Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

A Web GIS Platform to Modeling, Simulate and Analyze Flood Events: The RiverCure Portal

Version 1 : Received: 19 May 2023 / Approved: 22 May 2023 / Online: 22 May 2023 (08:22:13 CEST)

A peer-reviewed article of this Preprint also exists.

Rodrigues da Silva, A.; Estima, J.; Marques, J.; Gamito, I.; Serra, A.; Moura, L.; Ricardo, A.M.; Mendes, L.; Ferreira, R.M.L. A Web GIS Platform to Modeling, Simulate and Analyze Flood Events: The RiverCure Portal. ISPRS Int. J. Geo-Inf. 2023, 12, 268. Rodrigues da Silva, A.; Estima, J.; Marques, J.; Gamito, I.; Serra, A.; Moura, L.; Ricardo, A.M.; Mendes, L.; Ferreira, R.M.L. A Web GIS Platform to Modeling, Simulate and Analyze Flood Events: The RiverCure Portal. ISPRS Int. J. Geo-Inf. 2023, 12, 268.

Abstract

Flood events are becoming more severe, causing significant problems to human communities, including physical, psychological, and material damage. For both flood forecasting in emergency response situations and flood mapping, georeferencing and data curation are paramount in the context of prevention or preparedness. Hence, data display, data management, and articulation with numerical simulation results must occur on GIS platforms. Our research is motivated by recent advances in Web and GIS technologies, social sensing and high-performance computing, and an envisaged wider availability of remote sensing data. This paper presents and discusses an innovative Web GIS platform named "RiverCure Portal" or "RCP" for short. This platform combines observations and hydrodynamic modelling tools to support various stages of the flood risk management cycle, including operational response, emergency preparedness, and risk assessment. RCP is a multi-organisation, multi-context digital platform with flexible configuration features to define and support multiple sensor types and modelling options, satisfying the various needs of different organisations and stakeholders. In addition, this paper discusses the RiverCure Approach, which encompasses the following tasks directly supported by the RCP platform: defining the context and involved geometries, associating sensors to the context, pre-processing and generating the context mesh, defining the simulation event, running the simulation event, and analysing the results from the simulation event. Thus, the RCP streamlines and simplifies data analysis and simulation procedures to meet decision-makers' needs. The novelties discussed in this paper include the design and discussion of a Web GIS platform that allows (i) to manage flood data and results of simulations at several contextual levels by different stakeholders such as domain experts, decision-makers, researchers, or students; (ii) to process and curate sensed data obtained from physical and social sensors; and (iii) update the state and values of the parameters of simulation tools through continuous data assimilation techniques for forecasting purposes. Finally, this paper supports the explanation and discussion with a running example, "Águeda 2016 flood" event, which dataset is publicly available for further study and experimentation.

Keywords

Water management; Flood simulation; Geographic information system (GIS); Web GIS platform; RiverCure Portal.

Subject

Computer Science and Mathematics, Software

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.