Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Complexes of the Antibiotic Drug Oxolinic Acid with the Fe(III), Zn(II), Ca(II), and Mg(II) Ions: Preparation, Characterization, and In Vitro Evaluation of the Biological Activity

Version 1 : Received: 3 June 2023 / Approved: 5 June 2023 / Online: 5 June 2023 (07:09:44 CEST)

A peer-reviewed article of this Preprint also exists.

Almehizia, A.A.; Al-Omar, M.A.; Naglah, A.M.; Bhat, M.A.; Alanazi, F.S.; Alotaibi, F.A.; Refat, M.S.; Adam, A.M.A. Complexes of the Antibiotic Drug Oxolinic Acid with Fe(III), Zn(II), Ca(II), and Mg(II) Ions: Preparation, Characterization, and In Vitro Evaluation of Biological Activity. Crystals 2023, 13, 1012. Almehizia, A.A.; Al-Omar, M.A.; Naglah, A.M.; Bhat, M.A.; Alanazi, F.S.; Alotaibi, F.A.; Refat, M.S.; Adam, A.M.A. Complexes of the Antibiotic Drug Oxolinic Acid with Fe(III), Zn(II), Ca(II), and Mg(II) Ions: Preparation, Characterization, and In Vitro Evaluation of Biological Activity. Crystals 2023, 13, 1012.

Abstract

The chemical reaction between the quinolone antibiotic oxolinic acid (OA) and Fe(III), Zn(II), Ca(II), and Mg(II) ions results in the formation of metal-based complexes with the following formulas: [Fe(OA)(H2O)2Cl2]2H2O, [Zn(OA)(H2O)Cl]2H2O, [Ca(OA)(H2O)Cl], and [Mg(OA)(H2O)Cl]. We used analytical (C, N, H, Cl, metal analysis) and spectral (FT-IR, 1H NMR, UV-visible) data to structurally characterize the synthesized metal-based complexes of the OA molecule. We found that the OA molecule utilizes the two oxygen atoms of the carboxylate group and the pyridone C=O group to bind the investigated metal ions. The morphological properties of the synthesized OA complexes were assessed using X-ray powder diffractometry (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The biological properties, specifically antibacterial and antifungal activity, of the synthesized complexes were evaluated in vitro using the Kirby-Bauer disc diffusion protocol with five bacterial and three fungal strains. The complex containing Ca(II) ions exhibited remarkable antibacterial and antifungal activity against all tested microbial strains, surpassing or equaling the potency of the standard drugs (streptomycin for antibacterial assays and ketoconazole for antifungal assays).

Keywords

Oxolinic acid; Metal-based complex; Spectroscopy; Microscopic characterization; Antimicrobial activity.

Subject

Chemistry and Materials Science, Applied Chemistry

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.