Submitted:
05 June 2023
Posted:
06 June 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Model
2.1. Low-Intensity Limit
3. Results
4. Discussion
4.1. Perturbative Results
4.2. Non-Perturbative Results
5. Conclusion
Acknowledgments
References
- Dehmelt, H.G. Modulation of a Light Beam by Precessing Absorbing Atoms. Phys. Rev. 1957, 105, 1924–1925. [Google Scholar] [CrossRef]
- Bell, W.E.; Bloom, A.L. Optical Detection of Magnetic Resonance in Alkali Metal Vapor. Phys. Rev. 1957, 107, 1559–1565. [Google Scholar] [CrossRef]
- Bell, W.E.; Bloom, A.L. Optically Driven Spin Precession. Phys. Rev. Lett. 1961, 6, 280–281. [Google Scholar] [CrossRef]
- Dupont-Roc, J. Détermination par des méthodes optiques des trois composantes d’un champ magnétique très faible. Rev. Phys. Appl. (Paris) 1970, 5, 853–864. [Google Scholar] [CrossRef]
- Dupont-Roc, J.; Haroche, S.; Cohen-Tannoudji, C. Detection of very weak magnetic fields (10-9gauss) by 87Rb zero-field level crossing resonances. Physics Letters A 1969, 28, 638–639. [Google Scholar] [CrossRef]
- Happer, W. Optical Pumping. Rev. Mod. Phys. 1972, 44, 169–249. [Google Scholar] [CrossRef]
- Happer, W.; Jau, Y.; Walker, T., Optical Pumping of Atoms. In Optically Pumped Atoms; John Wiley & Sons, Ltd, 2010; chapter 5, pp. 49–71. [CrossRef]
- Colombo, A.P.; Carter, T.R.; Borna, A.; Jau, Y.Y.; Johnson, C.N.; Dagel, A.L.; Schwindt, P.D.D. Four-channel optically pumped atomic magnetometer for magnetoencephalography. Opt. Express 2016, 24, 15403–15416. [Google Scholar] [CrossRef]
- Wu, T.; Peng, X.; Chen, J.; Guo, H., Fiber-Coupled OPM in Purely Coil-Shielded Environment. In Flexible High Performance Magnetic Field Sensors: On-Scalp Magnetoencephalography and Other Applications; Labyt, E.; Sander, T.; Wakai, R., Eds.; Springer International Publishing: Cham, 2022; pp. 161–177. [CrossRef]
- Bison, G.; Castagna, N.; Hofer, A.; Knowles, P.; Schenker, J.L.; Kasprzak, M.; Saudan, H.; Weis, A. A room temperature 19-channel magnetic field mapping device for cardiac signals. Applied Physics Letters 2009, 95. [Google Scholar] [CrossRef]
- Kamada, K.; Ito, Y.; Kobayashi, T. Human MCG measurements with a high-sensitivity potassium atomic magnetometer. Physiological measurement 2012, 33, 1063. [Google Scholar] [CrossRef]
- Kim, Y.J.; Savukov, I.; Newman, S. Magnetocardiography with a 16-channel fiber-coupled single-cell Rb optically pumped magnetometer. Applied Physics Letters 2019, 114. [Google Scholar] [CrossRef]
- Broser, P.J.; Knappe, S.; Kajal, D.S.; Noury, N.; Alem, O.; Shah, V.; Braun, C. Optically Pumped Magnetometers for Magneto-Myography to Study the Innervation of the Hand. IEEE Trans Neural Syst Rehabil Eng 2018, 26, 2226–2232. [Google Scholar] [CrossRef]
- Savukov, I.M.; Romalis, M.V. NMR Detection with an Atomic Magnetometer. Phys. Rev. Lett. 2005, 94, 123001. [Google Scholar] [CrossRef]
- Bevilacqua, G.; Biancalana, V.; Dancheva, Y.; Vigilante, A.; Donati, A.; Rossi, C. Simultaneous Detection of H and D NMR Signals in a micro-Tesla Field. The Journal of Physical Chemistry Letters 2017, 8, 6176–6179. [Google Scholar] [CrossRef]
- Tayler, M.C.; Gladden, L.F. Scalar relaxation of NMR transitions at ultralow magnetic field. Journal of Magnetic Resonance 2019, 298, 101–106. [Google Scholar] [CrossRef] [PubMed]
- Savukov, I.; Kim, Y.J.; Schultz, G. Detection of ultra-low field NMR signal with a commercial QuSpin single-beam atomic magnetometer. Journal of Magnetic Resonance 2020, 317, 106780. [Google Scholar] [CrossRef]
- Eills, J.; Cavallari, E.; Carrera, C.; Budker, D.; Aime, S.; Reineri, F. Real-Time Nuclear Magnetic Resonance Detection of Fumarase Activity Using Parahydrogen-Hyperpolarized [1-(13)C]Fumarate. J Am Chem Soc (ISSN: 0002-7863linking, 0002-7863print) 2019, 80, 20209–20214. [Google Scholar] [CrossRef]
- Savukov, I.; Karaulanov, T. Magnetic-resonance imaging of the human brain with an atomic magnetometer. Applied Physics Letters 2013, 103. [Google Scholar] [CrossRef] [PubMed]
- Savukov, I.; Karaulanov, T. Anatomical MRI with an atomic magnetometer. Journal of Magnetic Resonance 2013, 231, 39–45. [Google Scholar] [CrossRef] [PubMed]
- Bevilacqua, G.; Biancalana, V.; Dancheva, Y.; Vigilante, A. Restoring Narrow Linewidth to a Gradient-Broadened Magnetic Resonance by Inhomogeneous Dressing. Phys. Rev. Applied 2019, 11, 024049. [Google Scholar] [CrossRef]
- Bevilacqua, G.; Biancalana, V.; Dancheva, Y.; Vigilante, A. Sub-millimetric ultra-low-field MRI detected in situ by a dressed atomic magnetometer, Appl.Phys.Lett. 2019, 115, 174102. [Google Scholar] [CrossRef]
- Deans, C.; Marmugi, L.; Hussain, S.; Renzoni, F. Electromagnetic induction imaging with a radio-frequency atomic magnetometer. Applied Physics Letters 2016, 108. [Google Scholar] [CrossRef]
- Bevington, P.; Gartman, R.; Chalupczak, W. Object detection with an alkali-metal spin maser. Journal of Applied Physics 2021, 130. [Google Scholar] [CrossRef]
- Bevington, P.; Gartman, R.; Chalupczak, W.; Deans, C.; Marmugi, L.; Renzoni, F. Non-destructive structural imaging of steelwork with atomic magnetometers. Applied Physics Letters 2018, 113. [Google Scholar] [CrossRef]
- Darrer, B.J.; Watson, J.C.; Bartlett, P.; Renzoni, F. Magnetic Imaging: a New Tool for UK National Nuclear Security. Scientific Reports 2015, 5. [Google Scholar] [CrossRef] [PubMed]
- Marmugi, L.; Renzoni, F. Optical Magnetic Induction Tomography of the Heart. Scientific Reports 2016, 6. [Google Scholar] [CrossRef] [PubMed]
- Gerginov, V.; Pomponio, M.; Knappe, S. Scalar Magnetometry Below 100 fT/Hz1/2 in a Microfabricated Cell. IEEE Sensors Journal 2020, 20, 12684–12690. [Google Scholar] [CrossRef] [PubMed]
- Scholtes, T.; Woetzel, S.; IJsselsteijn, R.; Schultze, V.; Meyer, H.G. Intrinsic relaxation rates of polarized Cs vapor in miniaturized cells. Applied Physics B 2014, 117, 211–218. [Google Scholar] [CrossRef]
- Zhang, Y.; Tian, Y.; Li, S.; Chen, J.; Gu, S. Faraday-Rotation Atomic Magnetometer Using Triple-Chromatic Laser Beam. Phys. Rev. Appl. 2019, 12, 011004. [Google Scholar] [CrossRef]
- Li, S.; Zhang, Y.; Tian, Y.; Chen, J.; Gu, S. Faraday-rotation Bell–Bloom atomic magnetometer using an alternating pump–probe beam. Journal of Applied Physics 2021, 130. [Google Scholar] [CrossRef]
- Nardelli, N.V.; Perry, A.R.; Krzyzewski, S.P.; Knappe, S.A. A conformal array of microfabricated optically-pumped first-order gradiometers for magnetoencephalography. EPJ Quantum Technology 2014, 7. [Google Scholar] [CrossRef]
- Fabricant, A.; Novikova, I.; Bison, G. How to build a magnetometer with thermal atomic vapor: a tutorial. New Journal of Physics 2023, 25, 025001. [Google Scholar] [CrossRef]
- Weis, A.; Bison, G.; Pazgalev, A.S. Theory of double resonance magnetometers based on atomic alignment. Phys. Rev. A 2006, 74, 033401. [Google Scholar] [CrossRef]
- Zhang, R.; Wu, T.; Chen, J.; Peng, X.; Guo, H. Frequency Response of Optically Pumped Magnetometer with Nonlinear Zeeman Effect. Applied Sciences 2020, 10. [Google Scholar] [CrossRef]
- Li, S.; Liu, J.; Jin, M.; Tetteh Akiti, K.; Dai, P.; Xu, Z.; Eric-Theophilus Nwodom, T. A kilohertz bandwidth and sensitive scalar atomic magnetometer using an optical multipass cell. Measurement 2022, 190, 110704. [Google Scholar] [CrossRef]
- Bevilacqua, G.; Biancalana, V.; Dancheva, Y.; Vigilante, A. Self-Adaptive Loop for External-Disturbance Reduction in a Differential Measurement Setup. Phys. Rev. Applied 2019, 11, 014029. [Google Scholar] [CrossRef]
- Pyragius, T.; Jensen, K. A high performance active noise control system for magnetic fields. Review of Scientific Instruments 2021, 92. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.; Lu, J.; Zhang, S.; Lu, F.; Yin, K.; Wang, K.; Zhou, B.; Liu, G. Three-axis closed-loop optically pumped magnetometer operated in the SERF regime. Opt. Express 2022, 30, 18300–18309. [Google Scholar] [CrossRef] [PubMed]
- Ding, Y.; Xiao, W.; Zhao, Y.; Wu, T.; Peng, X.; Guo, H. Dual-Species All-Optical Magnetometer Based on a Cs-K Hybrid Vapor Cell. Phys. Rev. Appl. 2023, 19, 034066. [Google Scholar] [CrossRef]
- O’Dwyer, C.; Ingleby, S.J.; Chalmers, I.C.; Griffin, P.F.; Riis, E. A feed-forward measurement scheme for periodic noise suppression in atomic magnetometry. Review of Scientific Instruments 2020, 91. [Google Scholar] [CrossRef]
- Cooper, R.J.; Prescott, D.W.; Lee, G.J.; Sauer, K.L. RF atomic magnetometer array with over 40 dB interference suppression using electron spin resonance. Journal of Magnetic Resonance 2018, 296, 36–46. [Google Scholar] [CrossRef]
- Bevilacqua, G.; Biancalana, V.; Dancheva, Y. Atomic orientation driven by broadly-frequency-modulated radiation: Theory and experiment. Phys. Rev. A 2016, 94, 012501. [Google Scholar] [CrossRef]
- Bevilacqua, G.; Biancalana, V.; Chessa, P.; Dancheva, Y. Multichannel optical atomic magnetometer operating in unshielded environment. Applied Physics B 2016, 122, 103. [Google Scholar] [CrossRef]
- Bevilacqua, G.; Biancalana, V.; Dancheva, Y.; Fregosi, A.; Vigilante, A. Spin dynamic response to a time dependent field. Applied Physics B 2021, 127, 128. [Google Scholar] [CrossRef]
- Zhang, R.; Pang, B.; Li, W.; Yang, Y.; Chen, J.; Peng, X.; Guo, H. Frequency Response of a Close-Loop Bell-Bloom Magnetometer. 2018 IEEE International Frequency Control Symposium (IFCS), 2018, pp. 1–3. [CrossRef]




Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
