scholar] [CrossRef]
- Galuszka, J.; Sang, T.; Sawicki, J. Study of carbonaceous deposits on fischer-tropsch oxide-supported iron catalysts. J. Catal. 1992, 136, 96–109. [Google Scholar] [CrossRef]
- Hazemann, P.; Decottignies, D.; Maury, S.; Humbert, S.; Meunier, F.C.; Schuurman, Y. Selectivity loss in Fischer-Tropsch synthesis: The effect of carbon deposition. J. Catal. 2021, 401, 7–16. [Google Scholar] [CrossRef]
- Q. Chang, C. Q. Chang, C. Zhang, C. Liu, Y. Wei, A. V. Cheruvathur, A. I. Dugulan, J. W. Niemantsverdriet, X. Liu, Y. He, M. Qing, L. Zheng, Y. Yun, Y. Yang, Y. Li, Relationship between Iron Carbide Phases (ε-Fe2C, Fe7C3, and χ-Fe5C2) and Catalytic Performances of Fe/SiO2 Fischer-Tropsch Catalysts, ACS Catal., 8 (2018) 3304-3316.
- L. Niu, X. L. Niu, X. Liu, J. Liu, X. Liu, X. Wen, Y. Yang, J. Xu, Y. Li, Tuning Carburization Behaviors of Metallic Iron Catalysts with Potassium Promoter and CO/syngas/C2H4/C2H2 Gases, J. Catal., 371 (2019) 333-345.
- Chun, D.H.; Park, J.C.; Hong, S.Y.; Lim, J.T.; Kim, C.S.; Lee, H.-T.; Yang, J.-I.; Hong, S.; Jung, H. Highly selective iron-based Fischer–Tropsch catalysts activated by CO2-containing syngas. J. Catal. 2014, 317, 135–143. [Google Scholar] [CrossRef]
- Lu, F.; Chen, X.; Lei, Z.; Wen, L.; Zhang, Y. Revealing the activity of different iron carbides for Fischer-Tropsch synthesis. Appl. Catal. B: Environ. 2020, 281, 119521. [Google Scholar] [CrossRef]
- Wezendonk, T.A.; Sun, X.; Dugulan, A.I.; van Hoof, A.J.; Hensen, E.J.; Kapteijn, F.; Gascon, J. Controlled formation of iron carbides and their performance in Fischer-Tropsch synthesis. J. Catal. 2018, 362, 106–117. [Google Scholar] [CrossRef]
- Zhao, H.; Liu, J.-X.; Yang, C.; Yao, S.; Su, H.-Y.; Gao, Z.; Dong, M.; Wang, J.; Rykov, A.I.; Wang, J.; et al. Synthesis of Iron-Carbide Nanoparticles: Identification of the Active Phase and Mechanism of Fe-Based Fischer–Tropsch Synthesis. CCS Chem. 2021, 3, 2712–2724. [Google Scholar] [CrossRef]
- Moodley, P.; Scheijen, F.; Niemantsverdriet, J.; Thüne, P. Iron oxide nanoparticles on flat oxidic surfaces—Introducing a new model catalyst for Fischer–Tropsch catalysis. Catal. Today 2010, 154, 142–148. [Google Scholar] [CrossRef]
- M. Shipilin, D. M. Shipilin, D. Degerman, P. Lömker, C. M. Goodwin, G. L. S. Rodrigues, M. Wagstaffe, J. Gladh, H. Wang, A. Stierle, C. Schlueter, L. G. M. Pettersson, A. Nilsson, P. Amann, In Situ Surface-Sensitive Investigation of Multiple Carbon Phases on Fe(110) in the Fischer-Tropsch Synthesis, ACS Catal., 12 (2022) 7609-7621.
- Lyu, S.; Wang, L.; Li, Z.; Yin, S.; Chen, J.; Zhang, Y.; Li, J.; Wang, Y. Stabilization of ε-iron carbide as high-temperature catalyst under realistic Fischer–Tropsch synthesis conditions. Nat. Commun. 2020, 11, 1–8. [Google Scholar] [CrossRef] [PubMed]
- C. Yang, H. C. Yang, H. Zhao, Y. Hou, D. Ma, Fe5C2 Nanoparticles: A Facile Bromide-Induced Synthesis and as an Active Phase for Fischer-Tropsch Synthesis, J. Am. Chem. Soc., 134 (2012) 15814-15821.
- Schulz, H. Major and Minor Reactions in Fischer–Tropsch Synthesis on Cobalt Catalysts. Top. Catal. 2003, 26, 73–85. [Google Scholar] [CrossRef]
- Chen, W.; Kimpel, T.F.; Song, Y.; Chiang, F.-K.; Zijlstra, B.; Pestman, R.; Wang, P.; Hensen, E.J.M. Influence of Carbon Deposits on the Cobalt-Catalyzed Fischer–Tropsch Reaction: Evidence of a Two-Site Reaction Model. ACS Catal. 2018, 8, 1580–1590. [Google Scholar] [CrossRef]
- Zijlstra, B.; Broos, R.J.; Chen, W.; Filot, I.A.; Hensen, E.J. First-principles based microkinetic modeling of transient kinetics of CO hydrogenation on cobalt catalysts. Catal. Today 2019, 342, 131–141. [Google Scholar] [CrossRef]
- Filot, I.A.W.; van Santen, R.A.; Hensen, E.J.M. The Optimally Performing Fischer–Tropsch Catalyst. Angew. Chem. Int. Ed. 2014, 53, 12746–12750. [Google Scholar] [CrossRef]
- Kuipers, E.; Vinkenburg, I.; Oosterbeek, H. Chain Length Dependence of α-Olefin Readsorption in Fischer-Tropsch Synthesis. J. Catal. 1995, 152, 137–146. [Google Scholar] [CrossRef]
- Kuipers, E.; Scheper, C.; Wilson, J.; Vinkenburg, I.; Oosterbeek, H. Non-ASF Product Distributions Due to Secondary Reactions during Fischer–Tropsch Synthesis. J. Catal. 1996, 158, 288–300. [Google Scholar] [CrossRef]
- Chen, W.; Filot, I.A.W.; Pestman, R.; Hensen, E.J.M. Mechanism of Cobalt-Catalyzed CO Hydrogenation: 2. Fischer–Tropsch Synthesis. ACS Catal. 2017, 7, 8061–8071. [Google Scholar] [CrossRef] [PubMed]
- T. Zubkov, G. A. T. Zubkov, G. A. Morgan, J. T. Yates, O. Kühlert, M. Lisowski, R. Schillinger, D. Fick, H. J. Jänsch, The Effect of Atomic Steps on Adsorption and Desorption of CO on Ru(109), Surf. Sci., 526 (2003) 57-71.
- Mitchell, W.J.; Xie, J.; Jachimowski, T.A.; Weinberg, W.H. Carbon Monoxide Hydrogenation on the Ru(001) Surface at Low Temperature Using Gas-Phase Atomic Hydrogen: Spectroscopic Evidence for the Carbonyl Insertion Mechanism on a Transition Metal Surface. J. Am. Chem. Soc. 1995, 117, 2606–2617. [Google Scholar] [CrossRef]
- Chen, W.; Zijlstra, B.; Filot, I.A.W.; Pestman, R.; Hensen, E.J.M. Mechanism of Carbon Monoxide Dissociation on a Cobalt Fischer–Tropsch Catalyst. ChemCatChem 2017, 10, 136–140. [Google Scholar] [CrossRef]
- Chai, J.; Pestman, R.; Chen, W.; Dugulan, A.I.; Feng, B.; Men, Z.; Wang, P.; Hensen, E.J. The role of H2 in Fe carburization by CO in Fischer-Tropsch catalysts. J. Catal. 2021, 400, 93–102. [Google Scholar] [CrossRef]
- T. H. Pham, X. T. H. Pham, X. Duan, G. Qian, X. Zhou, D. Chen, CO Activation Pathways of Fischer-Tropsch Synthesis on χ-Fe5C2 (510): Direct versus Hydrogen-Assisted CO Dissociation, J. Phys. Chem. C, 118 (2014) 10170-10176.
- Kummer, J.T.; DeWitt, T.W.; Emmett, P.H. Some Mechanism Studies on the Fischer-Tropsch Synthesis Using C14. J. Am. Chem. Soc. 1948, 70, 3632–3643. [Google Scholar] [CrossRef]
- Pichler, H.; Schulz, H. Neuere Erkenntnisse auf dem Gebiet der Synthese von Kohlenwasserstoffen aus CO und H2. Chem. Ing. Tech. 1970, 42, 1162–1174. [Google Scholar] [CrossRef]
- M. A. Petersen, W. J. M. A. Petersen, W. J. van Rensburg, CO Dissociation at Vacancy Sites on Hägg Iron Carbide: Direct Versus Hydrogen-Assisted Routes Investigated with DFT, Top. Catal., 58 (2015) 665-674.
- Chai, J.; Pestman, R.; Chen, W.; Donkervoet, N.; Dugulan, A.I.; Men, Z.; Wang, P.; Hensen, E.J.M. Isotopic Exchange Study on the Kinetics of Fe Carburization and the Mechanism of the Fischer–Tropsch Reaction. ACS Catal. 2022, 12, 2877–2887. [Google Scholar] [CrossRef]
- J. Schweicher, A. J. Schweicher, A. Bundhoo, A. Frennet, N. Kruse, H. Daly, F. C. Meunier, DRIFTS/MS Studies during Chemical Transients and SSITKA of the CO/H2 Reaction over Co-MgO Catalysts, J. Phys. Chem. C, 114 (2010) 2248-2255.
- van Santen, R.A.; Markvoort, A.J.; Filot, I.A.W.; Ghouri, M.M.; Hensen, E.J.M. Mechanism and microkinetics of the Fischer–Tropsch reaction. Phys. Chem. Chem. Phys. 2013, 15, 17038–17063. [Google Scholar] [CrossRef]
- M. Claeys, E. M. Claeys, E. van Steen, Basic studies, Stud. Surf. Sci. Catal., 152 (2004) Chapter 8.
- Govender, N.S.; Botes, F.G.; de Croon, M.H.; Schouten, J.C. Mechanistic pathway for C2+ hydrocarbons over an Fe/K catalyst. J. Catal. 2014, 312, 98–107. [Google Scholar] [CrossRef]
- Bhatelia, T.; Li, C.; Sun, Y.; Hazewinkel, P.; Burke, N.; Sage, V. Chain length dependent olefin re-adsorption model for Fischer–Tropsch synthesis over Co-Al2O3 catalyst. Fuel Process. Technol. 2014, 125, 277–289. [Google Scholar] [CrossRef]
- Filot, I.A.W.; van Santen, R.A.; Hensen, E.J.M. Quantum chemistry of the Fischer–Tropsch reaction catalysed by a stepped ruthenium surface. Catal. Sci. Technol. 2014, 4, 3129–3140. [Google Scholar] [CrossRef]
- Niemantsverdriet, J.; van der Kraan, A. On the time-dependent behavior of iron catalysts in Fischer-Tropsch synthesis. J. Catal. 1981, 72, 385–388. [Google Scholar] [CrossRef]
- Liu, X.; Liu, J.; Yang, Y.; Li, Y.-W.; Wen, X. Theoretical Perspectives on the Modulation of Carbon on Transition-Metal Catalysts for Conversion of Carbon-Containing Resources. ACS Catal. 2021, 11, 2156–2181. [Google Scholar] [CrossRef]
- C. Huo, Y. C. Huo, Y. Li, J. Wang, H. Jiao, Insight into CH4 Formation in Iron-Catalyzed Fischer-Tropsch Synthesis, J. Am. Chem. Soc., 131 (2009) 14713-14721.
- Wang, J.; Huang, S.; Howard, S.; Muir, B.W.; Wang, H.; Kennedy, D.F.; Ma, X. Elucidating Surface and Bulk Phase Transformation in Fischer–Tropsch Synthesis Catalysts and Their Influences on Catalytic Performance. ACS Catal. 2019, 9, 7976–7983. [Google Scholar] [CrossRef]
- S. Zhao, X. S. Zhao, X. Liu, C. Huo, Y. Li, J. Wang, H. Jiao, Determining Surface Structure and Stability of ε-Fe2C, χ-Fe5C2, θ-Fe3C and Fe4C Phases under Carburization Environment from Combined DFT and Atomistic Thermodynamic Studies, Catal. Struct. React., 1 (2014) 44-60.
- Asano, R.; Sasaki, Y.; Ishii, K. Carburization of Iron by Ar-CO-H2 at 1523 K. ISIJ Int. 2002, 42, 121–126. [Google Scholar] [CrossRef]
- Ribeiro, M.C.; Jacobs, G.; Davis, B.H.; Cronauer, D.C.; Kropf, A.J.; Marshall, C.L. Fischer−Tropsch Synthesis: An In-Situ TPR-EXAFS/XANES Investigation of the Influence of Group I Alkali Promoters on the Local Atomic and Electronic Structure of Carburized Iron/Silica Catalysts. J. Phys. Chem. C 2010, 114, 7895–7903. [Google Scholar] [CrossRef]
- Yang, Z.; Zhao, T.; Huang, X.; Chu, X.; Tang, T.; Ju, Y.; Wang, Q.; Hou, Y.; Gao, S. Modulating the phases of iron carbide nanoparticles: from a perspective of interfering with the carbon penetration of Fe@Fe3O4 by selectively adsorbed halide ions. Chem. Sci. 2016, 8, 473–481. [Google Scholar] [CrossRef]
- M. D. Shroff, D. S. M. D. Shroff, D. S. Kalakkad. K. E. Coulter, S. D. Köhler, M. S. Harrington, N. B. Jackson, A. G. Sault, A. K. Dayte, Activation of Precipitated Iron Fischer-Tropsh Synthesis Catalysts, J. Catal., 156 (1995) 185-207.
- Zhou, X.; Mannie, G.J.A.; Yin, J.; Yu, X.; Weststrate, C. (.-J.; Wen, X.-D.; Wu, K.; Yang, Y.; Li, Y.-W.; Niemantsverdriet, J.W.(. Iron Carbidization on Thin-Film Silica and Silicon: A Near-Ambient-Pressure X-ray Photoelectron Spectroscopy and Scanning Tunneling Microscopy Study. ACS Catal. 2018, 8, 7326–7333. [Google Scholar] [CrossRef]
- J. B. Butt, Carbide Phases on Iron-Based Fischer-Tropsch Synthesis Catalysis Part 1: Characterization Studies, Catal. Lett., 7 (1990) 83-106.
- Li, S.; Ding, W.; Meitzner, G.D.; Iglesia, E. Spectroscopic and Transient Kinetic Studies of Site Requirements in Iron-Catalyzed Fischer−Tropsch Synthesis. J. Phys. Chem. B 2001, 106, 85–91. [Google Scholar] [CrossRef]
- Bukur, D.B.; Lang, X.; Ding, Y. Pretreatment effect studies with a precipitated iron Fischer–Tropsch catalyst in a slurry reactor. Appl. Catal. A: Gen. 1999, 186, 255–275. [Google Scholar] [CrossRef]
- S. Li, G. D. S. Li, G. D. Meitzner. E. Iglesia, Structure and Site Evolution of Iron Oxide Catalyst Precursors during the Fischer-Tropsch Synthesis, J. Phys. Chem. B, 105 (2001) 5743-5750.
- Lohitharn, N.; Goodwin, J.G. An investigation using SSITKA of Chain growth on Fe and FeMnK Fischer–Tropsch synthesis catalysts. Catal. Commun. 2009, 10, 758–762. [Google Scholar] [CrossRef]
- S. A. Eliason, C. H. S. A. Eliason, C. H. Bartholomew, Temperature-Programmed Reaction Study of Carbon Transformations on Iron Fischer-Tropsch Catalysts during Steady-State Synthesis, Stud. Surf. Sci. Catal., 111 (1997) 517-526.
- Xu, J.; Bartholomew, C.H. Temperature-Programmed Hydrogenation (TPH) and in Situ Mössbauer Spectroscopy Studies of Carbonaceous Species on Silica-Supported Iron Fischer−Tropsch Catalysts. J. Phys. Chem. B 2004, 109, 2392–2403. [Google Scholar] [CrossRef] [PubMed]
- Govender, N.; de Croon, M.; Schouten, J. Reactivity of surface carbonaceous intermediates on an iron-based Fischer–Tropsch catalyst. Appl. Catal. A: Gen. 2010, 373, 81–89. [Google Scholar] [CrossRef]
- Ding, M.; Yang, Y.; Wu, B.; Wang, T.; Ma, L.; Xiang, H.; Li, Y. Transformation of carbonaceous species and its influence on catalytic performance for iron-based Fischer–Tropsch synthesis catalyst. J. Mol. Catal. A: Chem. 2011, 351, 165–173. [Google Scholar] [CrossRef]
- Jin, Y.; Xu, H.; Datye, A.K. Electron Energy Loss Spectroscopy (EELS) of Iron Fischer–Tropsch Catalysts. Microsc. Microanal. 2006, 12, 124–134. [Google Scholar] [CrossRef]
- Govender, N.S.; Botes, F.G.; de Croon, M.H.; Schouten, J.C. Mechanistic pathway for methane formation over an iron-based catalyst. J. Catal. 2008, 260, 254–261. [Google Scholar] [CrossRef]
- Graf, B.; Schulte, H.; Muhler, M. The formation of methane over iron catalysts applied in Fischer–Tropsch synthesis: A transient and steady state kinetic study. J. Catal. 2010, 276, 66–75. [Google Scholar] [CrossRef]
- Xie, J.; Yang, J.; Dugulan, A.I.; Holmen, A.; Chen, D.; de Jong, K.P.; Louwerse, M.J. Size and Promoter Effects in Supported Iron Fischer–Tropsch Catalysts: Insights from Experiment and Theory. ACS Catal. 2016, 6, 3147–3157. [Google Scholar] [CrossRef]
- Mars, P.; van Krevelen, D. Oxidations carried out by means of vanadium oxide catalysts. Chem. Eng. Sci. 1954, 3, 41–59. [Google Scholar] [CrossRef]
- Gracia, J.M.; Prinsloo, F.F.; Niemantsverdriet, J.W. Mars-van Krevelen-like Mechanism of CO Hydrogenation on an Iron Carbide Surface. Catal. Lett. 2009, 133, 257–261. [Google Scholar] [CrossRef]
- Ordomsky, V.V.; Legras, B.; Cheng, K.; Paul, S.; Khodakov, A.Y. The role of carbon atoms of supported iron carbides in Fischer–Tropsch synthesis. Catal. Sci. Technol. 2015, 5, 1433–1437. [Google Scholar] [CrossRef]
- Keyvanloo, K.; Lanham, S.J.; Hecker, W.C. Kinetics of Fischer-Tropsch synthesis on supported cobalt: Effect of temperature on CO and H 2 partial pressure dependencies. Catal. Today 2016, 270, 9–18. [Google Scholar] [CrossRef]
- Mohammad, N.; Bepari, S.; Aravamudhan, S.; Kuila, D. Kinetics of Fischer–Tropsch Synthesis in a 3-D Printed Stainless Steel Microreactor Using Different Mesoporous Silica Supported Co-Ru Catalysts. Catalysts 2019, 9, 872. [Google Scholar] [CrossRef]
- J. Cheng, P. J. Cheng, P. Hu, P. Ellis, S. French, G. Kelly, C. M. Lok, Chain Growth Mechanism in Fischer-Tropsch Synthesis: A DFT Study of C−C Coupling over Ru, Fe, Rh, and Re Surfaces, J. Phys. Chem. C, 112 (2008) 6082-6086.
- M. J. Valero-Romero, M. M. J. Valero-Romero, M. Á. Rodríguez-Cano, J. Palomo, J. Rodríguez-Mirasol, T. Cordero, Carbon-Based Materials as Catalyst Supports for Fischer-Tropsch Synthesis: A Review, Front. Mater. Sci., 7 (2021) 617432.
- H. A. J. van Dijk, J. H. B. J. H. A. J. van Dijk, J. H. B. J. Hoebink, J. C. Schouten, A Mechanistic Study of the Fischer-Tropsch Synthesis Using Transient Isotopic Tracing. Part 2: Model Quantification, Catal. Today, 26 (2003) 163-171.
- Galvis, H.M.T.; Bitter, J.H.; Davidian, T.; Ruitenbeek, M.; Dugulan, A.I.; de Jong, K.P. Iron Particle Size Effects for Direct Production of Lower Olefins from Synthesis Gas. J. Am. Chem. Soc. 2012, 134, 16207–16215. [Google Scholar] [CrossRef] [PubMed]
- E. de Smit, F. M. F. E. de Smit, F. M. F. de Groot, R. Blume, M. Havecker, A. K. Gericke, B. M. Weckhuysen, The Role of Cu on the Reduction Behavior and Surface Properties of Fe-Based Fischer-Tropsch Catalysts, Phys. Chem. Chem. Phys., 12 (2010) 667-680.
- Hindermann, J.P.; Hutchings, G.J.; Kiennemann, A. Mechanistic Aspects of the Formation of Hydrocarbons and Alcohols from CO Hydrogenation. Catal. Rev. 1993, 35, 1–127. [Google Scholar] [CrossRef]
- Campos, A.; Lohitharn, N.; Roy, A.; Lotero, E.; Goodwin, J.G.; Spivey, J.J. An activity and XANES study of Mn-promoted, Fe-based Fischer–Tropsch catalysts. Appl. Catal. A: Gen. 2010, 375, 12–16. [Google Scholar] [CrossRef]
- N. Lohitharn, J. G. N. Lohitharn, J. G. Goodwin, Impact of Cr, Mn and Zr Addition on Fe Fischer-Tropsch Synthesis Catalysis: Investigation at the Active Site Level Using SSITKA, J. Catal., 257 (2008) 142-151.
- Lohitharn, N.; Goodwin, J.G., Jr.; Synthesis, F. ; Olefins; Hydrocarbon Effect of K promotion of Fe and FeMn Fischer–Tropsch synthesis catalysts: Analysis at the site level using SSITKA. J. Catal. 2008, 260, 7–16. [Google Scholar] [CrossRef]
- Jensen, K.; Massoth, F. Studies on iron-manganese oxide carbon monoxide catalysts II. Carburization and catalytic activity. J. Catal. 1985, 92, 109–118. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, J.-F.; Bao, J.; Zhang, Y. Manganese-Modified Fe3O4 Microsphere Catalyst with Effective Active Phase of Forming Light Olefins from Syngas. ACS Catal. 2015, 5, 3905–3909. [Google Scholar] [CrossRef]
- Ribeiro, M.C.; Jacobs, G.; Pendyala, R.; Davis, B.H.; Cronauer, D.C.; Kropf, A.J.; Marshall, C.L. Fischer−Tropsch Synthesis: Influence of Mn on the Carburization Rates and Activities of Fe-Based Catalysts by TPR-EXAFS/XANES and Catalyst Testing. J. Phys. Chem. C 2011, 115, 4783–4792. [Google Scholar] [CrossRef]
- Yang, Z.; Zhang, Z.; Liu, Y.; Ding, X.; Zhang, J.; Xu, J.; Han, Y. Tuning direct CO hydrogenation reaction over Fe-Mn bimetallic catalysts toward light olefins: Effects of Mn promotion. Appl. Catal. B: Environ. 2020, 285, 119815. [Google Scholar] [CrossRef]
- F. H. Wielers, A. J. H. M. F. H. Wielers, A. J. H. M. Kock, C. E. C. A. Hop, J. W. Geus, A. M. van Kraan, The Reduction Behavior of Silica-Supported and Alumina-Supported Iron Catalysts: A Mössbauer and Infrared Spectroscopic Study, J. Catal., 117 (1989) 1-18.
- Lin, Q.; Cheng, M.; Zhang, K.; Li, W.; Wu, P.; Chang, H.; Lv, Y.; Men, Z. Development of an Iron-Based Fischer—Tropsch Catalyst with High Attrition Resistance and Stability for Industrial Application. Catalysts 2021, 11, 908. [Google Scholar] [CrossRef]
- H. J. Schulte, B. H. J. Schulte, B. Graf, W. Xia, M. Muhler, Nitrogen- and Oxygen-Functionalized Multiwalled Carbon Nanotubes Used as Support in Iron-Catalyzed, HighTemperature Fischer-Tropsch Synthesis, ChemCatChem, 4 (2012) 350-355.
- Lokteva, E.S.; Golubina, E.V. Metal-support interactions in the design of heterogeneous catalysts for redox processes. Pure Appl. Chem. 2019, 91, 609–631. [Google Scholar] [CrossRef]
- R. Zhao, J. G. R. Zhao, J. G. Goodwin Jr. K. Jothimurugesan, S. K. Gangwal, J. J. Spivey, Spray-Dried Iron Fischer-Tropsch Catalysts. 2. Effect of Carburization on Catalyst Attrition Resistance, Ind. Eng. Chem. Res., 40 (2001) 1320-1328.
- Thüne, P.; Moodley, P.; Scheijen, F.; Fredriksson, H.; Lancee, R.; Kropf, J.; Miller, J.; Niemantsverdriet, J.W. (. The Effect of Water on the Stability of Iron Oxide and Iron Carbide Nanoparticles in Hydrogen and Syngas Followed by in Situ X-ray Absorption Spectroscopy. J. Phys. Chem. C 2012, 116, 7367–7373. [Google Scholar] [CrossRef]
- Eliason, S.; Bartholomew, C. Reaction and deactivation kinetics for Fischer–Tropsch synthesis on unpromoted and potassium-promoted iron catalysts. Appl. Catal. A: Gen. 1999, 186, 229–243. [Google Scholar] [CrossRef]
- Chai, J.; Pestman, R.; Chiang, F.-K.; Men, Z.; Wang, P.; Hensen, E.J. Influence of carbon deposits on Fe-carbide for the Fischer-Tropsch reaction. J. Catal. 2022, 416, 289–300. [Google Scholar] [CrossRef]
- Pour, A.N.; Housaindokht, M.R.; Tayyari, S.F.; Zarkesh, J. Fischer-Tropsch synthesis by nano-structured iron catalyst. J. Nat. Gas Chem. 2010, 19, 284–292. [Google Scholar] [CrossRef]
- Nakamura, J.; Tanaka, K.-I.; Toyoshima, I. Reactivity of deposited carbon on Co$z.sbnd;Al2O3 catalyst. J. Catal. 1987, 108, 55–62. [Google Scholar] [CrossRef]
- Warringham, R.; Davidson, A.L.; Webb, P.B.; Tooze, R.P.; Ewings, R.A.; Parker, S.F.; Lennon, D. Examining the temporal behavior of the hydrocarbonaceous overlayer on an iron based Fischer–Tropsch catalyst. RSC Adv. 2019, 9, 2608–2617. [Google Scholar] [CrossRef] [PubMed]
- Koeken, A.C.J.; Galvis, H.M.T.; Davidian, T.; Ruitenbeek, M.; de Jong, K.P. Suppression of Carbon Deposition in the Iron-Catalyzed Production of Lower Olefins from Synthesis Gas. Angew. Chem. Int. Ed. 2012, 51, 7190–7193. [Google Scholar] [CrossRef] [PubMed]
- M. Sarkari, F. M. Sarkari, F. Fazlollahi, H. Ajamein, H. Atashi, W. C. Hecker, L. L. Baxter, Fischer-Tropsch Synthesis: Development of Kinetic Expression for a Sol-Gel Fe-Ni/Al2O3 Catalyst, Fuel Process. Technol., 127 (2012) 163-170.
- M. Claeys, E. M. Claeys, E. van Steen, On the Effect of Water during Fischer-Tropsch Synthesis with a Ruthenium Catalyst, Catal. Today, 71 (2002) 419-427.
- Ning, W.; Koizumi, N.; Chang, H.; Mochizuki, T.; Itoh, T.; Yamada, M. Phase transformation of unpromoted and promoted Fe catalysts and the formation of carbonaceous compounds during Fischer–Tropsch synthesis reaction. Appl. Catal. A: Gen. 2006, 312, 35–44. [Google Scholar] [CrossRef]
- McDonald, M.; Storm, D.; Boudart, M. Hydrocarbon synthesis from CO$z.sbnd;H2 on supported iron: Effect of particle size and interstitials. J. Catal. 1986, 102, 386–400. [Google Scholar] [CrossRef]
- Liu, J.-X.; Su, H.-Y.; Sun, D.-P.; Zhang, B.-Y.; Li, W.-X. Crystallographic Dependence of CO Activation on Cobalt Catalysts: HCP versus FCC. J. Am. Chem. Soc. 2013, 135, 16284–16287. [Google Scholar] [CrossRef] [PubMed]
- J. M. G. Carballo, J. J. M. G. Carballo, J. Yang, A. Holmen, S. García-Rodríguez, S. Rojas, M. Ojeda, J. L. G. Fierro, Catalytic Effects of Ruthenium Particle Size on the Fischer-Tropsch Synthesis, J. Catal., 284 (2011) 102-108.
- Den Breejen, J.P.; Radstake, P.B.; Bezemer, G.L.; Bitter, J.H.; Frøseth, V.; Holmen, A.; de Jong, K.P. On the Origin of the Cobalt Particle Size Effects in Fischer−Tropsch Catalysis. J. Am. Chem. Soc. 2009, 131, 7197–7203. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Q.; Tian, Y.; Lyu, S.; Zhao, N.; Ma, K.; Ding, T.; Jiang, Z.; Wang, L.; Zhang, J.; Zheng, L.; et al. Confined small-sized cobalt catalysts stimulate carbon-chain growth reversely by modifying ASF law of Fischer–Tropsch synthesis. Nat. Commun. 2018, 9, 3250. [Google Scholar] [CrossRef]
- Barkhuizen, D.; Mabaso, I.; Viljoen, E.; Welker, C.; Claeys, M.; van Steen, E.; Fletcher, J.C.Q. Experimental approaches to the preparation of supported metal nanoparticles. Pure Appl. Chem. 2006, 78, 1759–1769. [Google Scholar] [CrossRef]
- Park, J.-Y.; Lee, Y.-J.; Khanna, P.K.; Jun, K.-W.; Bae, J.W.; Kim, Y.H. Alumina-supported iron oxide nanoparticles as Fischer–Tropsch catalysts: Effect of particle size of iron oxide. J. Mol. Catal. A: Chem. 2010, 323, 84–90. [Google Scholar] [CrossRef]
- Yin, J.; Liu, X.; Liu, X.-W.; Wang, H.; Wan, H.; Wang, S.; Zhang, W.; Zhou, X.; Teng, B.-T.; Yang, Y.; et al. Theoretical exploration of intrinsic facet-dependent CH4 and C2 formation on Fe5C2 particle. Appl. Catal. B: Environ. 2020, 278, 119308. [Google Scholar] [CrossRef]









Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
