Submitted:
23 May 2023
Posted:
24 May 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Cancer Treatment Vaccines
2.1. DNA-Based Vaccines
2.2. Peptide-Based Vaccines
2.3. Viral Vector-Based Vaccines
2.4. Cell-Based Vaccines
2.4.1. Tumor Cell-Based Vaccines
2.4.2. Dendritic Cell-Based Vaccines
| DNA-Based Vaccines | ||||||
| Coding TA epitop | Plasmid vector | adjuvants | Target; Phase | N, appl. route | Outcomes | REF/ Year |
| PSA | pVAX/PSA | GM-CSF, IL-2 | CRPC; Phase I | 9 | In 25% cases (2) a PSA-specific cellular immune response and a rise in anti-PSA IgG. No AE (WHO grade >2). | [64] /2004 |
| CRPC; Phase I | 6 | Induction of PSA-specific cellular immune responses in some cases. | [65] /2005 | |||
| Full-length PAP | pTVG-HP [MVI-816] | GM-CSF | stage D0 PCa; Phase I/IIa | 22, i.d. |
No significant AE. PAP-specific CD4+ and/or CD8+ T-cell proliferation (41% patients), PAP-specific IFN gamma-secreting CD8+ T-cells (14%). | [66,67] /2009 2010 |
| CSPC; Phase II NCT01341652 | 99 i.d. |
Vaccination had detectable effects on micrometastatic bone disease. | [68] /2019 | |||
| modified PSA (rhesus PSA) | pVAXrcPSAv531 | / | PCa with BCR; Phase I NCT00859729 | 15, i.d., EP |
No systemic toxicity. Specific T-cell reactivity PSA was observed in some patients. | [69] /2013 |
| AR LBD (androgen receptor ligand-binding domain) | pTVG-AR | ± GM-CSF | mCSPC; Phase I multicenter | 40 | Delayed the time to castration resistance, 28% had a PSA progression event. No grade ≥3 AE. 47% developed Th1-type immunity to the AR LBD with a significantly prolonged PPFS vs. patients without immunity. | [70] /2020 |
| Viral Vector-Based Vaccines | ||||||
| Coding TAepitop | Virus vector | Adjuvants | Target; Phase | N, appl. route | Outcomes | REF/ Year |
| PSA | rV-PSA | ± GM-CSF | PCa after radical prostatectomy or radiation therapy; Phase I | 33 | Safe. Specific T-cell response to PSA-3. In 42% cases stable disease for 6 months, in 27% for 11-25 months. | [71] /2000 |
| advanced mPCa; Phase I | 42, d.s., s.c. |
No significant treatment-related toxicity; increase in the proportion of PSA-specific T cells after vaccination in some patients. | [72] /2002 | |||
| PSA | rF-PSA / rV-PSA | / | advanced PCa; Phase II | 64 | Minimal toxicity; increase in PSA-specific T-cell responses; free of PSA and clinical progression after 19 mo. | [73] /2004 |
| MUC-1 | VV/MUC-1/IL-2 (vaccinia virus expressing MUC-1 and IL-2) | IL-2 | advanced PCa; Phase I | 16, i.m. | Safe and well tolerated. MHC independent MUC-1 specific cytotoxic T-cell activity, 1 patient had an objective tumor response. | [74] /2004 |
| 5T4 (Trophoblast glycoprotein) (TroVax) | vaccinia Ankara virus | ± GM-CSF | mCRPC; Phase II | 27, i.m. | Safe and well tolerated. 5T4-specific antibody responses, robust 5T4-specific immune responses correlated with time to progression, no objective clinical responses. | [75] /2008 |
| PSA | adenovirus/ PSA | / | metastatic PCa; Phase I | 32 s.c. |
Safe with no serious AE. 34% ofpatients produced anti-PSA antibodies, 68% produced anti-PSA T-cell responses, PSA-DT was increased in 48%. | [76] /2009 |
| PSA | rV-PSA/ rF-PSA | GM-CSF | mCRPC; Phase II | 32 | Enhanced mOS. PSA-specific T-cell responses showed a trend (p=0.055) toward enhanced survival. | [40] /2010 |
| PSA | PROSTVAC-VF (rV-PSA/rF-PSA) |
+ GM-CSF + 3 costimulatory molecules | mCRPC; Phase II | 82/125 | Longer mOS by 8.5 months (25.1 v 16.6 months for controls); | [38] /2010 |
| locally recurrent or progressive PCa; Phase I | 21, s.c., i.t. | Safe and feasible. Stable (10) or improved (9) PSA values. Improved serum PSA kinetics and intense post-vaccination inflammatory infiltrates were seen in the majority of patients. | [77] /2013 | |||
| PSMA | PSMA-VRP (Venezuelan Equine Encephalitis virus) | / | mCRPC; Phase I | 12 | Safe, no toxicities were observed. No PSMA specific cellular responses - dosing was suboptimal, few patients had a humoral response to PSMA. | [78] /2013 |
| / | HVJ-E (Inactivated hemagglutinating virus of Japan envelope) | / | CRPC; Phase I/II UMIN000006142 | 6 i.t. and s.c. | PSA response rate was 16.6% (1/6), NK cell activity was elevated, IL-6, IFN-α, IFN-β and IFN-γ levels were not affected. | [79] /2017 |
| PSA | PROSTVAC-VF | ± GM-CSF | mCRPC; Phase III | 864 | Safe, well tolerated, it had no effect on OS or AWE (alive without events). | [80] /2019 |
| 5T4 (Trophoblast glycoprotein) (TroVax) | ChAd (chimpanzee adenovirus) and MVA (Modified Vaccinia Ankara) | early-stage PCa or stable disease; Phase I NCT02390063 | 40, i.m. | Excellent safety profile. 5T4-specific T-cell responses detected in the majority of patients. | [81] /2020 | |
| PSA, brachyury, and MUC-1 | adenovirus 5 (Ad5) | / | mCRPC; Phase I NCT03481816 | 18 | Tolerable and safe, no grade >3 treatment-related AE toxicities. (100%) of 17 patients mounted T-cell response to at least one TAA, 47% of patients mounted immune responses to all three TAAs. | [82] /2021 |
| Peptide-Based Vaccines | ||||||
| TA | Peptide | Stimulatory adjuvants | Target; Phase | N, appl. route | Outcomes | REF/ Year |
| complex carbohydrate hexasaccharide molecule | globo H +KLH | QS-21 immunological saponin | PCa patients; Phase I | 20 s.c. | High-titer IgM antibodies against globo H; decline of the slope of the log of PSA concentration vs. time. | [83] /1999 |
| SART1, SART2, SRAT3, p56lck, ART-1, ART-4, CypB | PPV (up to 5 selected peptides ) | / | CRPC; Phase I | 10, i.d. | Safe and well tolerated with no major AE. Increased CTL response to both peptides and cancer cells were observed in four (40%) patients. Anti-peptide IgG antibodies were also detected in post-vaccination sera of seven (70%) patients. Decrease in PSA level in some patients. | [84] /2003 |
| HER-2/neu | E75 | GM-CSF | advanced PCa; Phase I | 17 | Safe with only minor toxicities observed. Effective in eliciting an HER-2/neu-specific immune response. | [85] /2005 |
| Thomsen-Friedenreich antigen | TF -KLH | QS21 immunological saponin | biochemically relapsed PCa; Phase I | 20 | All patients developed maximum IgM and IgG antibody titers by week 9, change in post-treatment logPSA slopes vs. pretreatment was observed. | [86] /2005 |
| SART1, SART2, SART3, Lck, ART1, PAP, PSA PSMA, MRP | PPV (up to 4 selected peptides) | / | ocalized PCa; Phase I | 10 | Increased CTL response and the anti-peptide IgG titer were observed in the post-vaccination samples in 8 of 10. Infiltrating memory CD4 T (CD45RO+) cells was significantly larger in the vaccination group vs. control group. CD8(+) T cell infiltration was seen only in the vaccinated group. | [87] /2007 |
| PSA | PSA peptide | Montanide ISA-51 | recurrent PCa after radical prostatectomy; Phase II pilot,NCT00109811 | 5, s.c. | No serious AE. No significant changes in serum PSA. | [88] /2009 |
| PSA, PSCA, PSMA, Survivin, Prostein, TRP-P8 | 14 synthetic multi-peptide vaccination cocktail | ± (imiquimod or GM-CSF or mucin-1-mRNA/protamine complex) + montanide ISA51 | HSPC; Phase I/II | 19, s.c. | Well tolerated, no patient showed any severe AE. A clinical response was observed in 8 out of 19 patients and PSA-DT was improved in 4 cases. | [89] /2009 |
| Ii-Key/HER-2/neu | AE37 | GM-CSF | castrate-sensitive and CRPC; Phase I | 32 | Safe. AE37 elicited HER-2/neu-specific cellular immune responses. |
[90] /2010 |
| NY-ESO-1 | NY-ESO-1 peptides | CpG 7909 | Advanced PCa; Phase I | 13 | Induced integrated antigen-specific antibody immune responses, T-cell responses were induced in 9 patients (69%). | [91] /2011 |
| SART3, MRP3, ppMAPkkk, HNRPL, EGF-R, PSMA, UBE2V, p56lck, CypB, PAP, SART2, PSA, WHSC2, EZH2, PTHrP |
PPV (2- 4 selected peptides) | Montanide ISA51V | CRPC; Phase II | 100 | PPV was safe and well tolerated. Peptide-specific IgG and T-cell responses strongly correlated with PSADT, and with OS. | [92] /2013 |
| hTERT | GX301 (4 telomerase peptides) | Montanide ISA-51, Imiquimod | PCa; Phase I/II | 11, i.d. | Safe, well tolerated. With potential immunologic and clinical efficacy, vaccine-specific immunological responses were detected in all patients. | [93] /2013 |
| NY-ESO-1 | NY-ESO-1 peptides | / | mCRPC; Phase I | 9, s.c. | NY-ESO-1 specific T-cell response in 6 P, PSA DT increased from 3.1 to 4.9 mo. | [94] /2014 |
| SART3, Lck, UBE2V, WHSC2, HNRPL, MRP3, PAP, PSMA, PSA, EGF-R, PTH-rP, CypB | KRM-20 (mixture of 20 peptides) | Montanide ISA51V | CRPC; Phase I UMIN000008209 |
17 | Safe, no serious AE. Partial response or no change in PSA observed in 7/15 patients (47%), CTL activity for at least one peptide and IgG level were augmented in most patients. | [95] /2015 |
| hTERT | UV1 long peptides | + GM-CSF | mPC; Phase I/IIa | 21, i.d. | Moderate toxicity, UV1-specific T cell responses in 18/21 patients (85.7%). | [96] /2017 |
| CDCA1 (Cell division cycle associated 1) | CDCA1 peptide | Montanide ISA51 | CRPC post DBC; Phase I NCT01225471 | 12, s.c. | Well tolerated without any serious AE. Peptide-specific CTL responses. | [97] /2017 |
| RhoC | synthetic long peptide of RhoC | Montanide ISA-51 | PCa with radical prostatectomy; Phase I/II | 22 | Well tolerated, a strong CD4 T cell response. | [98] /2020 |
| hTERT | GX301 (4 telomerase peptides) | Montanide ISA-51, Imiquimod | mCRPC; Phase II 2014-000095-26; NCT02293707 | 63, i.d. | No major side effects, 54% overall immune responder rate, 95% of patients showed at least one vaccine-specific immune response. | [99] /2021 |
| Tumor Cell-Based Vaccines | ||||||
| Cells | Stimulatory adjuvants | Target; Phase | N, appl. route | Outcomes | REF/ Year | |
| autologous, irradiated tumor cells engineered to secrete GM-CSF | GM-CSF | PCa; Phase I | 8 | Well tolerated. Induction of anticancer immunity as assessed using DTH skin testing; new antiprostate cancer cell antibodies were detected. | [100] /1999 | |
| Three tumor cell lines+ Mycobacterium vaccae (SRL-172) | CRPC; Phase I/II | 60 | Safe and well tolerated with no major AE. No significant decrease in PSA, an increase in cytokine production, increases in specific antibodies and evidence of T-cell proliferation in response to the vaccinations. | [101] /2002 | ||
| Three allogeneic cell lines+ bacille Calmette-Guérin | CRPC; Phase I | 28 i.d. | No significant toxicity. 11/26 patients (42%) showed significant, prolonged decreases in PSA velocity. | [102] /2005 | ||
| LNCaP and PC-3, irradiated, engineered to secrete GM-CSF (GVAX plat-form) | GM-CSF | PCa with PSA relapse + radical prostatectomy; Phase I/II | 21 | Favorable safety profile. Significant decrease in PSA velocity. | [103] /2006 | |
| mPCa; Phase I/II | 80, i.d. | Well tolerated, no serious AE. PSA stabilization occurred in 15 (19%) patients, and a>50% decline in PSA was seen in 1 patient. | [44] /2008 | |||
| autologous tumor cells, irradiated | immunomodulated with IFN-α2b and BCG | mPCa; Phase I | 11 | Safe, AE restricted to the inoculation sites. Two patients had a decrease in PSA. | [104] /2007 | |
| LNCaP, irradiated, engineered to express recombinant IL-2 and IFN-gamma | IL-2 and IFN-gamma | CRPC; Phase I | 6 | Safe and feasible. 50% PSA decline was achieved in two of the six patients. | [105] /2007 | |
| CRPC; Phase I/II | 30, i.d. | Safe and well tolerated. Significant prolongation of the PSA-DT, 3 patients sustained a >50% decrease in PSA, T cell stimulation in the majority of patients. | [106] /2009 | |||
| 2 allogeneic prostate tumor cell lines, irradiated, engineered to express αGal epitopes | HAP (HyperAcute-Prostate) | advanced PCa; Phase I | 8 | Minimal toxicity. Humoral immune responses to autoantigens in 25% P (2/8), suggesting dose-dependent effect. | [107] /2013 | |
| Dendritic Cell-Based Vaccines | ||||||
| TA | Cells | Stimulatory adjuvants | Target; Phase | N, appl. route | Outcomes | REF/ Year |
| loaded with PSMA peptides: PSM-P1 or PSM-P2 | aDC | CRPC; Phase I, Phase II |
19 and 33, i.v. |
No significant toxicity. Increased T-cell response to PSMA peptides in HLA-A2-positive patients, 7/19 and 9/33 partial PSA values responders. | [108] /1996 [109] /1998 | |
| hrPSA | aDC | PCa after radical prostatectomy; Phase I | 24, i.v., s.c., i.d. | No serious AE. Transient PSA decrease; disappearance of circulating prostate cells. | [110] /2004 | |
| loaded with hTERT I540 peptide | aDC | CRPC; Phase I | 5 | No significant toxicity. hTERT-specific T lymphocytes were induced in 2 patients. | [111] /2004 | |
| loaded with allogeneic prostate cancer cell lines lysate (LNCaP, DU14, JM-RCC) | aDC | KLH | CRPC; Phase I/II | 11, i.n. or i.d.l | Feasible and not toxic, induction of both humoral and cellular immunity, a reduction in PSA velocity in 1 and an increased PSA-DT in six men. | [112] /2004 |
| loaded with PAP + GM-CSF (sipuleucel-T) | aDC | mCRPC; Phase III multicenter NCT00065442 | 82 and 341, i.v. | Well tolerated. Beneficial treatment effect: increased specific T cell response. TTP, interim survival were associated with a subset of subjects with Gleason scores ≤ 7, prolonged OS for 4.1-month. | [113] /2005 [114] /2010 | |
| loaded with a cocktail peptide PSA, PSMA, survivin, prostein, trp-p8 | DCs | CRPC; Phase I | 8 | Safe and feasible, no serious AE. One partial response in PSA (decrease >50%) and 3 stable PSA values or decelerated PSA increases. Three of four PSA responders also showed antigen-specific CD8+ T-cell activation against prostein, survivin, and PSMA. | [115] /2006 | |
| loaded with PSA-peptide (PSA146-154) | aDC | locally advanced or mPCa; Phase Ib | 14, i.v. | DTH-derived T cells exhibited PSA-peptide-specific cytolytic activity. | [116] /2006 | |
| loaded with peptides derived from PSCA, PAP, PSMA, PSA | aDC | CRPC; Phase I/II | 6, i.d. | Well tolerated. Significant cytotoxic T cell responses against all prostate-specific antigens tested; an increase in PSA-DT. | [117] /2006 | |
| loaded with PSCA and PSA peptides | aDC | mCRPC; Phase I/II | 12, s.c. | No relevant toxicities. DTH-positivity was associated with significantly superior survival. | [118] /2006 | |
| loaded with PSA peptides (PSA-1, PSA-2, PSA-3) | aDC | IFN-gamma | mCRPC; pilot | 12, i.c. | Well tolerated, no serious AE. 2/12 slight increase in PSA-peptide specific T-lymphocytes; one partial and one mixed responder were identified. | [119] /2007 |
| loaded with a cocktail peptide: PSA, PAP, PSMA | aCD1c | KLH | mCRPC; Phase I | 12, i.d. or i.v. | Feasible, safe, and well tolerated. | [120] /2008 |
| loaded with apoptotic LNCaP tumor | aDC | KLH | CRPC; Phase I | 12, s.c. | Safe and well tolerated. Increase in T cell proliferation responses to prostate tumor cells in vitro, decrease in PSA slope, two-fold increase in PSA-DT. | [121] /2010 |
| loaded with prostate cancer cell lines lysates (DU145, LNCaP, PC3) | alogeneic DC | CCH, TRIMEL | CRPC; Phase I | 14, s.c. | Safe, no relevant AE. 6/14 decrease in PSA levels, DTH(+) patients showed a prolonged PSA-DT. | [122] /2013 |
| loaded (incubated) with rPSMA, rSurvivin peptides | DC | CRPC; Phase I | 11, s.c. | Cellular immune response, disease stabilization, no adverse events, and partial remission. | [123] /2015 | |
| Tn-MUC1 loaded | aDC | nmCRPC; Phase I/II | 17, i.d., i.n. | Safe, able to induce significant T-cell responses, and increase in PSADT following vaccination. | [124] /2016 | |
| loaded with protein PA001-contains the extracellular domain of hPSMA | aDC | transduced with Ad5f35 encoding inducible human (ih)-CD40 | mCRPC; Phase I | 18, i.d. | Safe. Anti-tumor activity was observed with PSA declines, objective tumor regressions and robust efficacy of post-trial therapy. | [125] /2017 |
| loaded with irradiated prostate cancer cell line LNCaP (DCVAC/PCa) |
aDC | Cyclophosphamide, Imiquimod | PCa with BCR; Phase I/II 2009-017259-91 | 27 s.c. | No significant side effects, PSA-DT in all treated patients increased after 12 doses from 5.67 months to 18.85 months, specific PSA-reacting T lymphocytes were increased significantly. | [126] /2018 |
| incubated with NY-ESO-1, MAGE-C2 and MUC1 | a-mDC + a-pDC | / | CRPC; Phase IIa NCT02692976 | 21 | Feasible and safe. Induced functional antigen-specific T cells which correlated with an improved clinical outcome. | [127] /2019 |
| electrofused with autologous prostate tumor cells (aHyC) | aDC | Cyclophosphamide, allogeneic buffy coat | CRPC; Phase I | 19, s.c. | Safe, no serious AE, and feasible. mOS was 58.8 months. Attenuates an increase in peripheral blood CD56brightCD16− NK cells. A decrease in CD56brightCD16− NK cells correlates with prolonged patient survival. | [11] /2021 [12] /2022 |
| loaded with mRNA from autologous TC or mRNAs that encoded hTERT and Survivin | aDC | / | PCa patients after prostatectomy; Phase I/II | 20 | Safe, no serious AE. 11/20 P were BCR-free over 96 months. | [128] /2022 |
| Mixed cancer-treatment vaccines | ||||||
| TA | IT-treatment modality | adjuvants | Target; Phase | N, appl. route | Outcomes | REF/ Year |
| PSMA | DNA / Ad expression vector | ±CD86 plasmid, ±GM-CSF | PCa, Phase I/II clinical trial | 26, i.d. | No serious AE. 100% of P inoculated with the viral vector and 50% of P receiving DNA plasmid showed signs of successful immunization. | [129] /2000 |
| PRAME, PSMA | DNA plasmid + 2 peptides | / | PCa; Phase I | 10, i.n. | Safe, feasible, well tolerated. 4 of 10 P had stable disease (SD) for 6 months or longer, or PSA decline. | [130] /2011 |
| PAP | sipuleucel-T ± pTVG-HP DNA | ±GM-CSF | mCRPC; Phase I, pilot NCT01706458 | 18, i.v.; i.d. | No AE > grade 2 were observed. Th1-biased PAP-specific T-cell responses were detected in 11/18, higher titer antibody responses to PAP detectable in booster arm. The mOS was 28 months. | [131] /2018 |
| hTERT (V934/V935) | Ad6expression vector ± DNA | / | PCa; Phase I, pilot NCT00753415 | 14, EP | Good safety profile, with no severe AE. Significant increase in immunogenicity response against hTERT. | [132] /2020 |
2.4.2.1. Safety of DC-based vaccines
3. Adoptive Cell Transfer
4. Limitations of Immunotherapy in Prostate Cancer
4.1. Tumor Microenvironment
4.2. Biomarkers
5. Discussion
6. Conclusions and Future Directions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflict of Interest
Abbreviations
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Cornford, P.; van den Bergh, R.C.N.; Briers, E.; Van den Broeck, T.; Cumberbatch, M.G.; De Santis, M.; Fanti, S.; Fossati, N.; Gandaglia, G.; Gillessen, S.; et al. Eau-eanm-estro-esur-siog guidelines on prostate cancer. Part ii-2020 update: Treatment of relapsing and metastatic prostate cancer. Eur Urol 2021, 79, 263–282. [Google Scholar] [CrossRef]
- Palucka, K.; Banchereau, J. Dendritic-cell-based therapeutic cancer vaccines. Immunity 2013, 39, 38–48. [Google Scholar] [CrossRef]
- Wurz, G.T.; Kao, C.J.; DeGregorio, M.W. Novel cancer antigens for personalized immunotherapies: Latest evidence and clinical potential. Therapeutic advances in medical oncology 2016, 8, 4–31. [Google Scholar] [CrossRef] [PubMed]
- Fay, E.K.; Graff, J.N. Immunotherapy in prostate cancer. Cancers (Basel) 2020, 12. [Google Scholar] [CrossRef] [PubMed]
- Janiczek, M.; Szylberg, Ł.; Kasperska, A.; Kowalewski, A.; Parol, M.; Antosik, P.; Radecka, B.; Marszałek, A. Immunotherapy as a promising treatment for prostate cancer: A systematic review. J Immunol Res 2017, 2017, 4861570. [Google Scholar] [CrossRef] [PubMed]
- Drake, C.G.; Lipson, E.J.; Brahmer, J.R. Breathing new life into immunotherapy: Review of melanoma, lung and kidney cancer. Nat Rev Clin Oncol 2014, 11, 24–37. [Google Scholar] [CrossRef]
- Beer, T.M.; Kwon, E.D.; Drake, C.G.; Fizazi, K.; Logothetis, C.; Gravis, G.; Ganju, V.; Polikoff, J.; Saad, F.; Humanski, P.; et al. Randomized, double-blind, phase iii trial of ipilimumab versus placebo in asymptomatic or minimally symptomatic patients with metastatic chemotherapy-naive castration-resistant prostate cancer. J Clin Oncol 2017, 35, 40–47. [Google Scholar] [CrossRef]
- Kwon, E.D.; Drake, C.G.; Scher, H.I.; Fizazi, K.; Bossi, A.; van den Eertwegh, A.J.; Krainer, M.; Houede, N.; Santos, R.; Mahammedi, H.; et al. Ipilimumab versus placebo after radiotherapy in patients with metastatic castration-resistant prostate cancer that had progressed after docetaxel chemotherapy (ca184-043): A multicentre, randomised, double-blind, phase 3 trial. The Lancet. Oncology 2014, 15, 700–712. [Google Scholar] [CrossRef]
- Kantoff, P.W.; Higano, C.S.; Shore, N.D.; Berger, E.R.; Small, E.J.; Penson, D.F.; Redfern, C.H.; Ferrari, A.C.; Dreicer, R.; Sims, R.B.; et al. Sipuleucel-t immunotherapy for castration-resistant prostate cancer. The New England journal of medicine 2010, 363, 411–422. [Google Scholar] [CrossRef]
- Haque Chowdhury, H.; Hawlina, S.; Gabrijel, M.; Trkov Bobnar, S.; Kreft, M.; Lenart, G.; Cukjati, M.; Kopitar, A.N.; Kejzar, N.; Ihan, A.; et al. Survival of castration-resistant prostate cancer patients treated with dendritic-tumor cell hybridomas is negatively correlated with changes in peripheral blood cd56(bright) cd16(-) natural killer cells. Clin Transl Med 2021, 11, e505. [Google Scholar] [CrossRef] [PubMed]
- Hawlina, S.; Chowdhury, H.H.; Smrkolj, T.; Zorec, R. Dendritic cell-based vaccine prolongs survival and time to next therapy independently of the vaccine cell number. Biology Direct 2021. In revision. [Google Scholar] [CrossRef]
- Powles, T.; Yuen, K.C.; Gillessen, S.; Kadel, E.E., 3rd; Rathkopf, D.; Matsubara, N.; Drake, C.G.; Fizazi, K.; Piulats, J.M.; Wysocki, P.J.; et al. Atezolizumab with enzalutamide versus enzalutamide alone in metastatic castration-resistant prostate cancer: A randomized phase 3 trial. Nat Med 2022, 28, 144–153. [Google Scholar] [CrossRef]
- Hansen, A.R.; Massard, C.; Ott, P.A.; Haas, N.B.; Lopez, J.S.; Ejadi, S.; Wallmark, J.M.; Keam, B.; Delord, J.P.; Aggarwal, R.; et al. Pembrolizumab for advanced prostate adenocarcinoma: Findings of the keynote-028 study. Ann Oncol 2018, 29, 1807–1813. [Google Scholar] [CrossRef] [PubMed]
- Tucker, M.D.; Zhu, J.; Marin, D.; Gupta, R.T.; Gupta, S.; Berry, W.R.; Ramalingam, S.; Zhang, T.; Harrison, M.; Wu, Y.; et al. Pembrolizumab in men with heavily treated metastatic castrate-resistant prostate cancer. Cancer Med 2019, 8, 4644–4655. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Campbell, B.K.; Stylli, S.S.; Corcoran, N.M.; Hovens, C.M. The prostate cancer immune microenvironment, biomarkers and therapeutic intervention. Uro 2022, 2, 74–92. [Google Scholar] [CrossRef]
- Kalina, J.L.; Neilson, D.S.; Comber, A.P.; Rauw, J.M.; Alexander, A.S.; Vergidis, J.; Lum, J.J. Immune modulation by androgen deprivation and radiation therapy: Implications for prostate cancer immunotherapy. Cancers (Basel) 2017, 9. [Google Scholar] [CrossRef]
- Miao, L.; Zhang, Y.; Huang, L. Mrna vaccine for cancer immunotherapy. Mol Cancer 2021, 20, 41. [Google Scholar] [CrossRef]
- Hoover, H.C., Jr.; Surdyke, M.G.; Dangel, R.B.; Peters, L.C.; Hanna, M.G., Jr. Prospectively randomized trial of adjuvant active-specific immunotherapy for human colorectal cancer. Cancer 1985, 55, 1236–1243. [Google Scholar] [CrossRef]
- van der Bruggen, P.; Traversari, C.; Chomez, P.; Lurquin, C.; De Plaen, E.; Van den Eynde, B.; Knuth, A.; Boon, T. A gene encoding an antigen recognized by cytolytic t lymphocytes on a human melanoma. Science 1991, 254, 1643–1647. [Google Scholar] [CrossRef]
- Topalian, S.L.; Hodi, F.S.; Brahmer, J.R.; Gettinger, S.N.; Smith, D.C.; McDermott, D.F.; Powderly, J.D.; Carvajal, R.D.; Sosman, J.A.; Atkins, M.B.; et al. Safety, activity, and immune correlates of anti-pd-1 antibody in cancer. N Engl J Med 2012, 366, 2443–2454. [Google Scholar] [CrossRef] [PubMed]
- Saxena, M.; van der Burg, S.H.; Melief, C.J.M.; Bhardwaj, N. Therapeutic cancer vaccines. Nat Rev Cancer 2021, 21, 360–378. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Petrovsky, N. Molecular mechanisms for enhanced DNA vaccine immunogenicity. Expert review of vaccines 2016, 15, 313–329. [Google Scholar] [CrossRef]
- Ori, D.; Murase, M.; Kawai, T. Cytosolic nucleic acid sensors and innate immune regulation. International reviews of immunology 2017, 36, 74–88. [Google Scholar] [CrossRef] [PubMed]
- Tang, C.K.; Pietersz, G.A. Intracellular detection and immune signaling pathways of DNA vaccines. Expert review of vaccines 2009, 8, 1161–1170. [Google Scholar] [CrossRef]
- Gálvez-Cancino, F.; López, E.; Menares, E.; Díaz, X.; Flores, C.; Cáceres, P.; Hidalgo, S.; Chovar, O.; Alcántara-Hernández, M.; Borgna, V.; et al. Vaccination-induced skin-resident memory cd8(+) t cells mediate strong protection against cutaneous melanoma. Oncoimmunology 2018, 7, e1442163. [Google Scholar] [CrossRef]
- Suschak, J.J.; Williams, J.A.; Schmaljohn, C.S. Advancements in DNA vaccine vectors, non-mechanical delivery methods, and molecular adjuvants to increase immunogenicity. Human vaccines & immunotherapeutics 2017, 13, 2837–2848. [Google Scholar]
- Cole, G.; McCaffrey, J.; Ali, A.A.; McCarthy, H.O. DNA vaccination for prostate cancer: Key concepts and considerations. Cancer Nanotechnol 2015, 6, 2. [Google Scholar] [CrossRef]
- Colluru, V.T.; McNeel, D.G. B lymphocytes as direct antigen-presenting cells for anti-tumor DNA vaccines. Oncotarget 2016, 7, 67901–67918. [Google Scholar] [CrossRef]
- Peng, M.; Mo, Y.; Wang, Y.; Wu, P.; Zhang, Y.; Xiong, F.; Guo, C.; Wu, X.; Li, Y.; Li, X.; et al. Neoantigen vaccine: An emerging tumor immunotherapy. Molecular Cancer 2019, 18, 128. [Google Scholar] [CrossRef]
- Malonis, R.J.; Lai, J.R.; Vergnolle, O. Peptide-based vaccines: Current progress and future challenges. Chem Rev 2020, 120, 3210–3229. [Google Scholar] [CrossRef]
- Zanetti, M. A second chance for telomerase reverse transcriptase in anticancer immunotherapy. Nat Rev Clin Oncol 2017, 14, 115–128. [Google Scholar] [CrossRef] [PubMed]
- Noguchi, M.; Sasada, T.; Itoh, K. Personalized peptide vaccination: A new approach for advanced cancer as therapeutic cancer vaccine. Cancer Immunol Immunother 2013, 62, 919–929. [Google Scholar] [CrossRef]
- Rauch, S.; Jasny, E.; Schmidt, K.E.; Petsch, B. New vaccine technologies to combat outbreak situations. Front Immunol 2018, 9, 1963. [Google Scholar] [CrossRef]
- Bouard, D.; Alazard-Dany, D.; Cosset, F.L. Viral vectors: From virology to transgene expression. Br J Pharmacol 2009, 157, 153–165. [Google Scholar] [CrossRef] [PubMed]
- Madan, R.A.; Arlen, P.M.; Mohebtash, M.; Hodge, J.W.; Gulley, J.L. Prostvac-vf: A vector-based vaccine targeting psa in prostate cancer. Expert Opin Investig Drugs 2009, 18, 1001–1011. [Google Scholar] [CrossRef] [PubMed]
- Arlen, P.M.; Gulley, J.L.; Madan, R.A.; Hodge, J.W.; Schlom, J. Preclinical and clinical studies of recombinant poxvirus vaccines for carcinoma therapy. Crit Rev Immunol 2007, 27, 451–462. [Google Scholar] [CrossRef] [PubMed]
- Kantoff, P.W.; Schuetz, T.J.; Blumenstein, B.A.; Glode, L.M.; Bilhartz, D.L.; Wyand, M.; Manson, K.; Panicali, D.L.; Laus, R.; Schlom, J.; et al. Overall survival analysis of a phase ii randomized controlled trial of a poxviral-based psa-targeted immunotherapy in metastatic castration-resistant prostate cancer. J Clin Oncol 2010, 28, 1099–1105. [Google Scholar] [CrossRef]
- Muthana, S.M.; Gulley, J.L.; Hodge, J.W.; Schlom, J.; Gildersleeve, J.C. Abo blood type correlates with survival on prostate cancer vaccine therapy. Oncotarget 2015, 6, 32244–32256. [Google Scholar] [CrossRef]
- Gulley, J.L.; Arlen, P.M.; Madan, R.A.; Tsang, K.Y.; Pazdur, M.P.; Skarupa, L.; Jones, J.L.; Poole, D.J.; Higgins, J.P.; Hodge, J.W.; et al. Immunologic and prognostic factors associated with overall survival employing a poxviral-based psa vaccine in metastatic castrate-resistant prostate cancer. Cancer immunology, immunotherapy : CII 2010, 59, 663–674. [Google Scholar] [CrossRef]
- Sabado, R.L.; Balan, S.; Bhardwaj, N. Dendritic cell-based immunotherapy. Cell Res 2017, 27, 74–95. [Google Scholar] [CrossRef] [PubMed]
- Warren, T.L.; Weiner, G.J. Uses of granulocyte-macrophage colony-stimulating factor in vaccine development. Curr Opin Hematol 2000, 7, 168–173. [Google Scholar] [CrossRef]
- Small, E.J.; Sacks, N.; Nemunaitis, J.; Urba, W.J.; Dula, E.; Centeno, A.S.; Nelson, W.G.; Ando, D.; Howard, C.; Borellini, F.; et al. Granulocyte macrophage colony-stimulating factor--secreting allogeneic cellular immunotherapy for hormone-refractory prostate cancer. Clinical cancer research : An official journal of the American Association for Cancer Research 2007, 13, 3883–3891. [Google Scholar] [CrossRef] [PubMed]
- Higano, C.S.; Corman, J.M.; Smith, D.C.; Centeno, A.S.; Steidle, C.P.; Gittleman, M.; Simons, J.W.; Sacks, N.; Aimi, J.; Small, E.J. Phase 1/2 dose-escalation study of a gm-csf-secreting, allogeneic, cellular immunotherapy for metastatic hormone-refractory prostate cancer. Cancer 2008, 113, 975–984. [Google Scholar] [CrossRef]
- Silvestri, I.; Cattarino, S.; Giantulli, S.; Nazzari, C.; Collalti, G.; Sciarra, A. A perspective of immunotherapy for prostate cancer. Cancers (Basel) 2016, 8. [Google Scholar] [CrossRef]
- Bansal, D.; Reimers, M.A.; Knoche, E.M.; Pachynski, R.K. Immunotherapy and immunotherapy combinations in metastatic castration-resistant prostate cancer. Cancers (Basel) 2021, 13. [Google Scholar] [CrossRef] [PubMed]
- Koido, S. Dendritic-tumor fusion cell-based cancer vaccines. International journal of molecular sciences 2016, 17. [Google Scholar] [CrossRef]
- Anguille, S.; Smits, E.L.; Bryant, C.; Van Acker, H.H.; Goossens, H.; Lion, E.; Fromm, P.D.; Hart, D.N.; Van Tendeloo, V.F.; Berneman, Z.N. Dendritic cells as pharmacological tools for cancer immunotherapy. Pharmacol Rev 2015, 67, 731–753. [Google Scholar] [CrossRef]
- Anguille, S.; Smits, E.L.; Lion, E.; van Tendeloo, V.F.; Berneman, Z.N. Clinical use of dendritic cells for cancer therapy. Lancet Oncol 2014, 15, e257–e267. [Google Scholar] [CrossRef]
- Sutherland, S.I.M.; Ju, X.; Horvath, L.G.; Clark, G.J. Moving on from sipuleucel-t: New dendritic cell vaccine strategies for prostate cancer. Frontiers in immunology 2021, 12, 641307. [Google Scholar] [CrossRef]
- Risk, M.; Corman, J.M. The role of immunotherapy in prostate cancer: An overview of current approaches in development. Rev Urol 2009, 11, 16–27. [Google Scholar]
- Sipuleucel-t: Apc 8015, apc-8015, prostate cancer vaccine--dendreon. Drugs R D 2006, 7, 197–201. [CrossRef] [PubMed]
- Sheikh, N.A.; Petrylak, D.; Kantoff, P.W.; Dela Rosa, C.; Stewart, F.P.; Kuan, L.Y.; Whitmore, J.B.; Trager, J.B.; Poehlein, C.H.; Frohlich, M.W.; et al. Sipuleucel-t immune parameters correlate with survival: An analysis of the randomized phase 3 clinical trials in men with castration-resistant prostate cancer. Cancer immunology, immunotherapy : CII 2013, 62, 137–147. [Google Scholar] [CrossRef] [PubMed]
- Podrazil, M.; Horvath, R.; Becht, E.; Rozkova, D.; Bilkova, P.; Sochorova, K.; Hromadkova, H.; Kayserova, J.; Vavrova, K.; Lastovicka, J.; et al. Phase i/ii clinical trial of dendritic-cell based immunotherapy (dcvac/pca) combined with chemotherapy in patients with metastatic, castration-resistant prostate cancer. Oncotarget 2015, 6, 18192–18205. [Google Scholar] [CrossRef] [PubMed]
- Vogelzang, N.J.; Beer, T.M.; Gerritsen, W.; Oudard, S.; Wiechno, P.; Kukielka-Budny, B.; Samal, V.; Hajek, J.; Feyerabend, S.; Khoo, V.; et al. Efficacy and safety of autologous dendritic cell-based immunotherapy, docetaxel, and prednisone vs placebo in patients with metastatic castration-resistant prostate cancer: The viable phase 3 randomized clinical trial. JAMA Oncol 2022, 8, 546–552. [Google Scholar] [CrossRef] [PubMed]
- Gabrijel, M.; Repnik, U.; Kreft, M.; Grilc, S.; Jeras, M.; Zorec, R. Quantification of cell hybridoma yields with confocal microscopy and flow cytometry. Biochem Biophys Res Commun 2004, 314, 717–723. [Google Scholar] [CrossRef]
- Zorec, R.; Kreft, M.; Gabrijel, M. Method for determining the quantity and quality of hybridomas. appl. no. 07803258.8, 29.12.2010, 2010.
- Gabrijel, M.; Bergant, M.; Kreft, M.; Jeras, M.; Zorec, R. Fused late endocytic compartments and immunostimulatory capacity of dendritic-tumor cell hybridomas. J Membr Biol 2009, 229, 11–18. [Google Scholar] [CrossRef]
- Gabrijel, M.; Kreft, M.; Zorec, R. Monitoring lysosomal fusion in electrofused hybridoma cells. Biochim Biophys Acta 2008, 1778, 483–490. [Google Scholar] [CrossRef]
- Rosenblatt, J.; Kufe, D.; Avigan, D. Dendritic cell fusion vaccines for cancer immunotherapy. Expert opinion on biological therapy 2005, 5, 703–715. [Google Scholar] [CrossRef]
- Shu, S.; Zheng, R.; Lee, W.T.; Cohen, P.A. Immunogenicity of dendritic-tumor fusion hybrids and their utility in cancer immunotherapy. Critical reviews in immunology 2007, 27, 463–483. [Google Scholar] [CrossRef]
- Sabado, R.L.; Bhardwaj, N. Cancer immunotherapy: Dendritic-cell vaccines on the move. Nature 2015, 519, 300–301. [Google Scholar] [CrossRef] [PubMed]
- Santos, P.M.; Butterfield, L.H. Dendritic cell-based cancer vaccines. Journal of immunology (Baltimore, Md. : 1950) 2018, 200, 443–449. [Google Scholar] [CrossRef]
- Pavlenko, M.; Roos, A.K.; Lundqvist, A.; Palmborg, A.; Miller, A.M.; Ozenci, V.; Bergman, B.; Egevad, L.; Hellström, M.; Kiessling, R.; et al. A phase i trial of DNA vaccination with a plasmid expressing prostate-specific antigen in patients with hormone-refractory prostate cancer. Br J Cancer 2004, 91, 688–694. [Google Scholar] [CrossRef] [PubMed]
- Miller, A.M.; Ozenci, V.; Kiessling, R.; Pisa, P. Immune monitoring in a phase 1 trial of a psa DNA vaccine in patients with hormone-refractory prostate cancer. Journal of immunotherapy (Hagerstown, Md. : 1997) 2005, 28, 389–395. [Google Scholar] [CrossRef] [PubMed]
- McNeel, D.G.; Dunphy, E.J.; Davies, J.G.; Frye, T.P.; Johnson, L.E.; Staab, M.J.; Horvath, D.L.; Straus, J.; Alberti, D.; Marnocha, R.; et al. Safety and immunological efficacy of a DNA vaccine encoding prostatic acid phosphatase in patients with stage d0 prostate cancer. J Clin Oncol 2009, 27, 4047–4054. [Google Scholar] [CrossRef] [PubMed]
- Becker, J.T.; Olson, B.M.; Johnson, L.E.; Davies, J.G.; Dunphy, E.J.; McNeel, D.G. DNA vaccine encoding prostatic acid phosphatase (pap) elicits long-term t-cell responses in patients with recurrent prostate cancer. Journal of immunotherapy (Hagerstown, Md. : 1997) 2010, 33, 639–647. [Google Scholar] [CrossRef] [PubMed]
- McNeel, D.G.; Eickhoff, J.C.; Johnson, L.E.; Roth, A.R.; Perk, T.G.; Fong, L.; Antonarakis, E.S.; Wargowski, E.; Jeraj, R.; Liu, G. Phase ii trial of a DNA vaccine encoding prostatic acid phosphatase (ptvg-hp [mvi-816]) in patients with progressive, nonmetastatic, castration-sensitive prostate cancer. J Clin Oncol 2019, 37, 3507–3517. [Google Scholar] [CrossRef]
- Eriksson, F.; Tötterman, T.; Maltais, A.K.; Pisa, P.; Yachnin, J. DNA vaccine coding for the rhesus prostate specific antigen delivered by intradermal electroporation in patients with relapsed prostate cancer. Vaccine 2013, 31, 3843–3848. [Google Scholar] [CrossRef]
- Kyriakopoulos, C.E.; Eickhoff, J.C.; Ferrari, A.C.; Schweizer, M.T.; Wargowski, E.; Olson, B.M.; McNeel, D.G. Multicenter phase i trial of a DNA vaccine encoding the androgen receptor ligand-binding domain (ptvg-ar, mvi-118) in patients with metastatic prostate cancer. Clinical cancer research : An official journal of the American Association for Cancer Research 2020, 26, 5162–5171. [Google Scholar] [CrossRef]
- Eder, J.P.; Kantoff, P.W.; Roper, K.; Xu, G.X.; Bubley, G.J.; Boyden, J.; Gritz, L.; Mazzara, G.; Oh, W.K.; Arlen, P.; et al. A phase i trial of a recombinant vaccinia virus expressing prostate-specific antigen in advanced prostate cancer. Clinical cancer research : An official journal of the American Association for Cancer Research 2000, 6, 1632–1638. [Google Scholar]
- Gulley, J.; Chen, A.P.; Dahut, W.; Arlen, P.M.; Bastian, A.; Steinberg, S.M.; Tsang, K.; Panicali, D.; Poole, D.; Schlom, J.; et al. Phase i study of a vaccine using recombinant vaccinia virus expressing psa (rv-psa) in patients with metastatic androgen-independent prostate cancer. The Prostate 2002, 53, 109–117. [Google Scholar] [CrossRef]
- Kaufman, H.L.; Wang, W.; Manola, J.; DiPaola, R.S.; Ko, Y.J.; Sweeney, C.; Whiteside, T.L.; Schlom, J.; Wilding, G.; Weiner, L.M. Phase ii randomized study of vaccine treatment of advanced prostate cancer (e7897): A trial of the eastern cooperative oncology group. J Clin Oncol 2004, 22, 2122–2132. [Google Scholar] [CrossRef] [PubMed]
- Pantuck, A.J.; van Ophoven, A.; Gitlitz, B.J.; Tso, C.L.; Acres, B.; Squiban, P.; Ross, M.E.; Belldegrun, A.S.; Figlin, R.A. Phase i trial of antigen-specific gene therapy using a recombinant vaccinia virus encoding muc-1 and il-2 in muc-1-positive patients with advanced prostate cancer. Journal of immunotherapy (Hagerstown, Md. : 1997) 2004, 27, 240–253. [Google Scholar] [CrossRef]
- Amato, R.J.; Drury, N.; Naylor, S.; Jac, J.; Saxena, S.; Cao, A.; Hernandez-McClain, J.; Harrop, R. Vaccination of prostate cancer patients with modified vaccinia ankara delivering the tumor antigen 5t4 (trovax): A phase 2 trial. Journal of immunotherapy (Hagerstown, Md. : 1997) 2008, 31, 577–585. [Google Scholar] [CrossRef] [PubMed]
- Lubaroff, D.M.; Konety, B.R.; Link, B.; Gerstbrein, J.; Madsen, T.; Shannon, M.; Howard, J.; Paisley, J.; Boeglin, D.; Ratliff, T.L.; et al. Phase i clinical trial of an adenovirus/prostate-specific antigen vaccine for prostate cancer: Safety and immunologic results. Clinical cancer research : An official journal of the American Association for Cancer Research 2009, 15, 7375–7380. [Google Scholar] [CrossRef]
- Gulley, J.L.; Heery, C.R.; Madan, R.A.; Walter, B.A.; Merino, M.J.; Dahut, W.L.; Tsang, K.Y.; Schlom, J.; Pinto, P.A. Phase i study of intraprostatic vaccine administration in men with locally recurrent or progressive prostate cancer. Cancer immunology, immunotherapy : CII 2013, 62, 1521–1531. [Google Scholar] [CrossRef]
- Slovin, S.F.; Kehoe, M.; Durso, R.; Fernandez, C.; Olson, W.; Gao, J.P.; Israel, R.; Scher, H.I.; Morris, S. A phase i dose escalation trial of vaccine replicon particles (vrp) expressing prostate-specific membrane antigen (psma) in subjects with prostate cancer. Vaccine 2013, 31, 943–949. [Google Scholar] [CrossRef] [PubMed]
- Fujita, K.; Nakai, Y.; Kawashima, A.; Ujike, T.; Nagahara, A.; Nakajima, T.; Inoue, T.; Lee, C.M.; Uemura, M.; Miyagawa, Y.; et al. Phase i/ii clinical trial to assess safety and efficacy of intratumoral and subcutaneous injection of hvj-e in castration-resistant prostate cancer patients. Cancer gene therapy 2017, 24, 277–281. [Google Scholar] [CrossRef]
- Gulley, J.L.; Borre, M.; Vogelzang, N.J.; Ng, S.; Agarwal, N.; Parker, C.C.; Pook, D.W.; Rathenborg, P.; Flaig, T.W.; Carles, J.; et al. Phase iii trial of prostvac in asymptomatic or minimally symptomatic metastatic castration-resistant prostate cancer. J Clin Oncol 2019, 37, 1051–1061. [Google Scholar] [CrossRef] [PubMed]
- Cappuccini, F.; Bryant, R.; Pollock, E.; Carter, L.; Verrill, C.; Hollidge, J.; Poulton, I.; Baker, M.; Mitton, C.; Baines, A.; et al. Safety and immunogenicity of novel 5t4 viral vectored vaccination regimens in early stage prostate cancer: A phase i clinical trial. Journal for immunotherapy of cancer 2020, 8. [Google Scholar] [CrossRef] [PubMed]
- Bilusic, M.; McMahon, S.; Madan, R.A.; Karzai, F.; Tsai, Y.T.; Donahue, R.N.; Palena, C.; Jochems, C.; Marté, J.L.; Floudas, C.; et al. Phase i study of a multitargeted recombinant ad5 psa/muc-1/brachyury-based immunotherapy vaccine in patients with metastatic castration-resistant prostate cancer (mcrpc). Journal for immunotherapy of cancer 2021, 9. [Google Scholar]
- Slovin, S.F.; Ragupathi, G.; Adluri, S.; Ungers, G.; Terry, K.; Kim, S.; Spassova, M.; Bornmann, W.G.; Fazzari, M.; Dantis, L.; et al. Carbohydrate vaccines in cancer: Immunogenicity of a fully synthetic globo h hexasaccharide conjugate in man. Proceedings of the National Academy of Sciences of the United States of America 1999, 96, 5710–5715. [Google Scholar] [CrossRef]
- Noguchi, M.; Kobayashi, K.; Suetsugu, N.; Tomiyasu, K.; Suekane, S.; Yamada, A.; Itoh, K.; Noda, S. Induction of cellular and humoral immune responses to tumor cells and peptides in hla-a24 positive hormone-refractory prostate cancer patients by peptide vaccination. The Prostate 2003, 57, 80–92. [Google Scholar] [CrossRef]
- Hueman, M.T.; Dehqanzada, Z.A.; Novak, T.E.; Gurney, J.M.; Woll, M.M.; Ryan, G.B.; Storrer, C.E.; Fisher, C.; McLeod, D.G.; Ioannides, C.G.; et al. Phase i clinical trial of a her-2/neu peptide (e75) vaccine for the prevention of prostate-specific antigen recurrence in high-risk prostate cancer patients. Clinical cancer research : An official journal of the American Association for Cancer Research 2005, 11, 7470–7479. [Google Scholar] [CrossRef] [PubMed]
- Slovin, S.F.; Ragupathi, G.; Musselli, C.; Fernandez, C.; Diani, M.; Verbel, D.; Danishefsky, S.; Livingston, P.; Scher, H.I. Thomsen-friedenreich (tf) antigen as a target for prostate cancer vaccine: Clinical trial results with tf cluster (c)-klh plus qs21 conjugate vaccine in patients with biochemically relapsed prostate cancer. Cancer immunology, immunotherapy : CII 2005, 54, 694–702. [Google Scholar] [CrossRef] [PubMed]
- Noguchi, M.; Yao, A.; Harada, M.; Nakashima, O.; Komohara, Y.; Yamada, S.; Itoh, K.; Matsuoka, K. Immunological evaluation of neoadjuvant peptide vaccination before radical prostatectomy for patients with localized prostate cancer. The Prostate 2007, 67, 933–942. [Google Scholar] [CrossRef] [PubMed]
- Kouiavskaia, D.V.; Berard, C.A.; Datena, E.; Hussain, A.; Dawson, N.; Klyushnenkova, E.N.; Alexander, R.B. Vaccination with agonist peptide psa: 154-163 (155l) derived from prostate specific antigen induced cd8 t-cell response to the native peptide psa: 154-163 but failed to induce the reactivity against tumor targets expressing psa: A phase 2 study in patients with recurrent prostate cancer. Journal of immunotherapy (Hagerstown, Md. : 1997) 2009, 32, 655–666. [Google Scholar]
- Feyerabend, S.; Stevanovic, S.; Gouttefangeas, C.; Wernet, D.; Hennenlotter, J.; Bedke, J.; Dietz, K.; Pascolo, S.; Kuczyk, M.; Rammensee, H.G.; et al. Novel multi-peptide vaccination in hla-a2+ hormone sensitive patients with biochemical relapse of prostate cancer. The Prostate 2009, 69, 917–927. [Google Scholar] [CrossRef]
- Perez, S.A.; Kallinteris, N.L.; Bisias, S.; Tzonis, P.K.; Georgakopoulou, K.; Varla-Leftherioti, M.; Papamichail, M.; Thanos, A.; von Hofe, E.; Baxevanis, C.N. Results from a phase i clinical study of the novel ii-key/her-2/neu(776-790) hybrid peptide vaccine in patients with prostate cancer. Clinical cancer research : An official journal of the American Association for Cancer Research 2010, 16, 3495–3506. [Google Scholar] [CrossRef]
- Karbach, J.; Neumann, A.; Atmaca, A.; Wahle, C.; Brand, K.; von Boehmer, L.; Knuth, A.; Bender, A.; Ritter, G.; Old, L.J.; et al. Efficient in vivo priming by vaccination with recombinant ny-eso-1 protein and cpg in antigen naive prostate cancer patients. Clinical cancer research : An official journal of the American Association for Cancer Research 2011, 17, 861–870. [Google Scholar] [CrossRef]
- Noguchi, M.; Moriya, F.; Suekane, S.; Ohnishi, R.; Matsueda, S.; Sasada, T.; Yamada, A.; Itoh, K. A phase ii trial of personalized peptide vaccination in castration-resistant prostate cancer patients: Prolongation of prostate-specific antigen doubling time. BMC cancer 2013, 13, 613. [Google Scholar] [CrossRef] [PubMed]
- Fenoglio, D.; Traverso, P.; Parodi, A.; Tomasello, L.; Negrini, S.; Kalli, F.; Battaglia, F.; Ferrera, F.; Sciallero, S.; Murdaca, G.; et al. A multi-peptide, dual-adjuvant telomerase vaccine (gx301) is highly immunogenic in patients with prostate and renal cancer. Cancer immunology, immunotherapy : CII 2013, 62, 1041–1052. [Google Scholar] [CrossRef]
- Sonpavde, G.; Wang, M.; Peterson, L.E.; Wang, H.Y.; Joe, T.; Mims, M.P.; Kadmon, D.; Ittmann, M.M.; Wheeler, T.M.; Gee, A.P.; et al. Hla-restricted ny-eso-1 peptide immunotherapy for metastatic castration resistant prostate cancer. Investigational new drugs 2014, 32, 235–242. [Google Scholar] [CrossRef] [PubMed]
- Noguchi, M.; Arai, G.; Matsumoto, K.; Naito, S.; Moriya, F.; Suekane, S.; Komatsu, N.; Matsueda, S.; Sasada, T.; Yamada, A.; et al. Phase i trial of a cancer vaccine consisting of 20 mixed peptides in patients with castration-resistant prostate cancer: Dose-related immune boosting and suppression. Cancer immunology, immunotherapy : CII 2015, 64, 493–505. [Google Scholar] [CrossRef]
- Lilleby, W.; Gaudernack, G.; Brunsvig, P.F.; Vlatkovic, L.; Schulz, M.; Mills, K.; Hole, K.H.; Inderberg, E.M. Phase i/iia clinical trial of a novel htert peptide vaccine in men with metastatic hormone-naive prostate cancer. Cancer immunology, immunotherapy : CII 2017, 66, 891–901. [Google Scholar] [CrossRef]
- Obara, W.; Sato, F.; Takeda, K.; Kato, R.; Kato, Y.; Kanehira, M.; Takata, R.; Mimata, H.; Sugai, T.; Nakamura, Y.; et al. Phase i clinical trial of cell division associated 1 (cdca1) peptide vaccination for castration resistant prostate cancer. Cancer science 2017, 108, 1452–1457. [Google Scholar] [CrossRef]
- Schuhmacher, J.; Heidu, S.; Balchen, T.; Richardson, J.R.; Schmeltz, C.; Sonne, J.; Schweiker, J.; Rammensee, H.G.; Thor Straten, P.; Røder, M.A.; et al. Vaccination against rhoc induces long-lasting immune responses in patients with prostate cancer: Results from a phase i/ii clinical trial. Journal for immunotherapy of cancer 2020, 8. [Google Scholar] [CrossRef] [PubMed]
- Filaci, G.; Fenoglio, D.; Nolè, F.; Zanardi, E.; Tomasello, L.; Aglietta, M.; Del Conte, G.; Carles, J.; Morales-Barrera, R.; Guglielmini, P.; et al. Telomerase-based gx301 cancer vaccine in patients with metastatic castration-resistant prostate cancer: A randomized phase ii trial. Cancer immunology, immunotherapy : CII 2021, 70, 3679–3692. [Google Scholar] [CrossRef]
- Simons, J.W.; Mikhak, B.; Chang, J.F.; DeMarzo, A.M.; Carducci, M.A.; Lim, M.; Weber, C.E.; Baccala, A.A.; Goemann, M.A.; Clift, S.M.; et al. Induction of immunity to prostate cancer antigens: Results of a clinical trial of vaccination with irradiated autologous prostate tumor cells engineered to secrete granulocyte-macrophage colony-stimulating factor using ex vivo gene transfer. Cancer research 1999, 59, 5160–5168. [Google Scholar]
- Eaton, J.D.; Perry, M.J.; Nicholson, S.; Guckian, M.; Russell, N.; Whelan, M.; Kirby, R.S. Allogeneic whole-cell vaccine: A phase i/ii study in men with hormone-refractory prostate cancer. BJU international 2002, 89, 19–26. [Google Scholar]
- Michael, A.; Ball, G.; Quatan, N.; Wushishi, F.; Russell, N.; Whelan, J.; Chakraborty, P.; Leader, D.; Whelan, M.; Pandha, H. Delayed disease progression after allogeneic cell vaccination in hormone-resistant prostate cancer and correlation with immunologic variables. Clinical cancer research : An official journal of the American Association for Cancer Research 2005, 11, 4469–4478. [Google Scholar] [CrossRef]
- Simons, J.W.; Carducci, M.A.; Mikhak, B.; Lim, M.; Biedrzycki, B.; Borellini, F.; Clift, S.M.; Hege, K.M.; Ando, D.G.; Piantadosi, S.; et al. Phase i/ii trial of an allogeneic cellular immunotherapy in hormone-naïve prostate cancer. Clinical cancer research : An official journal of the American Association for Cancer Research 2006, 12, 3394–3401. [Google Scholar] [CrossRef] [PubMed]
- Berger, M.; Kreutz, F.T.; Horst, J.L.; Baldi, A.C.; Koff, W.J. Phase i study with an autologous tumor cell vaccine for locally advanced or metastatic prostate cancer. Journal of pharmacy & pharmaceutical sciences : A publication of the Canadian Society for Pharmaceutical Sciences, Societe canadienne des sciences pharmaceutiques 2007, 10, 144–152. [Google Scholar]
- Brill, T.H.; Kübler, H.R.; von Randenborgh, H.; Fend, F.; Pohla, H.; Breul, J.; Hartung, R.; Paul, R.; Schendel, D.J.; Gansbacher, B. Allogeneic retrovirally transduced, il-2- and ifn-gamma-secreting cancer cell vaccine in patients with hormone refractory prostate cancer--a phase i clinical trial. The journal of gene medicine 2007, 9, 547–560. [Google Scholar] [CrossRef]
- Brill, T.H.; Kübler, H.R.; Pohla, H.; Buchner, A.; Fend, F.; Schuster, T.; van Randenborgh, H.; Paul, R.; Kummer, T.; Plank, C.; et al. Therapeutic vaccination with an interleukin-2-interferon-gamma-secreting allogeneic tumor vaccine in patients with progressive castration-resistant prostate cancer: A phase i/ii trial. Human gene therapy 2009, 20, 1641–1651. [Google Scholar] [CrossRef] [PubMed]
- Hemstreet, G.P., 3rd; Rossi, G.R.; Pisarev, V.M.; Enke, C.A.; Helfner, L.; Hauke, R.J.; Tennant, L.; Ramsey, W.J.; Vahanian, N.N.; Link, C.J. Cellular immunotherapy study of prostate cancer patients and resulting igg responses to peptide epitopes predicted from prostate tumor-associated autoantigens. Journal of immunotherapy (Hagerstown, Md. : 1997) 2013, 36, 57–65. [Google Scholar] [CrossRef]
- Murphy, G.; Tjoa, B.; Ragde, H.; Kenny, G.; Boynton, A. Phase i clinical trial: T-cell therapy for prostate cancer using autologous dendritic cells pulsed with hla-a0201-specific peptides from prostate-specific membrane antigen. The Prostate 1996, 29, 371–380. [Google Scholar] [CrossRef]
- Tjoa, B.A.; Simmons, S.J.; Bowes, V.A.; Ragde, H.; Rogers, M.; Elgamal, A.; Kenny, G.M.; Cobb, O.E.; Ireton, R.C.; Troychak, M.J.; et al. Evaluation of phase i/ii clinical trials in prostate cancer with dendritic cells and psma peptides. The Prostate 1998, 36, 39–44. [Google Scholar] [CrossRef]
- Barrou, B.; Benoît, G.; Ouldkaci, M.; Cussenot, O.; Salcedo, M.; Agrawal, S.; Massicard, S.; Bercovici, N.; Ericson, M.L.; Thiounn, N. Vaccination of prostatectomized prostate cancer patients in biochemical relapse, with autologous dendritic cells pulsed with recombinant human psa. Cancer immunology, immunotherapy : CII 2004, 53, 453–460. [Google Scholar] [CrossRef]
- Vonderheide, R.H.; Domchek, S.M.; Schultze, J.L.; George, D.J.; Hoar, K.M.; Chen, D.Y.; Stephans, K.F.; Masutomi, K.; Loda, M.; Xia, Z.; et al. Vaccination of cancer patients against telomerase induces functional antitumor cd8+ t lymphocytes. Clinical cancer research : An official journal of the American Association for Cancer Research 2004, 10, 828–839. [Google Scholar] [CrossRef]
- Pandha, H.S.; John, R.J.; Hutchinson, J.; James, N.; Whelan, M.; Corbishley, C.; Dalgleish, A.G. Dendritic cell immunotherapy for urological cancers using cryopreserved allogeneic tumour lysate-pulsed cells: A phase i/ii study. BJU international 2004, 94, 412–418. [Google Scholar] [CrossRef]
- Schellhammer, P.F.; Hershberg, R.M. Immunotherapy with autologous antigen presenting cells for the treatment of androgen independent prostate cancer. World journal of urology 2005, 23, 47–49. [Google Scholar] [CrossRef] [PubMed]
- Kantoff, P.W.; Higano, C.S.; Shore, N.D.; Berger, E.R.; Small, E.J.; Penson, D.F.; Redfern, C.H.; Ferrari, A.C.; Dreicer, R.; Sims, R.B.; et al. Sipuleucel-t immunotherapy for castration-resistant prostate cancer. The New England journal of medicine 2010, 363, 411–422. [Google Scholar] [CrossRef] [PubMed]
- Fuessel, S.; Meye, A.; Schmitz, M.; Zastrow, S.; Linné, C.; Richter, K.; Löbel, B.; Hakenberg, O.W.; Hoelig, K.; Rieber, E.P.; et al. Vaccination of hormone-refractory prostate cancer patients with peptide cocktail-loaded dendritic cells: Results of a phase i clinical trial. The Prostate 2006, 66, 811–821. [Google Scholar] [CrossRef]
- Perambakam, S.; Hallmeyer, S.; Reddy, S.; Mahmud, N.; Bressler, L.; DeChristopher, P.; Mahmud, D.; Nunez, R.; Sosman, J.A.; Peace, D.J. Induction of specific t cell immunity in patients with prostate cancer by vaccination with psa146-154 peptide. Cancer immunology, immunotherapy : CII 2006, 55, 1033–1042. [Google Scholar] [CrossRef] [PubMed]
- Waeckerle-Men, Y.; Uetz-von Allmen, E.; Fopp, M.; von Moos, R.; Bohme, C.; Schmid, H.P.; Ackermann, D.; Cerny, T.; Ludewig, B.; Groettrup, M.; et al. Dendritic cell-based multi-epitope immunotherapy of hormone-refractory prostate carcinoma. Cancer immunology, immunotherapy : CII 2006, 55, 1524–1533. [Google Scholar] [CrossRef] [PubMed]
- Thomas-Kaskel, A.K.; Zeiser, R.; Jochim, R.; Robbel, C.; Schultze-Seemann, W.; Waller, C.F.; Veelken, H. Vaccination of advanced prostate cancer patients with psca and psa peptide-loaded dendritic cells induces dth responses that correlate with superior overall survival. International journal of cancer 2006, 119, 2428–2434. [Google Scholar] [CrossRef]
- Hildenbrand, B.; Sauer, B.; Kalis, O.; Stoll, C.; Freudenberg, M.A.; Niedermann, G.; Giesler, J.M.; Jüttner, E.; Peters, J.H.; Häring, B.; et al. Immunotherapy of patients with hormone-refractory prostate carcinoma pre-treated with interferon-gamma and vaccinated with autologous psa-peptide loaded dendritic cells--a pilot study. The Prostate 2007, 67, 500–508. [Google Scholar] [CrossRef]
- Prue, R.L.; Vari, F.; Radford, K.J.; Tong, H.; Hardy, M.Y.; D'Rozario, R.; Waterhouse, N.J.; Rossetti, T.; Coleman, R.; Tracey, C.; et al. A phase i clinical trial of cd1c (bdca-1)+ dendritic cells pulsed with hla-a*0201 peptides for immunotherapy of metastatic hormone refractory prostate cancer. Journal of immunotherapy (Hagerstown, Md. : 1997) 2015, 38, 71–76. [Google Scholar] [CrossRef]
- Frank, M.O.; Kaufman, J.; Tian, S.; Suarez-Farinas, M.; Parveen, S.; Blachere, N.E.; Morris, M.J.; Slovin, S.; Scher, H.I.; Albert, M.L.; et al. Harnessing naturally occurring tumor immunity: A clinical vaccine trial in prostate cancer. PLoS ONE 2010, 5. [Google Scholar] [CrossRef]
- Reyes, D.; Salazar, L.; Espinoza, E.; Pereda, C.; Castellón, E.; Valdevenito, R.; Huidobro, C.; Inés Becker, M.; Lladser, A.; López, M.N.; et al. Tumour cell lysate-loaded dendritic cell vaccine induces biochemical and memory immune response in castration-resistant prostate cancer patients. Br J Cancer 2013, 109, 1488–1497. [Google Scholar] [CrossRef] [PubMed]
- Xi, H.B.; Wang, G.X.; Fu, B.; Liu, W.P.; Li, Y. Survivin and psma loaded dendritic cell vaccine for the treatment of prostate cancer. Biological & pharmaceutical bulletin 2015, 38, 827–835. [Google Scholar]
- Scheid, E.; Major, P.; Bergeron, A.; Finn, O.J.; Salter, R.D.; Eady, R.; Yassine-Diab, B.; Favre, D.; Peretz, Y.; Landry, C.; et al. Tn-muc1 dc vaccination of rhesus macaques and a phase i/ii trial in patients with nonmetastatic castrate-resistant prostate cancer. Cancer immunology research 2016, 4, 881–892. [Google Scholar] [CrossRef]
- Sonpavde, G.; McMannis, J.D.; Bai, Y.; Seethammagari, M.R.; Bull, J.M.C.; Hawkins, V.; Dancsak, T.K.; Lapteva, N.; Levitt, J.M.; Moseley, A.; et al. Phase i trial of antigen-targeted autologous dendritic cell-based vaccine with in vivo activation of inducible cd40 for advanced prostate cancer. Cancer immunology, immunotherapy : CII 2017, 66, 1345–1357. [Google Scholar] [CrossRef]
- Fucikova, J.; Podrazil, M.; Jarolim, L.; Bilkova, P.; Hensler, M.; Becht, E.; Gasova, Z.; Klouckova, J.; Kayserova, J.; Horvath, R.; et al. Phase i/ii trial of dendritic cell-based active cellular immunotherapy with dcvac/pca in patients with rising psa after primary prostatectomy or salvage radiotherapy for the treatment of prostate cancer. Cancer immunology, immunotherapy : CII 2018, 67, 89–100. [Google Scholar] [CrossRef] [PubMed]
- Westdorp, H.; Creemers, J.H.A.; van Oort, I.M.; Schreibelt, G.; Gorris, M.A.J.; Mehra, N.; Simons, M.; de Goede, A.L.; van Rossum, M.M.; Croockewit, A.J.; et al. Blood-derived dendritic cell vaccinations induce immune responses that correlate with clinical outcome in patients with chemo-naive castration-resistant prostate cancer. Journal for immunotherapy of cancer 2019, 7, 302. [Google Scholar] [CrossRef]
- Tryggestad, A.M.A.; Axcrona, K.; Axcrona, U.; Bigalke, I.; Brennhovd, B.; Inderberg, E.M.; Hønnåshagen, T.K.; Skoge, L.J.; Solum, G.; Saebøe-Larssen, S.; et al. Long-term first-in-man phase i/ii study of an adjuvant dendritic cell vaccine in patients with high-risk prostate cancer after radical prostatectomy. The Prostate 2022, 82, 245–253. [Google Scholar] [CrossRef]
- Mincheff, M.; Tchakarov, S.; Zoubak, S.; Loukinov, D.; Botev, C.; Altankova, I.; Georgiev, G.; Petrov, S.; Meryman, H.T. Naked DNA and adenoviral immunizations for immunotherapy of prostate cancer: A phase i/ii clinical trial. European urology 2000, 38, 208–217. [Google Scholar] [CrossRef]
- Weber, J.S.; Vogelzang, N.J.; Ernstoff, M.S.; Goodman, O.B.; Cranmer, L.D.; Marshall, J.L.; Miles, S.; Rosario, D.; Diamond, D.C.; Qiu, Z.; et al. A phase 1 study of a vaccine targeting preferentially expressed antigen in melanoma and prostate-specific membrane antigen in patients with advanced solid tumors. Journal of immunotherapy (Hagerstown, Md. : 1997) 2011, 34, 556–567. [Google Scholar] [CrossRef]
- Wargowski, E.; Johnson, L.E.; Eickhoff, J.C.; Delmastro, L.; Staab, M.J.; Liu, G.; McNeel, D.G. Prime-boost vaccination targeting prostatic acid phosphatase (pap) in patients with metastatic castration-resistant prostate cancer (mcrpc) using sipuleucel-t and a DNA vaccine. Journal for immunotherapy of cancer 2018, 6, 21. [Google Scholar] [CrossRef]
- Aurisicchio, L.; Fridman, A.; Mauro, D.; Sheloditna, R.; Chiappori, A.; Bagchi, A.; Ciliberto, G. Safety, tolerability and immunogenicity of v934/v935 htert vaccination in cancer patients with selected solid tumors: A phase i study. Journal of translational medicine 2020, 18, 39. [Google Scholar] [CrossRef]
- Saad, F.; Bögemann, M.; Suzuki, K.; Shore, N. Treatment of nonmetastatic castration-resistant prostate cancer: Focus on second-generation androgen receptor inhibitors. Prostate cancer and prostatic diseases 2021, 24, 323–334. [Google Scholar] [CrossRef] [PubMed]
- Garg, A.D.; Vara Perez, M.; Schaaf, M.; Agostinis, P.; Zitvogel, L.; Kroemer, G.; Galluzzi, L. Trial watch: Dendritic cell-based anticancer immunotherapy. Oncoimmunology 2017, 6, e1328341. [Google Scholar] [CrossRef]
- Draube, A.; Klein-Gonzalez, N.; Mattheus, S.; Brillant, C.; Hellmich, M.; Engert, A.; von Bergwelt-Baildon, M. Dendritic cell based tumor vaccination in prostate and renal cell cancer: A systematic review and meta-analysis. PLoS ONE 2011, 6, e18801. [Google Scholar] [CrossRef] [PubMed]
- Amos, S.M.; Duong, C.P.; Westwood, J.A.; Ritchie, D.S.; Junghans, R.P.; Darcy, P.K.; Kershaw, M.H. Autoimmunity associated with immunotherapy of cancer. Blood 2011, 118, 499–509. [Google Scholar] [CrossRef] [PubMed]
- Hodi, F.S.; O'Day, S.J.; McDermott, D.F.; Weber, R.W.; Sosman, J.A.; Haanen, J.B.; Gonzalez, R.; Robert, C.; Schadendorf, D.; Hassel, J.C.; et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 2010, 363, 711–723. [Google Scholar] [CrossRef]
- Leonhartsberger, N.; Ramoner, R.; Falkensammer, C.; Rahm, A.; Gander, H.; Höltl, L.; Thurnher, M. Quality of life during dendritic cell vaccination against metastatic renal cell carcinoma. Cancer Immunol Immunother 2012, 61, 1407–1413. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, W.; Wang, S. Effect of vaccine administration modality on immunogenicity and efficacy. Expert Rev Vaccines 2015, 14, 1509–1523. [Google Scholar] [CrossRef]
- Sun, S.; Hao, H.; Yang, G.; Zhang, Y.; Fu, Y. Immunotherapy with car-modified t cells: Toxicities and overcoming strategies. Journal of immunology research 2018, 2018, 2386187. [Google Scholar] [CrossRef]
- Galluzzi, L.; Vacchelli, E.; Bravo-San Pedro, J.M.; Buqué, A.; Senovilla, L.; Baracco, E.E.; Bloy, N.; Castoldi, F.; Abastado, J.P.; Agostinis, P.; et al. Classification of current anticancer immunotherapies. Oncotarget 2014, 5, 12472–12508. [Google Scholar] [CrossRef]
- Pietrobon, V.; Todd, L.A.; Goswami, A.; Stefanson, O.; Yang, Z.; Marincola, F. Improving car t-cell persistence. International journal of molecular sciences 2021, 22. [Google Scholar] [CrossRef]
- Perera, M.P.J.; Thomas, P.B.; Risbridger, G.P.; Taylor, R.; Azad, A.; Hofman, M.S.; Williams, E.D.; Vela, I. Chimeric antigen receptor t-cell therapy in metastatic castrate-resistant prostate cancer. Cancers (Basel) 2022, 14. [Google Scholar] [CrossRef] [PubMed]
- Vinay, D.S.; Ryan, E.P.; Pawelec, G.; Talib, W.H.; Stagg, J.; Elkord, E.; Lichtor, T.; Decker, W.K.; Whelan, R.L.; Kumara, H.; et al. Immune evasion in cancer: Mechanistic basis and therapeutic strategies. Semin Cancer Biol 2015, 35 Suppl, S185–s198. [Google Scholar] [CrossRef]
- Ammirante, M.; Shalapour, S.; Kang, Y.; Jamieson, C.A.M.; Karin, M. Tissue injury and hypoxia promote malignant progression of prostate cancer by inducing cxcl13 expression in tumor myofibroblasts. Proceedings of the National Academy of Sciences 2014, 111, 14776–14781. [Google Scholar] [CrossRef]
- Gabrilovich, D.I.; Chen, H.L.; Girgis, K.R.; Cunningham, H.T.; Meny, G.M.; Nadaf, S.; Kavanaugh, D.; Carbone, D.P. Production of vascular endothelial growth factor by human tumors inhibits the functional maturation of dendritic cells. Nature Medicine 1996, 2, 1096–1103. [Google Scholar] [CrossRef] [PubMed]
- Voron, T.; Colussi, O.; Marcheteau, E.; Pernot, S.; Nizard, M.; Pointet, A.L.; Latreche, S.; Bergaya, S.; Benhamouda, N.; Tanchot, C.; et al. Vegf-a modulates expression of inhibitory checkpoints on cd8+ t cells in tumors. J Exp Med 2015, 212, 139–148. [Google Scholar] [CrossRef]
- Drake, C.G. Prostate cancer as a model for tumour immunotherapy. Nat Rev Immunol 2010, 10, 580–593. [Google Scholar] [CrossRef] [PubMed]
- Stultz, J.; Fong, L. How to turn up the heat on the cold immune microenvironment of metastatic prostate cancer. Prostate Cancer Prostatic Dis 2021, 24, 697–717. [Google Scholar] [CrossRef]
- Wang, I.; Song, L.; Wang, B.Y.; Rezazadeh Kalebasty, A.; Uchio, E.; Zi, X. Prostate cancer immunotherapy: A review of recent advancements with novel treatment methods and efficacy. American journal of clinical and experimental urology 2022, 10, 210–233. [Google Scholar]
- Bonaventura, P.; Shekarian, T.; Alcazer, V.; Valladeau-Guilemond, J.; Valsesia-Wittmann, S.; Amigorena, S.; Caux, C.; Depil, S. Cold tumors: A therapeutic challenge for immunotherapy. Frontiers in Immunology 2019, 10. [Google Scholar] [CrossRef]
- Wu, Z.; Chen, H.; Luo, W.; Zhang, H.; Li, G.; Zeng, F.; Deng, F. The landscape of immune cells infiltrating in prostate cancer. Frontiers in Oncology 2020, 10. [Google Scholar] [CrossRef] [PubMed]
- Ji, Z.; Zhao, W.; Lin, H.-K.; Zhou, X. Systematically understanding the immunity leading to crpc progression. PLOS Computational Biology 2019, 15, e1007344. [Google Scholar] [CrossRef]
- de Visser, K.E.; Joyce, J.A. The evolving tumor microenvironment: From cancer initiation to metastatic outgrowth. Cancer cell 2023, 41, 374–403. [Google Scholar] [CrossRef]
- Madan, R.A.; Gulley, J.L.; Fojo, T.; Dahut, W.L. Therapeutic cancer vaccines in prostate cancer: The paradox of improved survival without changes in time to progression. Oncologist 2010, 15, 969–975. [Google Scholar] [CrossRef]
- Prasad, V.; Berger, V.W. Hard-wired bias: How even double-blind, randomized controlled trials can be skewed from the start. Mayo Clin Proc 2015, 90, 1171–1175. [Google Scholar] [CrossRef]
- Shore, N.D. Advances in the understanding of cancer immunotherapy. BJU international 2015, 116, 321–329. [Google Scholar] [CrossRef] [PubMed]
- Sumanasuriya, S.; Omlin, A.; Armstrong, A.; Attard, G.; Chi, K.N.; Bevan, C.L.; Shibakawa, A.; MJ, I.J.; De Laere, B.; Lolkema, M.; et al. Consensus statement on circulating biomarkers for advanced prostate cancer. Eur Urol Oncol 2018, 1, 151–159. [Google Scholar] [CrossRef] [PubMed]
- Tian, S.; Lei, Z.; Gong, Z.; Sun, Z.; Xu, D.; Piao, M. Clinical implication of prognostic and predictive biomarkers for castration-resistant prostate cancer: A systematic review. Cancer Cell Int 2020, 20, 409–409. [Google Scholar] [CrossRef]
- Antonarakis, E.S.; Lu, C.; Wang, H.; Luber, B.; Nakazawa, M.; Roeser, J.C.; Chen, Y.; Mohammad, T.A.; Chen, Y.; Fedor, H.L.; et al. Ar-v7 and resistance to enzalutamide and abiraterone in prostate cancer. N Engl J Med 2014, 371, 1028–1038. [Google Scholar] [CrossRef]
- Antonarakis, E.S.; Lu, C.; Luber, B.; Wang, H.; Chen, Y.; Nakazawa, M.; Nadal, R.; Paller, C.J.; Denmeade, S.R.; Carducci, M.A.; et al. Androgen receptor splice variant 7 and efficacy of taxane chemotherapy in patients with metastatic castration-resistant prostate cancer. JAMA Oncol 2015, 1, 582–591. [Google Scholar] [CrossRef]
- Alexandrov, L.B.; Nik-Zainal, S.; Wedge, D.C.; Aparicio, S.A.; Behjati, S.; Biankin, A.V.; Bignell, G.R.; Bolli, N.; Borg, A.; Børresen-Dale, A.L.; et al. Signatures of mutational processes in human cancer. Nature 2013, 500, 415–421. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.M.; Cieślik, M.; Lonigro, R.J.; Vats, P.; Reimers, M.A.; Cao, X.; Ning, Y.; Wang, L.; Kunju, L.P.; de Sarkar, N.; et al. Inactivation of cdk12 delineates a distinct immunogenic class of advanced prostate cancer. Cell 2018, 173, 1770–1782. [Google Scholar] [CrossRef] [PubMed]
- Pritchard, C.C.; Morrissey, C.; Kumar, A.; Zhang, X.; Smith, C.; Coleman, I.; Salipante, S.J.; Milbank, J.; Yu, M.; Grady, W.M.; et al. Complex msh2 and msh6 mutations in hypermutated microsatellite unstable advanced prostate cancer. Nature Communications 2014, 5, 4988. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Zhao, Q.; Wang, Y.-N.; Jin, Y.; He, M.-M.; Liu, Z.-X.; Xu, R.-H. Evaluation of pole and pold1 mutations as biomarkers for immunotherapy outcomes across multiple cancer types. JAMA Oncology 2019, 5, 1504–1506. [Google Scholar] [CrossRef] [PubMed]
- Antonarakis, E.S. Cyclin-dependent kinase 12, immunity, and prostate cancer. N Engl J Med 2018, 379, 1087–1089. [Google Scholar] [CrossRef] [PubMed]
- Abida, W.; Armenia, J.; Gopalan, A.; Brennan, R.; Walsh, M.; Barron, D.; Danila, D.; Rathkopf, D.; Morris, M.; Slovin, S.; et al. Prospective genomic profiling of prostate cancer across disease states reveals germline and somatic alterations that may affect clinical decision making. JCO Precis Oncol 2017, 2017. [Google Scholar] [CrossRef] [PubMed]
- Robinson, D.; Van Allen, E.M.; Wu, Y.M.; Schultz, N.; Lonigro, R.J.; Mosquera, J.M.; Montgomery, B.; Taplin, M.E.; Pritchard, C.C.; Attard, G.; et al. Integrative clinical genomics of advanced prostate cancer. Cell 2015, 161, 1215–1228. [Google Scholar] [CrossRef]
- EAU-Guidelines-Office. Guidelines on prostate cancer, Edn. presented at the EAU Annual Congress Milan 2021 ed.; European Association of Urology 2021: Arnhem, The Netherlan, 2021. [Google Scholar]
- Sharma, M.; Yang, Z.; Miyamoto, H. Immunohistochemistry of immune checkpoint markers pd-1 and pd-l1 in prostate cancer. Medicine (Baltimore) 2019, 98, e17257. [Google Scholar] [CrossRef]
- Gevensleben, H.; Dietrich, D.; Golletz, C.; Steiner, S.; Jung, M.; Thiesler, T.; Majores, M.; Stein, J.; Uhl, B.; Müller, S.; et al. The immune checkpoint regulator pd-l1 is highly expressed in aggressive primary prostate cancer. Clinical Cancer Research 2016, 22, 1969–1977. [Google Scholar] [CrossRef]
- Massari, F.; Ciccarese, C.; Caliò, A.; Munari, E.; Cima, L.; Porcaro, A.B.; Novella, G.; Artibani, W.; Sava, T.; Eccher, A.; et al. Magnitude of pd-1, pd-l1 and t lymphocyte expression on tissue from castration-resistant prostate adenocarcinoma: An exploratory analysis. Targeted Oncology 2016, 11, 345–351. [Google Scholar] [CrossRef]
- Abida, W.; Cheng, M.L.; Armenia, J.; Middha, S.; Autio, K.A.; Vargas, H.A.; Rathkopf, D.; Morris, M.J.; Danila, D.C.; Slovin, S.F.; et al. Analysis of the prevalence of microsatellite instability in prostate cancer and response to immune checkpoint blockade. JAMA Oncology 2019, 5, 471–478. [Google Scholar] [CrossRef] [PubMed]
- Lang, S.H.; Swift, S.L.; White, H.; Misso, K.; Kleijnen, J.; Quek, R.G.W. A systematic review of the prevalence of DNA damage response gene mutations in prostate cancer. Int J Oncol 2019, 55, 597–616. [Google Scholar] [CrossRef] [PubMed]
- Saito, S.; Nakashima, A.; Myojo-Higuma, S.; Shiozaki, A. The balance between cytotoxic nk cells and regulatory nk cells in human pregnancy. J Reprod Immunol 2008, 77, 14–22. [Google Scholar] [PubMed]
- Bielekova, B.; Catalfamo, M.; Reichert-Scrivner, S.; Packer, A.; Cerna, M.; Waldmann, T.A.; McFarland, H.; Henkart, P.A.; Martin, R. Regulatory cd56(bright) natural killer cells mediate immunomodulatory effects of il-2ralpha-targeted therapy (daclizumab) in multiple sclerosis. Proc Natl Acad Sci U S A 2006, 103, 5941–5946. [Google Scholar] [CrossRef]
- Holtan, S.G.; Creedon, D.J.; Thompson, M.A.; Nevala, W.K.; Markovic, S.N. Expansion of cd16-negative natural killer cells in the peripheral blood of patients with metastatic melanoma. Clin Dev Immunol 2011, 2011, 316314. [Google Scholar] [CrossRef] [PubMed]
- Mamessier, E.; Pradel, L.C.; Thibult, M.L.; Drevet, C.; Zouine, A.; Jacquemier, J.; Houvenaeghel, G.; Bertucci, F.; Birnbaum, D.; Olive, D. Peripheral blood nk cells from breast cancer patients are tumor-induced composite subsets. J Immunol 2013, 190, 2424–2436. [Google Scholar] [CrossRef] [PubMed]
- Wulff, S.; Pries, R.; Borngen, K.; Trenkle, T.; Wollenberg, B. Decreased levels of circulating regulatory nk cells in patients with head and neck cancer throughout all tumor stages. Anticancer research 2009, 29, 3053–3057. [Google Scholar]
- Koo, K.C.; Shim, D.H.; Yang, C.M.; Lee, S.B.; Kim, S.M.; Shin, T.Y.; Kim, K.H.; Yoon, H.G.; Rha, K.H.; Lee, J.M.; et al. Reduction of the cd16(-)cd56bright nk cell subset precedes nk cell dysfunction in prostate cancer. PLoS ONE 2013, 8, e78049. [Google Scholar] [CrossRef]
- Ruppender, N.S.; Morrissey, C.; Lange, P.H.; Vessella, R.L. Dormancy in solid tumors: Implications for prostate cancer. Cancer metastasis reviews 2013, 32, 501–509. [Google Scholar] [CrossRef]
- Westdorp, H.; Sköld, A.E.; Snijer, B.A.; Franik, S.; Mulder, S.F.; Major, P.P.; Foley, R.; Gerritsen, W.R.; de Vries, I.J. Immunotherapy for prostate cancer: Lessons from responses to tumor-associated antigens. Front Immunol 2014, 5, 191. [Google Scholar] [CrossRef]
- Comber, J.D.; Philip, R. Mhc class i antigen presentation and implications for developing a new generation of therapeutic vaccines. Ther Adv Vaccines 2014, 2, 77–89. [Google Scholar] [CrossRef] [PubMed]
- Khalili, S.; Rahbar, M.R.; Dezfulian, M.H.; Jahangiri, A. In silico analyses of wilms׳ tumor protein to designing a novel multi-epitope DNA vaccine against cancer. J Theor Biol 2015, 379, 66–78. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.; Theoret, M.R.; Touloukian, C.E.; Surman, D.R.; Garman, S.C.; Feigenbaum, L.; Baxter, T.K.; Baker, B.M.; Restifo, N.P. Poor immunogenicity of a self/tumor antigen derives from peptide-mhc-i instability and is independent of tolerance. J Clin Invest 2004, 114, 551–559. [Google Scholar] [CrossRef]
- Engels, B.; Engelhard, V.H.; Sidney, J.; Sette, A.; Binder, D.C.; Liu, R.B.; Kranz, D.M.; Meredith, S.C.; Rowley, D.A.; Schreiber, H. Relapse or eradication of cancer is predicted by peptide-major histocompatibility complex affinity. Cancer Cell 2013, 23, 516–526. [Google Scholar] [CrossRef] [PubMed]
- Geary, S.M.; Salem, A.K. Prostate cancer vaccines: Update on clinical development. Oncoimmunology 2013, 2, e24523. [Google Scholar] [CrossRef]
- Burch, P.A.; Breen, J.K.; Buckner, J.C.; Gastineau, D.A.; Kaur, J.A.; Laus, R.L.; Padley, D.J.; Peshwa, M.V.; Pitot, H.C.; Richardson, R.L.; et al. Priming tissue-specific cellular immunity in a phase i trial of autologous dendritic cells for prostate cancer. Clinical cancer research : An official journal of the American Association for Cancer Research 2000, 6, 2175–2182. [Google Scholar]
- Madan, R.A.; Antonarakis, E.S.; Drake, C.G.; Fong, L.; Yu, E.Y.; McNeel, D.G.; Lin, D.W.; Chang, N.N.; Sheikh, N.A.; Gulley, J.L. Putting the pieces together: Completing the mechanism of action jigsaw for sipuleucel-t. J Natl Cancer Inst 2020, 112, 562–573. [Google Scholar] [CrossRef]
- Ghiringhelli, F.; Menard, C.; Puig, P.E.; Ladoire, S.; Roux, S.; Martin, F.; Solary, E.; Le Cesne, A.; Zitvogel, L.; Chauffert, B. Metronomic cyclophosphamide regimen selectively depletes cd4+cd25+ regulatory t cells and restores t and nk effector functions in end stage cancer patients. Cancer Immunol Immunother 2007, 56, 641–648. [Google Scholar] [CrossRef]
- Sistigu, A.; Viaud, S.; Chaput, N.; Bracci, L.; Proietti, E.; Zitvogel, L. Immunomodulatory effects of cyclophosphamide and implementations for vaccine design. Semin Immunopathol 2011, 33, 369–383. [Google Scholar] [CrossRef]
- Fea, E.; Vanella, P.; Miraglio, E.; Cauchi, C.; Colantonio, I.; Denaro, N.; Di Costanzo, G.; Garrone, O.; Granetto, C.; Occelli, M. Metronomic oral cyclophosphamide (ctx) in patients (pts) with heavily pretreated metastatic castration-resistant prostate cancer (mcrpc). Annals of Oncology 2016, 27, iv38. [Google Scholar] [CrossRef]
- Roychoudhuri, R.; Eil, R.L.; Restifo, N.P. The interplay of effector and regulatory t cells in cancer. Curr Opin Immunol 2015, 33, 101–111. [Google Scholar] [CrossRef] [PubMed]
- Zschaler, J.; Schlorke, D.; Arnhold, J. Differences in innate immune response between man and mouse. Crit Rev Immunol 2014, 34, 433–454. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Jin, C.-H.; Tan, S.; Liu, W.; Yang, Y.-G. Human immune system mice with autologous tumor for modeling cancer immunotherapies. Frontiers in immunology 2020, 11, 591669–591669. [Google Scholar] [CrossRef] [PubMed]
- Škrbinc, B.O.T.; Kovač, A. Šola raka prostate. Ljubljana: Sekcija za internistično onkologijo SZD.; Onkološki inštitut: 2019.
- Iglesias-Lopez, C.; Agustí, A.; Vallano, A.; Obach, M. Current landscape of clinical development and approval of advanced therapies. Molecular therapy. Methods & clinical development 2021, 23, 606–618. [Google Scholar]
- Committee for Advanced, T.; Secretariat, C.A.T.S.; Schneider, C.K.; Salmikangas, P.; Jilma, B.; Flamion, B.; Todorova, L.R.; Paphitou, A.; Haunerova, I.; Maimets, T.; et al. Challenges with advanced therapy medicinal products and how to meet them. Nat Rev Drug Discov 2010, 9, 195–201. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
