Submitted:
22 May 2023
Posted:
23 May 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Other inert gases
3. Do other small signalling molecule use Xe pockets?
4. Conclusion and future
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Huang, H.; Ullah, F.; Zhou, D.X.; Yi, M.; Zhao, Y. Mechanisms of ROS regulation of plant development and stress responses. Frontiers in Plant Science 2019 10, 800. [CrossRef]
- Begara-Morales, J.C.; Chaki, M.; Valderrama, R.; Sánchez-Calvo, B.; Mata-Pérez, C.; Padilla, M.N.; Corpas, F.J.; Barroso, J.B. Nitric oxide buffering and conditional nitric oxide release in stress response. Journal of Experimental Botany 2018 69, 3425-3438. [CrossRef]
- Bruckdorfer, R. The basics about nitric oxide. Molecular Aspects of Medicine 2005 26, 3-31. [CrossRef]
- Bayr, H. Reactive oxygen species. Critical Care Medicine 2005 33, S498-S501.
- Kleniewska, P.; Piechota, A.; Skibska, B.; Gorąca, A. The NADPH oxidase family and its inhibitors. Archivum Immunologiae et Therapiae Experimentalis 2012 60, 277-294. [CrossRef]
- Millar, T.M.; Stevens, C.R.; Benjamin, N.; Eisenthal, R.; Harrison, R.; Blake, D.R. Xanthine oxidoreductase catalyses the reduction of nitrates and nitrite to nitric oxide under hypoxic conditions. FEBS Letters 1998 427, 225-228. [CrossRef]
- Smirnoff, N. and Arnaud, D. Hydrogen peroxide metabolism and functions in plants. New Phytologist 2019 221, 1197-1214. [CrossRef]
- Geller, D.A.; Billiar, T.R. Molecular biology of nitric oxide synthases. Cancer and Metastasis Reviews 1998 17, 7-23. [CrossRef]
- Chamizo-Ampudia, A.; Sanz-Luque, E.; Llamas, A.; Galvan, A.; Fernandez, E. Nitrate reductase regulates plant nitric oxide homeostasis. Trends in Plant Science 2017 22, 163-174. [CrossRef]
- Paul, B.D.; Snyder, S.H. Gasotransmitter hydrogen sulfide signaling in neuronal health and disease. Biochemical Pharmacology 2018 149, 101-109. [CrossRef]
- Jiang, J.; Chan, A.; Ali, S.; Saha, A.; Haushalter, K.J.; Lam, W.L.M.; Glasheen, M.; Parker, J.; Brenner, M.; Mahon, S.B.; Patel, H.H. Hydrogen sulfide—mechanisms of toxicity and development of an antidote. Scientific Reports 2016 6, 20831. [CrossRef]
- Miller, G.A.D.; Suzuki, N.; Ciftci-Yilmaz, S.U.L.T.A.N.; Mittler, R.O.N. Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant, Cell & Environment 2010 33, 453-467. [CrossRef]
- Hancock, J.T.; Desikan, R.; Clarke, A.; Hurst, R.D.; Neill, S.J. Cell signalling following plant/pathogen interactions involves the generation of reactive oxygen and reactive nitrogen species. Plant Physiology and Biochemistry 2002 40, 611-617. [CrossRef]
- Hasanuzzaman, M.; Raihan, M.R.H.; Masud, A.A.C.; Rahman, K.; Nowroz, F.; Rahman, M.; Nahar, K.; Fujita, M. Regulation of reactive oxygen species and antioxidant defense in plants under salinity. International Journal of Molecular Sciences 2021 22, 9326. [CrossRef]
- Berni, R.; Luyckx, M.; Xu, X.; Legay, S.; Sergeant, K.; Hausman, J.F.; Lutts, S.; Cai, G.; Guerriero, G. Reactive oxygen species and heavy metal stress in plants: Impact on the cell wall and secondary metabolism. Environmental and Experimental Botany, 2019 161, 98-106. [CrossRef]
- Suzuki, N.; Mittler, R. Reactive oxygen species and temperature stresses: a delicate balance between signaling and destruction. Physiologia Plantarum 2006 126, 45-51. [CrossRef]
- Schilter, D. Thiol oxidation: a slippery slope. Nature Reviews Chemistry 2017 1, 0013. [CrossRef]
- Astier, J.; Kulik, A.; Koen, E.; Besson-Bard, A.; Bourque, S.; Jeandroz, S.; Lamotte, O.; Wendehenne, D. Protein S-nitrosylation: what's going on in plants? Free Radical Biology and Medicine 2012 53, 1101-1110. [CrossRef]
- Filipovic, M.R.; Zivanovic, J.; Alvarez, B.; Banerjee, R. Chemical biology of H2S signaling through persulfidation. Chemical Reviews 2018 118, 1253-1337. [CrossRef]
- Miles, J.A.; Egan, J.L.; Fowler, J.A.; Machattou, P.; Millard, A.D.; Perry, C.J.; Scanlan, D.J.; Taylor, P.C. The evolutionary origins of peroxynitrite signalling. Biochemical and Biophysical Research Communications 2021 580, 107-112. [CrossRef]
- Whiteman, M.; Li, L.; Kostetski, I.; Chu, S.H.; Siau, J.L.; Bhatia, M.; Moore, P.K. Evidence for the formation of a novel nitrosothiol from the gaseous mediators nitric oxide and hydrogen sulphide. Biochemical and Biophysical Research Communications 2006 343, 303-310. [CrossRef]
- Ming, Y.; Ma, Q.H.; Han, X.L.; Li, H.Y. Molecular hydrogen improves type 2 diabetes through inhibiting oxidative stress. Experimental and Therapeutic Medicine 2020 20, 359-366. [CrossRef]
- Ohno, K.; Ito, M.; Ichihara, M.; Ito, M. Molecular hydrogen as an emerging therapeutic medical gas for neurodegenerative and other diseases. Oxidative Medicine and Cellular Longevity 2012 2012. [CrossRef]
- Alwazeer, D.; Liu, F.F.C.; Wu, X.Y.; LeBaron, T.W. Combating oxidative stress and inflammation in COVID-19 by molecular hydrogen therapy: Mechanisms and perspectives. Oxidative Medicine and Cellular Longevity 2021 2021. [CrossRef]
- Ohsawa, I.; Ishikawa, M.; Takahashi, K.; Watanabe, M.; Nishimaki, K.; Yamagata, K.; Katsura, K.; Katayama. Y.; Asoh, S.; Ohta, S. Hydrogen acts as a therapeutic antioxidant by selectively reducing cytotoxic oxygen radicals. Nature Medicine 2007 13, 688. [CrossRef]
- Hancock, J.T.; LeBaron, T.W.; Russell, G. Molecular hydrogen: Redox reactions and possible biological interactions. Reactive Oxygen Species (Apex) 2021 11. [CrossRef]
- Hancock, J.T.; Russell, G.; Craig, T.J.; May, J.; Morse, H.R.; Stamler, J.S. Understanding hydrogen: Lessons to be learned from physical interactions between the inert gases and the globin superfamily. Oxygen 2022 2, 578-590. [CrossRef]
- Lawrence, J.H.; Loomis, W.F.; Tobias, C.A.; Turpin, F.H. Preliminary observations on the narcotic effect of xenon with a review of values for solubilities of gases in water and oils. The Journal of Physiology 1946 105, 197.
- Jin, Z.; Piazza, O.; Ma, D.; Scarpati, G.; De Robertis, E. Xenon anesthesia and beyond: pros and cons. Minerva Anestesiologica 2018, 85, 83-89. [CrossRef]
- Duff, A.P.; Trambaiolo, D.M.; Cohen, A.E.; Ellis, P.J.; Juda, G.A.; Shepard, E.M.; Langley, D.B.; Dooley, D.M.; Freeman, H.C.; Guss, J.M. Using xenon as a probe for dioxygen-binding sites in copper amine oxidases. Journal of Molecular Biology 2004 344, 599-607. [CrossRef]
- Turan, H.T., Boittier, E. and Meuwly, M. Interaction at a distance: Xenon migration in Mb. The Journal of Chemical Physics 2023 158, 125103. [CrossRef]
- Schoenborn, B.P.; Watson, H.C.; Kendrew, J.C. Binding of xenon to sperm whale myoglobin. Nature 1965 207, 28-30. [CrossRef]
- Hermans, J.; Shankar, S. The free energy of xenon binding to myoglobin from molecular dynamics simulation. Israel Journal of Chemistry 1986, 27, 225-227. [CrossRef]
- Tilton Jr, R.F.; Singh, U.C.; Weiner, S.J.; Connolly, M.L.; Kuntz Jr, I.D.; Kollman, P.A.; Max, N.; Case, D.A., 1986. Computational studies of the interaction of myoglobin and xenon. Journal of Molecular Biology 1986, 192, 443-456. [CrossRef]
- Conn JR, H.L. Equilibrium distribution of radioxenon in tissue: Xenon-hemoglobin association curve. Journal of Applied Physiology 1961 16, 1065-1070. [CrossRef]
- Tilton Jr, R.F. and Kuntz Jr, I.D. Nuclear magnetic resonance studies of xenon-129 with myoglobin and hemoglobin. Biochemistry 1982 21, 6850-6857. [CrossRef]
- Lepeshkevich, S.V.; Gilevich, S.N.; Parkhats, M.V.; Dzhagarov, B.M. Molecular oxygen migration through the xenon docking sites of human hemoglobin in the R-state. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics 2016 1864, 1110-1121. [CrossRef]
- Prangé, T.; Schiltz, M.; Pernot, L.; Colloc'h, N.; Longhi, S.; Bourguet, W.; Fourme, R. Exploring hydrophobic sites in proteins with xenon or krypton. Proteins: Structure, Function, and Bioinformatics 1998 30, 61-73.
- Rubin, S.M.; Lee, S.Y.; Ruiz, E.J.; Pines, A.; Wemmer, D.E. Detection and characterization of xenon-binding sites in proteins by 129Xe NMR spectroscopy. Journal of Molecular Biology 2002 322, 425-440. [CrossRef]
- Pirrat, P.; Smith, M.A.; Pearson, A.R.; McPherson, M.J.; Phillips, S.E. Structure of a xenon derivative of Escherichia coli copper amine oxidase: confirmation of the proposed oxygen-entry pathway. Acta Crystallographica Section F: Structural Biology and Crystallization Communications 2008 64, 1105-1109. [CrossRef]
- Marassio, G.; Prangé, T.; David, H.N.; Santos, J.S.D.O.; Gabison, L.; Delcroix, N.; Abraini, J.H.; Colloc'h, N. Pressure-response analysis of anesthetic gases xenon and nitrous oxide on urate oxidase: a crystallographic study. The FASEB Journal 2011 25, 2266-2275. [CrossRef]
- Stoppe, C.; Ney, J.; Brenke, M.; Goetzenich, A.; Emontzpohl, C.; Schälte, G.; Grottke, O.; Moeller, M.; Rossaint, R.; Coburn, M. Sub-anesthetic xenon increases erythropoietin levels in humans: a randomized controlled trial. Sports Medicine 2016 46, 1753-1766. [CrossRef]
- Winkler, D.A.; Katz, I.; Warden, A.; Thornton, A.W.; Farjot, G. Identifying medically relevant xenon protein targets by in silico screening of the structural proteome. Medical Gas Research 2023 13, 33-38. [CrossRef]
- Yeh, S.Y.; Peterson, R.E. Solubility of krypton and xenon in blood, protein solutions, and tissue homogenates. Journal of Applied Physiology 1965 20, 1041-1047. [CrossRef]
- Wang, J.; Yuan, K.; Wang, X.; Zhang, L.; Hu, J. Influence of krypton gas nanobubbles on the activity of pepsin. Langmuir 2020 36, 14070-14075. [CrossRef]
- Sanders, R.D.; Ma, D.; Maze, M. Argon neuroprotection. Critical Care 2010 14:1-2.
- Höllig, A.; Schug, A.; Fahlenkamp, A.V.; Rossaint, R.; Coburn, M. and the Argon Organo-Protective Network (AON). Argon: systematic review on neuro-and organoprotective properties of an “inert” gas. International Journal of Molecular Sciences 2014 15, 18175-18196. [CrossRef]
- Grottke, O.; Coburn M. Argon: neuroprotection in in vitro models of cerebral ischemia and traumatic brain injury. Critical Care 2009 13,1-9. [CrossRef]
- Ulbrich, F.; Kaufmann, K.; Roesslein, M.; Wellner, F.; Auwärter, V.; Kempf, J.; Loop, T.; Buerkle, H.; Goebel U. Argon mediates anti-apoptotic signaling and neuroprotection via inhibition of toll-like receptor 2 and 4. PloS one 2015 10, e0143887. [CrossRef]
- Fahlenkamp, A.V.; Rossaint, R.; Haase, H.; Al Kassam, H.; Ryang, Y.M.; Beyer, C.; Coburn, M. The noble gas argon modifies extracellular signal-regulated kinase 1/2 signaling in neurons and glial cells. European Journal of Pharmacology 2012 674, 104-111. [CrossRef]
- Ye, Z.; Zhang, R.; Sun, X. Bustling argon: biological effect. Medical Gas Research 2013 3, 1-4. [CrossRef]
- Martusevich, A.; Surovegina, A.; Popovicheva, A.; Didenko, N.; Artamonov, M.; Nazarov, V. Some beneficial effects of inert gases on blood oxidative metabolism: In vivo study. BioMed Research International 2022 2022. [CrossRef]
- Schreiner, H.R.; Gregoire, R.C.; Lawrie, J.A. New biological effect of the gases of the helium group. Science 1962 136, 653-654. [CrossRef]
- Jawad, N.; Rizvi, M.; Gu, J.; Adeyi, O.; Tao, G.; Maze, M.; Ma, D. Neuroprotection (and lack of neuroprotection) afforded by a series of noble gases in an in vitro model of neuronal injury. Neuroscience Letters 2009 460, 232-236. [CrossRef]
- Rizvi, M.; Jawad, N.; Li, Y.; Vizcaychipi, M.P.; Maze, M.; Ma, D., 2010. Effect of noble gases on oxygen and glucose deprived injury in human tubular kidney cells. Experimental Biology and Medicine, 2010 235, 886-891. [CrossRef]
- Scott, E.E.; Gibson, Q.H. Ligand migration in sperm whale myoglobin. Biochemistry, 1997 36, 11909-11917. [CrossRef]
- Tetreau, C.; Blouquit, Y.; Novikov, E.; Quiniou, E.; Lavalette, D. Competition with xenon elicits ligand migration and escape pathways in myoglobin. Biophysical Journal 2004 86, 435-447. [CrossRef]
- Abraini, J.H.; Marassio, G.; David, H.N.; Vallone, B.; Prangé, T.; Colloc’h, N. Crystallographic studies with xenon and nitrous oxide provide evidence for protein-dependent processes in the mechanisms of general anesthesia. Anesthesiology 2014 121, 1018-27. [CrossRef]
- LaBella, F.S.; Stein, D.; Queen G. The site of general anesthesia and cytochrome P450 monooxygenases: occupation of the enzyme heme pocket by xenon and nitrous oxide. European Journal of Pharmacology 1999 381, R1-3. [CrossRef]
- Winter, M.B.; Herzik Jr, M.A.; Kuriyan, J.; Marletta, M.A. Tunnels modulate ligand flux in a heme nitric oxide/oxygen binding (H-NOX) domain. Proceedings of the National Academy of Sciences 2011 108, E881-E889. [CrossRef]
- Brunori, M. Nitric oxide moves myoglobin centre stage. Trends in Biochemical Sciences 2001 26, 209-210. [CrossRef]
- Brunori, M. Structural dynamics of myoglobin. Biophys. Chem. 2000 86, 221-230.
- Tilton Jr, R.F., Kuntz Jr, I.D. and Petsko, G.A. Cavities in proteins: structure of a metmyoglobin xenon complex solved to 1.9. ANG. Biochemistry 1984 23, 2849-2857.
- Daigle, R.; Rousseau, J.A.; Guertin, M.; Lagüe, P. Theoretical investigations of nitric oxide channeling in Mycobacterium tuberculosis truncated hemoglobin N. Biophysical Journal 2009 97, 2967-2977. [CrossRef]
- Ye, X.; Yu, A.; Champion, P.M. Dynamics of nitric oxide rebinding and escape in horseradish peroxidase. Journal of the American Chemical Society 2006 128, 1444-1445. [CrossRef]
- Terasaka, E.; Yamada, K.; Wang, P.H.; Hosokawa, K.; Yamagiwa, R.; Matsumoto, K.; Ishii, S.; Mori, T.; Yagi, K.; Sawai, H., Arai H. Dynamics of nitric oxide controlled by protein complex in bacterial system. Proceedings of the National Academy of Sciences 2017 114, 9888-9893. [CrossRef]
- Chu, K.; Vojtchovský, J.; McMahon, B.H.; Sweet, R.M.; Berendzen, J.; Schlichting, I. Structure of a ligand-binding intermediate in wild-type carbonmonoxy myoglobin. Nature 2000 403, 921-923. [CrossRef]
- Elber, R.; Karplus, M. Enhanced sampling in molecular dynamics: use of the time-dependent Hartree approximation for a simulation of carbon monoxide diffusion through myoglobin. Journal of the American Chemical Society 1990 112, 9161-9175. [CrossRef]
- Nishihara, Y., Sakakura, M., Kimura, Y. and Terazima, M. The escape process of carbon monoxide from myoglobin to solution at physiological temperature. Journal of the American Chemical Society 2004 126, 11877-11888. [CrossRef]
- Bossa, C.; Anselmi, M.; Roccatano, D.; Amadei, A.; Vallone, B.; Brunori, M.; Di Nola, A. Extended molecular dynamics simulation of the carbon monoxide migration in sperm whale myoglobin. Biophysical Journal 2004 86, 3855-3862. [CrossRef]
- Anselmi, M.; Di Nola, A.; Amadei, A. The kinetics of ligand migration in crystallized myoglobin as revealed by molecular dynamics simulations. Biophysical Journal 2008 94, 4277-4281. [CrossRef]
- Gee, L.B.; Leontyev, I.; Stuchebrukhov, A.; Scott, A.D.; Pelmenschikov, V.; Cramer, S.P. Docking and migration of carbon monoxide in nitrogenase: the case for gated pockets from infrared spectroscopy and molecular dynamics. Biochemistry 2015 54, 3314-3319. [CrossRef]
- Goldet, G.; Brandmayr, C.; Stripp, S.T.; Happe, T.; Cavazza, C.; Fontecilla-Camps, J.C.; Armstrong, F.A. Electrochemical kinetic investigations of the reactions of [FeFe]-hydrogenases with carbon monoxide and oxygen: comparing the importance of gas tunnels and active-site electronic/redox effects. Journal of the American Chemical Society 2009 131, 14979-14989. [CrossRef]
- Cundari, T.R.; Wilson, A.K.; Drummond, M.L.; Gonzalez, H.E.; Jorgensen, K.R.; Payne, S.; Braunfeld, J.; De Jesus, M.; Johnson, V.M. CO2-formatics: how do proteins bind carbon dioxide? Journal of Chemical Information and Modeling 2009 49, 2111-2115. [CrossRef]
- Hiromoto, T.; Fujiwara, S.; Hosokawa, K.; Yamaguchi, H. Crystal structure of 3-hydroxybenzoate hydroxylase from Comamonas testosteroni has a large tunnel for substrate and oxygen access to the active site. Journal of Molecular Biology 2006 364, 878-896. [CrossRef]
- Chen, L.; Lyubimov, A.Y.; Brammer, L.; Vrielink, A.; Sampson, N.S. The binding and release of oxygen and hydrogen peroxide are directed by a hydrophobic tunnel in cholesterol oxidase. Biochemistry 2008 47, 5368-5377. [CrossRef]
- Zhao, P.; Kong, F.; Jiang, Y.; Qin, X.; Tian, X.; Cong, Z. Enabling peroxygenase activity in by engineering hydrogen peroxide tunnels. Journal of the American Chemical Society 2023 145, 5506-5511. [CrossRef]
- Moreno, D.M.; Martí, M.A.; De Biase, P.M.; Estrin, D.A.; Demicheli, V.; Radi, R.; Boechi, L. Exploring the molecular basis of human manganese superoxide dismutase inactivation mediated by tyrosine 34 nitration. Archives of Biochemistry and Biophysics 2011 507, 304-309. [CrossRef]
- Eckenhoff, R.G. Promiscuous ligands and attractive cavities. Molecular Interventions 2001 1, 258.
- Otting, G.; Liepinsh, E.; Halle, B.; Frey, U. NMR identification of hydrophobic cavities with low water occupancies in protein structures using small gas molecules. Nature Structural Biology 1997 4, 396–404. [CrossRef]
- Carugo, O.; Argos, P. Accessibility to internal cavities and ligand binding sites monitored by protein crystallographic thermal factors. Proteins 1998, 31, 201–213.
- Colloc’h, N.; Carpentier, P.; Montemiglio, L.C.; Vallone, B.; Prangé, T. Mapping hydrophobic tunnels and cavities in neuroglobin with noble gas under pressure. Biophysical Journal 2017 113, 2199-206. [CrossRef]
- Jin, Z.; Zhao, P.; Gong, W.; Ding, W.; He, Q. Fe-porphyrin: A redox-related biosensor of hydrogen molecule. Nano Research 2022 13, 1-6. [CrossRef]
- Kim, S.A.; Jong, Y.C.; Kang, M.S.; Yu, C.J. Antioxidation activity of molecular hydrogen via protoheme catalysis in vivo; an insight from ab initio calculations. Research Square 2022 (pre-print). [CrossRef]
- Ohta, S. Molecular hydrogen may activate the transcription factor Nrf2 to alleviate oxidative stress through the hydrogen-targeted porphyrin. Aging Pathobiology and Therapeutics 2023 13, 25-32. [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
