Submitted:
24 May 2023
Posted:
26 May 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. STUDY AREA
2.1. General Description
2.2. Waves characteristics and Coastal hydrodynamic
3. METHODOLOGY
3.1. Wavewatch III model description
3.3. Model implementation
3.4. Wave data source
3.5. Model Validation
4. RESULTS
4.1. Model predictive skills
4.2. Description of wave climate
4.2.1. Mean and extreme conditions
4.2.2. Seasonal variability.
4.2.3. Long term trends

5. The Control of Atlantic climate modes on wave climate variability on the Senegalese Coast .
5.1. The North Atlantic Oscillation (NAO)
5.2. East Atlantic Mode (EA)
5.3. South Atlantic Oscillation (SAM)

6. DISCUSSION AND CONCLUSION
6.1. Limitations of the present model
6.2. Dakar peculiarity in the coastal morphology
6.3. The wave climate control by Atlantic modes of variability
6.4. Long term trends on wave parameters and climate modes, comparative evolution and future implications
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Nicholls RJ, Wong PP, Burkett VR, Codignotto JO, Hay JE, McLean RF, Ragoonaden S and Woodroffe CD (2007). Coastal systems and lowlying areas. Climate change 2007: impacts, adaptation and vulnerability ed ML Parry, OF Canziani, JP Palutikof, PJ van der Linden and CE Hanson Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. (Cambridge, UK: Cambridge University Press) 315–56.
- Niang Ndeye Astou (2009). Dynamique socio-environnementale et gestion des ressources halieutiques des régions côtières du Sénégal : l’exemple de la pêche artisanale. Thèse de doctorat en géographie, rapport final. Université de Rouen. 302p, pp.17-18.
- Bertin X., N. Bruneau, Breihl J-F., A. B. Fortunato, M. Karpytchev, 2011. Importance of wave ag and resonance in storm surges: the case of Xynthia, Bay of Biscay. Ocean Modelling, 42, 16-30.
- Sadio, M.; Anthony, E.J.; Diaw, A.T.; Dussouillez, P.; Fleury, J.T.; Kane, A.; Almar, R.; Kestenare, E. Shoreline Changes on the Wave-Influenced Senegal River Delta, West Africa: The Roles of Natural Processes and Human Interventions. Water 2017, 9, 357. [CrossRef]
- WACA, 2020. Un littoral résilient, des communautés résilientes, Rapport annuel 2020, 80 pages, Programme de gestion du littoral ouest-africain, World Bank Group.
- Sadio, M., I. Sakho, M. Samou Seujip, A. Gueye, M.B. Diouf, J. Deloffre (2022). Multi-decadal dynamics of the Saloum River delta mouth in climate change context, Journal of African Earth Sciences, Volume 187, 2022, 104451, ISSN 1464-343X. [CrossRef]
- Almar, Rafael & Kestenare, Elodie & Boucharel, Julien. (2019). On the key influence of remote climate variability from Tropical Cyclones, North and South Atlantic mid-latitude storms on the Senegalese coast (West Africa). Environmental Research Communications. 1. [CrossRef]
- Reguero, B.G. & Losada, Iñigo & Mendez, Fernando. (2019). A recent increase in global wave power as a consequence of oceanic warming. Nature Communications. 10. [CrossRef]
- Sakho, Issa. (2022). Sea Level Rise and future shoreline changes along the sandy coast of Saloum Delta, Senegal. Arabian Journal of Geosciences. 15. https://link.springer.com/article/10.1007/s12517-022. [CrossRef]
- Vousdoukas, M.I.; Clarke, J.; Ranasinghe, R.; Reimann, L.; Khalaf, N.; Duong, T.M.; Simpson, N.P. African heritage sites threatened as sea-level rise accelerates. Nat. Clim. Chang. 2022, 12, 256–262.
- Cissé, C.O.T.; Almar, R.; Youm, J.P.M.; Jolicoeur, S.; Taveneau, A.; Sy, B.A.; Sakho, I.; Sow, B.A.; Dieng, H. Extreme Coastal Water Levels Evolution at Dakar (Senegal, West Africa). Climate 2023, 11, 6. [CrossRef]
- Dodet G, Bertin X and Taborda R 2010. Wave climate variability in the north-east Atlantic Ocean over the last six decades Ocean Modell. 31 120–31.
- Reguero Borja González, 2012. Numerical modeling of the global wave climate variability and associated environmental and technological risks. A Doctoral Thesis, Chapter 03. Thesis at the UNIVERSIDAD DE CANTABRIA, Spain, December, 2012. 61 Pages (65-123p).
- Bertin, X., E. Prouteau, and C. Letetrel (2013), A significant increase in wave height in the North Atlantic Ocean over the 20th century, Global and Planetary Change, 2013.03.009.
- Marshall, A.G.; Hemer, M.A.; Hendon, H.H.; McInnes, K.L. Southern annular mode impacts on global ocean surface waves. Ocean. Model. 2018, 129, 58–74.
- Oliver, B., Veitch, J., & Reason, C. J. C. (2022). Variability in high wave energy events around the southern African coast. Journal of Geophysical Research: Oceans, 127, e2021JC018255. [CrossRef]
- Dahunsi, Adeola & Bonou, Frédéric & Dada, Olusegun & Baloitcha, Ezinvi. (2022). A Spatio-Temporal Trend of Past and Future Extreme Wave Climates in the Gulf of Guinea Driven by Climate. Journal of Marine Science and Engineering. 2022, 10, 1581. [CrossRef]
- Osinowo, Adekunle & Okogbue, Emmanuel & Eresanya, Emmanuel & Akande, Samuel. (2018). Extreme significant wave height climate in the Gulf of Guinea. African Journal of Marine Science. 40. 407-421. [CrossRef]
- Young, Ian & Zieger, Stefan & Babanin, Alexander. (2011). Global Trends in Wind Speed and Wave Height. Science (New York, N.Y.). 332. 451-5. [CrossRef]
- Timmermans, B. W., Gommenginger, C. P., Dodet, G., & Bidlot, J.-R. (2020). Global wave height trends and variability from new multimission satellite altimeter products, reanalyses, and wave buoys. Geophysical Research Letters, 47, e2019GL086880. [CrossRef]
- Izaguirre, C., Méndez, F. J., Menéndez, M., and Losada, I. J. (2011), Global extreme wave height variability based on satellite data, Geophys. Res. Lett., 38, L10607. [CrossRef]
- Kumar, P., Min, S., Weller, E., Lee, H., & Wang, X. (2016). Influence of Climate Variability on Extreme Ocean Surface Wave Heights Assessed from ERA-Interim and ERA-20C. Journal of Climate, 29, 4031-4046.
- Kumar, P., Kaur, S., Weller, E., & Min, S.-K. (2019). Influence of natural climate variability on the extreme ocean surface wave heights over the Indian Ocean. Journal of Geophysical Research: Oceans, 124, 6176– 6199. [CrossRef]
- Patra, A., Min, S.-K., & Seong, M.-G. (2020). Climate variability impacts on global extreme wave heights: Seasonal assessment using satellite data and ERA5 reanalysis. Journal of Geophysical Research: Oceans, 125, e2020JC016754. [CrossRef]
- IPCC, 2021. Annex IV: Modes of Variability [Cassou, C., A. Cherchi, Y. Kosaka (eds.)]. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 2153–2192. [CrossRef]
- Bacon S and Carter D J T 1993. A connection between mean wave height and atmospheric pressure gradient in the North Atlantic Int. J. Climatol. 13 423–36.
- Hurrell J W 1995 Decadal trends in the North Atlantic Oscillation: regional temperatures and precipitation Science 269 676–9.
- Kushnir, Y., V. J. Cardone, J. G. Greenwood, and M. A. Cane, (1997): The recent increase in North Atlantic Wave Heights. J. Climate, 10, 2107-2113.
- Woolf, D.K., P.D. Cotton, and P.G. Challenor, (2002): Variability and predictability of the North Atlantic wave climate. J. Geophys. Res., 107, 3145.
- Hurrell, J.W.; Kushnir, Y.; Ottersen, G.; Visbeck, M. An overview of the North Atlantic oscillation. Geophys. Monogr.-Am. Geophys. Union 2003, 134, 1–36.
- Castelle B, Dodet G, Masselink G and Scott T 2018 Increased winter-mean wave height, variability, and periodicity in the Northeast Atlantic over 1949–2017Geophys. Res. Lett. 45 3586–96.
- Morales-Márquez, V., Orfila, A., Simarro, G., and Marcos, M.: Extreme waves and climatic patterns of variability in the eastern North Atlantic and Mediterranean basins, Ocean Sci., 16, 1385–1398, 2020. [CrossRef]
- Hochet, A.; Dodet, G.; Ardhuin, F.; Hemer, M.; Young, I. Sea State Decadal Variability in the North Atlantic: A Review. Climate 2021, 9, 173. [CrossRef]
- Marshall GJ 2003 Trends in the Southern Annular Mode from observations and reanalysesJ. Clim. 16 4134–43.
- Hemer M, Chruch J-A and Hunter J-R 2010 Variability and trends in the directional wave climate of the Southern Hemisphere Int. J. Climatol. 30 475–91.
- Hemer M, Fan Y, Mori N, Semedo A and Wang X 2013 Projected changes in wave climate from a multi-model ensemble Nat. Clim. Change 3 471–6.
- Barnard, P., Short, A., Harley, M. et al. Coastal vulnerability across the Pacific dominated by El Niño/Southern Oscillation. Nature Geosci 8, 801–807 (2015). [CrossRef]
- Izaguirre C, Mendez F J, Menedez M, Luceno A and Losada I J 2010 Extreme wave climate variability in Southern Europe using satellite data J. Geophys. Res. 115 C04009.
- Shimura, T.; Mori, N.; Mase, H. Ocean Waves and Teleconnection Patterns in the Northern Hemisphere. J. Clim. 2013, 26, 8654–8670.
- Martínez-Asensio, A., Tsimplis, M.N., Marcos, M., Feng, X., Gomis, D., Jordà, G. and Josey, S.A. (2016), Response of the North Atlantic wave climate to atmospheric modes of variability. Int. J. Climatol., 36: 1210-1225. https://doi.org/10.1002/joc.4415.
- Castelle, B.; Dodet, G.; Masselink, G.; Scott, T. A new climate index controlling winter wave activity along the Atlantic coast of Europe: The West Europe Pressure Anomaly. Geophys. Res. Lett. 2017, 44, 1384–1392.
- Almar R, Kestenare E, Reyns J, Jouanno J, Anthony E J, Laibi R, Hemer M, Du Penhoat Y and Ranasinghe R. (2015). Response of the Bight of Benin (Gulf of Guinea, West Africa) coastline to anthropogenic and natural forcing, Part1: wave climate variability and impacts on the longshore sediment transport Cont. Shelf Res. 110 48–59.
- Hasselmann S et al. 1988 The WAM model - a third generation ocean wave prediction model J. Phys. Oceanogr. 18 1775–810.
- Winant, C. D., Dorman, C. E., Friehe, C. A., & Beardsley, R. C. (1988). The marine layer off northern California: An example of supercritical channel flow. Journal of the Atmospheric Sciences, 45(23), 3588–3605. https://doi.org/10.1175/1520-0469(1988)045<3588:TMLONC>2.0.CO;2.
- Colosi, L. V., Villas Bôas, A. B., & Gille, S. T. (2021). The seasonal cycle of significant wave height in the ocean: Local versus remote forcing. Journal of Geophysical Research: Oceans, 126, e2021JC017198. https://doi.org/10.1029/2021JC017198.
- Diaw A.T. (1984). Morphométrie du littoral sénégalais et gambien. Notes Africaines, Dakar, 183, 58-63, 5 fig., 1 tab.
- CSE., 2005. Rapport sur l’état de l’environnement au Sénégal. Edition 2005, Ministère de l’Environnement et de la protection de la nature ; 231 P.
- Niang Diop Isabelle, (1995). L’érosion sur la Petite côte du Sénégal à partir de l’exemple de Rufisque ; passé-présent-futur. Thèse de doctorat d’état en géologie littoral, Université. D’Angers, 317 P.
- Guilcher, A.; Nicholas, J.P. Observation sur la Langue de Barbarie et les bras du Sénégal aux environs de Saint-Louis. Bulletin d’Information du Comité Océanographique pour les Etudes Côtières1954,6, 227–242. (In French).
- Tolman, H. L., 1997. User manual and system documentation of WAVEWATCH-III version 1.15. NOAA / NWS / NCEP / OMB Technical Note 151, 97 pp.
- Tolman, H. L., 1999a. User manual and system documentation of WAVEWATCH-III version 1.18. NOAA / NWS / NCEP / OMB Technical Note 166, 110 pp.
- Tolman, H. L., 2009, User manual and system documentation of WAVEWATCH III version 3.14. NOAA/NWS/NCEP/MMAB Technical Note 276, 194p.
- Wamdi Group. The WAM model—A third generation ocean wave prediction model. J. Phys. Oceanogr. 1988, 18, 1775–1810.
- Komen, G. J., L. Cavaleri, M. Donelan, K. Hasselmann, S. Hassel-mann, and P. A. E. M. Janssen, Eds.,1994: Dynamic and Mod-elling of Ocean Waves. Cambridge University Press, 532 pp.
- Bidlot J.-R. and M.W. Holt, (2006): Verification of operational global and regional wave forecasting systems against measurements from moored buoys. JCOMM Technical Report, 30.
- Yanenko, N.N., 1971. The Method of Fractional Steps, Springer-Verlag.
- Tolman, H. L., and N. Booij (1998), Modeling wind waves using wavenumber direction spectra and a variable wavenumber grid, The Global Atmosphere and Ocean System, 6, 295–309.
- III® Development Group (2019). User manual and system documentation of WAVEWATCH III (R) version 6.07.
- GEBCO, 2019. https://download.gebco.net/.
- Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., Chiara, G.D., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R.J., Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., Thépaut, J., 2020. The ERA5 global reanalysis. Quart. J. R. Meteorol. Soc. 146, 1999–2049.
- Alday, Matias & Ardhuin, Fabrice & Accensi, Mickael & Dodet, Guillaume. (2021). A global wave parameter database for geophysical applications. Part 3: improved forcing and spectral resolution. 10.1002/essoar.10505476.4.
- Pineau-Guillou, L., Ardhuin, F., Bouin, M.-N., Redelsperger, J.-L., Chapron, B., Bidlot, J., Quilfen, Y., 2018. Strong winds in a coupled wave-atmosphere model during a north Atlantic storm event: evaluation against observations. Quart. J. R. Meteorol. Soc. 144, 317–332.
- Benetazzo, Alvise & Barbariol, Francesco & Davison, Silvio & Sclavo, Mauro & Favaretto, Chiara & Mercogliano, Paola. (2022). Correction of ERA5 Wind for Regional Climate Projections of Sea Waves. Water. 14. 10.3390/w14101590.
- Campos, R.M.; Gramcianinov, C.B.; de Camargo, R.; da Silva Dias, P.L. Assessment and Calibration of ERA5 Severe Winds in the Atlantic Ocean Using Satellite Data. Remote Sens. 2022, 14, 4918. https://doi.org/10.3390/rs14194918.
- Hasselmann, S., Hasselmann, K., Allender, J., and Barnett, T.: Computation and parameterizations of the nonlinear energy transfer in a gravity-wave spectrum. Part II: Parameterizations of the nonlinear energy transfer for application in wave models, J. Phys. Oceanogr., 15, 1378–1391, http://journals.ametsoc.org/doi/pdf/10.1175/15200485%281985%29015%3C1378%3ACAPOTN%3E2.0.CO%3B2, 1985.
- Comas-Bru, L; Hernández, A (2018): Reconciling North Atlantic climate modes: Revised monthly indices for the East Atlantic and the Scandinavian patterns beyond the 20th century. Earth System Science Data, 10, 2329-2344, https://doi.org/10.5194/essd-10-2329-2018.
- Alday, Matias & Ardhuin, Fabrice & Dodet, Guillaume & Accensi, Mickael. (2022). Accuracy of numerical wave model results: application to the Atlantic coasts of Europe. Ocean Science. 18. 1665-1689. 10.5194/os-18-1665-2022.
- Reguero, B. G., Méndez, F. J., & Losada, I. J. (2013). Variability of multivariate wave climate in Latin America and the Caribbean. Global and Planetary Change, 100, 70–84. doi:10.1016/j.gloplacha.2012.09.005.
- Lavaud, L., Bertin, X., Martins, K., Pezerat, M., Coulombier, T., & Dausse, D. (2022). Wave dissipation and mean circulation on a shore platform under storm wave conditions. Journal of Geophysical Research: Earth Surface, 127, e2021JF006466. https://doi.org/10.1029/2021JF006466.
- Guerin, K. Dynamics of the Sandy Coastline from Thiaroye to Bargny (Bay of Goree-Senegal). Master’s Thesis, University of Paris 1-Sorbonne-Panthéon, Paris, France, 2003; 198p.
- Hemer, M. A. (2010), Historical trends in Southern Ocean storminess: Long-term variability of extreme wave heights at Cape Sorell, Tasmania, Geophys. Res. Lett., 37, L18601, doi:10.1029/2010GL044595.
- Tracy, F. T., B. Tracy, and D. T. Resio (2006), ERDC MSRC Resource, Tech. Rep. Fall 2006, US Army Corps of Engineers.
- Bunney, C. C., A. Saulter, and T. Palmer (2013), Reconstruction of complex 2D wave spectra for rapid deployment of nearshore wave models, in Marine Structures and Breakwaters 2013, Institute of Civil Engineers.











Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
