Submitted:
24 May 2023
Posted:
26 May 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. OC-SMART
2.1. Overview
2.2. Neural Network Training
2.3. Algorithm Validation
2.4. Application
3. Methodology for Quantifying Uncertainties
3.1. Bayesian Inversion
3.1.1. Convergence Check
3.1.2. Evaluation of the Jacobian
3.2. Measurement Error
3.3. A Priori Estimation
3.4. Special Cases
3.5. Experimental Setup
4. Case Studies and Discussion
4.1. Application to MODIS
4.2. Application to Other Sensors







5. Conclusions and Perspectives
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nieke, J.; Borde, F.; Mavrocordatos, C.; Berruti, B.; Delclaud, Y.; et al. The Ocean and Land Colour Imager (OLCI) for the Sentinel 3 GMES Mission: Status and first test results. Technical Report 2012. [Google Scholar]
- Frerick, J.; Mavrocordatos, C.; Berruti, B.; Donlon, C.; Cosi, M.; Engel, W.; et al. Next generation along track scanning radiometer—SLSTR. Remote Sensing System Enginerring IV 2012, 8516, 851605. [Google Scholar]
- Wang, M. Atmospheric Correction for Remotely-Sensed OceanColour Products. Technical Report 2010. [Google Scholar]
- Gordon, H.; Wang, M. Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: a preliminary algorithm. Applied Optics 1994, 33, 443–452. [Google Scholar] [CrossRef] [PubMed]
- O’Reilly, J.; Maritorena, S.; Mitchelle, B.; Siegel, D.; Carder, K.; Garver, S.; et al. Ocean colour chlorophyll algorithms for SeaWIFS. Journal of Geophysical Research 1998, 103, 24937–24953. [Google Scholar] [CrossRef]
- Fichot, C.; Downing, B.; Bergamschi, B.; Windham-Myers, L.; Marvin-DiPasquale, M.; Thompson, D.; Gierach, M. High-resolution remote sensing of water quality in the San Francisco Bay–Delta Estuary. Environmental Science and Technology 2016, 50, 573–583. [Google Scholar] [CrossRef]
- Kudela, R.; Palacios, S.; Austerberry, D.; Accorsi, E.; Guild, L.; Torres-Perez, J. Application of hyperspectral remote sensing to cyanobacterial blooms in inland waters. Remote Sensing of Environments 2015, 167, 196–205. [Google Scholar] [CrossRef]
- Platt, T.; Hoepffner, N.; Stuart, V.; Brown, C. Why Ocean Colour? The Societal Benefits of OceanColour Technology. Technical Report 2008. [Google Scholar]
- Greb, S.; Dekkler, A.; Binding, C. Earth Observations in Support of Global Water Quality Monitoring. Technical Report 2018. [Google Scholar]
- Board, I.T.M. Guide to the expression of uncertainty in measurement. In Proceedings of the Uncertainty of measurement — Part 3; 1995; pp. 1–120. [Google Scholar]
- Fan, Y.; Li, W.; Gatebe, C.; Jamet, C.; Zibordi, G.; Schroeder, T.; Stamnes, K. Atmospheric correction over coastal waters using multilayer neural networks. Remote Sensing of Environments 2017, 199, 218–240. [Google Scholar] [CrossRef]
- Fan, Y.; Li, W.; Chen, N.; Ahn, J.; Park, Y.; Kratzer, S.; et al. OC-SMART: A machine learning based data analysis platform for satellite ocean color sensors. Remote Sensing of Enviroments 2021, 253, 112236. [Google Scholar] [CrossRef]
- Moore, G.; Aiken, J.; Lavender, S. The atmospheric correction of water color and the quantitative retrieval of suspended particulate matter in Case II waters: Application to MERIS. International Journal of Remote Sensing 1999, 20, 1713–1733. [Google Scholar] [CrossRef]
- Bailey, S.; Franz, B.; Werdell, P. Estimation of near-infrared water-leaving reflectance for satellite ocean color data processing. Optics Express 2010, 18, 7521–7527. [Google Scholar] [CrossRef] [PubMed]
- Stamnes, K.; Li, W.; Yan, B.; Elde, H.; Barnard, A.; Pegau, S.; et al. Accurate and selfconsistent ocean color algorithm: simultaneous retrieval of aerosol optical properties and chlorophyll concentrations. Applied Optics 2007, 42, 939–951. [Google Scholar] [CrossRef] [PubMed]
- Ibramhim, A.; Franz, B.; Ahmad, Z.; Bailey, S. Multiband Atmospheric Correction Algorithm for Ocean Color Retrievals. Frontiers in Earth Science 2019, 7, 1–15. [Google Scholar]
- Thompson, D.; Natraj, V.; Green, R.; Helmlinger, M.; Gao, B.; Eastwood, M. Optimal estimation for imaging spectrometer atmospheric correction. Remote Sensing of Enviroments 2018, 216, 355–373. [Google Scholar] [CrossRef]
- Steinmetz, F.; Deschamps, P.; Ramon, D. Atmospheric correction in presence of sun glint: application to MERIS. Optics Express 2011, 19, 9783–9800. [Google Scholar] [CrossRef]
- Doerffer, R.; Schiller, H. The MERIS Case 2 water algorithm. International Journal of Remote Sensing 2007, 28, 517–535. [Google Scholar] [CrossRef]
- Thompson, D.; Cawse-Nicholson, K.; Erickson, Z.; Fichot, C.; Frankenberg, C.; et al. A unified approach to estimate land and water reflectances with uncertainties for coastal imaging spectroscopy. Remote Sensing of Enviroments 2019, 231, 111198. [Google Scholar] [CrossRef]
- Frouin, R.; Pelletier, B. Bayesian methodology for inverting satellite ocean-color data. Remote Sensing of Enviroments 2015, 159, 332–360. [Google Scholar] [CrossRef]
- Brockmann, C.; Doerffer, R.; Peters, M.; Stelzer, K.; Embacher, S.; Ruescas, A. Evolution of the C2RCC Neural Network for Sentinel 2 and 3 for the Retrieval of Ocean Colour Products in Normal and Extreme Optically Complex Waters. In Proceedings of the Living Planet Symposium. European Space Agency Special Publication; 2016; pp. 1–6. [Google Scholar]
- Hieronymi, M.; Muller, D.; Doerffer, R. The OLCI Neural Network Swarm (ONNS): A Bio-Geo-Optical Algorithm for Open Ocean and Coastal Waters. Frontiers in Marine Science 2017, 4, 1–18. [Google Scholar] [CrossRef]
- Schroeder, T.; Schaale, M.; Lovell, J.; Blondeau-Patissier, D. An ensemble neural network atmospheric correction for Sentinel-3 OLCI over coastal waters providing inherent model uncertainty estimation and sensor noise propagation. Remote Sensing of Enviroments 2022, 270, 112848. [Google Scholar] [CrossRef]
- Ibrahim, A.; Franz, B.; Sayer, A.; Knobelspiesse, K.; Zhang, M.; Bailey, S.; McKinna, L.; Gao, M.; Werdell, J. Optimal estimation framework for ocean color atmospheric correction and pixel-level uncertainty quantification. Applied Optics 2022, 61, 6453–6475. [Google Scholar] [CrossRef]
- Zhang, M.; Ibrahim, A.; Franz, B.; Ahmad, Z.; Sayer, A. Estimating pixel-level uncertainty in ocean color retrievals from MODIS. Optics Express 2022, 30, 31415–31438. [Google Scholar] [CrossRef] [PubMed]
- Stamnes, K.; Hamre, B.; Stamnes, S.; Chen, N.; Fan, Y.; Li, W.; et al. Progress in forward-inverse modeling based on radiative transfer tools for coupled atmosphere-snow/ice-ocean systems: a review and description of the accurt model. Applied Science 2018, 8, 2682. [Google Scholar] [CrossRef]
- Ahmad, Z.; Franz, B.; McClain, C.; Kwiatkowski, E.; Werdell, J.; Shettle, E.; Holben, B. New aerosol models for the retrieval of aerosol optical thickness and normalized water-leaving radiances from the seawifs and modis sensors over coastal regions and open oceans. Applied Optics 2010, 49, 5545–5560. [Google Scholar] [CrossRef] [PubMed]
- Koepke, P.; Gasteiger, J.; Hess, M. Technical note: Optical properties of desert aerosol with non-spherical mineral particles: data incorporated to opac. Atmospheric Chemistry and Physics 2015, 15, 5947–5956. [Google Scholar] [CrossRef]
- Garver, S.; Siegel, D. Inherent optical property inversion of ocean color spectra and its biogeochemical interpretation: 1. Time series from the sargasso sea. Journal of Geophysical Research Oceans 1997, 102, 18607–18625. [Google Scholar] [CrossRef]
- Ruddick, K. Due Coastcolour Round Robin Protocol, 2010.
- Morel, A.; Antoine, D.; Gentili, B. Bidirectional reflectance of oceanic waters: accounting for raman emission and varying particle scattering phase function. Applied Optics 2002, 41, 6289–6306. [Google Scholar] [CrossRef]
- Chen, S.; Billings, S.; Grant, P. Non-linear system identification using neural networks. Int. J. Control 1990, 51, 1191–1214. [Google Scholar] [CrossRef]
- D’Alimonte. ; Zibordi, G. Phytoplankton determination in an optically complex coastal region using a multilayer perceptron neural network. IEEE Trans. Geosci.Remote Sens 2003, 41, 2861–2868. [Google Scholar] [CrossRef]
- Clark, D.; Yarbough, M.; Feinholz, M.; Flora, S.; Broenkow, W.; et al. Moby, a radiometric buoy for performance monitoring and vicarious calibration of satellite ocean color sensors: Measurement and data analysis protocols. NASA Technical Report 2003. [Google Scholar]
- Werdell, P.; Bailey, S.; Franz, B.; Morel, A.; McClain, C. On-orbit vicarious calibration of ocean color sensors using an ocean surface reflectance model. Applied Optics 2007, 46, 5649–5666. [Google Scholar] [CrossRef] [PubMed]
- Zibordi, G.; Melin, F.; Berthon, J.C.; Holben, B.; Slutsker, I.; et al. Aeronet-oc: A network for the validation of ocean color primary products. Journal of Atmospheric and Oceanic Technology 2009, 26, 1634–1651. [Google Scholar] [CrossRef]
- Rodgers, C.D. Inverse methods for atmospheric sounding: Theory and practice; World Scientific, London, UK, 2000.
- Stamnes, K.; Stamnes, J. Radiative Transfer in Coupled Environmental Systems: An Introduction to Forward and Inverse Modeling; Wiley-VCH: Weinheim, 2015. [Google Scholar]
- Lamquin, N.; Mangin, A.; Mazeran, C.; Bourg, B.; Bruniquel, V.; D’Andon, O. OLCI L2 Pixel-by-Pixel Uncertainty Propagation in OLCI Clean Water Branch. European Space Agancy, 2013; 1–51. [Google Scholar]
- Gilerson, A.; Herra-Estrella, E.; Foster, R.; Agagliate, J.; c. Hu.; et al. Determining the Primary Sources of Uncertainty in Retrieval of Marine Remote Sensing Reflectance From Satellite Ocean Color Sensors. Frontiers in Remote Sensing 2022, 3, 1–19. [Google Scholar] [CrossRef]
- Jospin, L.; Buntine, W.; Boussa, F.; Laga, H.; Bennamoun, M. Hands-on Bayesian Neural Networks – A Tutorial for Deep Learning Users. IEEE Comput. Intell. Mag. 2022, 17, 29–48. [Google Scholar] [CrossRef]
- Gelman, A. ; other Stan developersi. Prior choice recommendations 2020. [Google Scholar]
- Hu, C.; Feng, L.; Lee, Z. Uncertainties of SeaWiFS and MODIS remote sensing reflectance: Implications from clear water measurements. Remote Sensing of Enviroments 2013, 133, 168–182. [Google Scholar] [CrossRef]







Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
