Submitted:
08 May 2023
Posted:
11 May 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Study Design, Setting and Selection Criteria
2.2. Variables
2.3. Definitions
2.4. Outcome
2.5. Statistical Analysis
3. Results
3.1. Baseline Characteristics of Patients with MDR GNB BSI Episodes
3.2. Univariate and Multivariate Analysis for 28-Day Mortality
3.3. Patients with BSI from MDR Acinetobacter baumanii
3.4. Patients with BSI from MDR Klebsiella pneumoniae
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Vardakas, K.Z.; Rafailidis, P.I.; Konstantelias, A.A.; Falagas, M.E. Predictors of mortality in patients with infections due to multi-drug resistant Gram-negative bacteria: The study, the patient, the bug or the drug? J. Infect. 2013, 66, 401–414. [Google Scholar] [CrossRef] [PubMed]
- Lemos EV, de la Hoz FP, Alvis N; et al. Impact of carbapenem resistance on clinical and economic outcomes among patients with Acinetobacter baumannii infection in Colombia. Clin Microbiol Infect. 2014, 20, 174–180. [Google Scholar] [CrossRef] [PubMed]
- Tabah A, Koulenti D, Laupland K; et al. Characteristics and determinants of outcome of hospital-acquired bloodstream infections in intensive care units: The EUROBACT International Cohort Study. Intensive Care Med. 2012, 38, 1930–1945. [CrossRef] [PubMed]
- Vincent JL, Sakr Y, Singer M; et al. Prevalence and Outcomes of Infection Among Patients in Intensive Care Units in 2017. JAMA. 2020, 323, 1478–1487. [CrossRef] [PubMed]
- Adrie C, Garrouste-Orgeas M, Ibn Essaied W; et al. Attributable mortality of ICU-acquired bloodstream infections: Impact of the source, causative micro-organism, resistance profile and antimicrobial therapy. J Infect. 2017, 74, 131–141. [CrossRef] [PubMed]
- Prowle JR, Echeverri JE, Ligabo EV; et al. Acquired bloodstream infection in the intensive care unit: Incidence and attributable mortality. Crit Care. 2011, 15, R100. [CrossRef] [PubMed]
- De Waele JJ, Akova M, Antonelli M; et al. Antimicrobial resistance and antibiotic stewardship programs in the ICU: Insistence and persistence in the fight against resistance. A position statement from ESICM/ESCMID/WAAAR round table on multi-drug resistance. Intensive Care Med. 2018, 44, 189–196. [CrossRef]
- World Health Organization (2021) Global antimicrobial resistance and use surveillance system (GLASS) report: 2021.
- Bezabih YM, Bezabih A, Dion M; et al. Comparison of the global prevalence and trend of human intestinal carriage of ESBL-producing Escherichia coli between healthcare and community settings: A systematic review and meta-analysis. JAC Antimicrob Resist. 2022, 4, dlac048.
- Cosgrove, S.E. The relationship between antimicrobial resistance and patient outcomes: Mortality, length of hospital stay, and health care costs. Clin Infect Dis. 2006;42 Suppl 2:S82-S89.
- Antimicrobial Resistance Collaborators. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis [published correction appears in Lancet. 2022 Oct 1;400(10358):1102]. Lancet. 2022, 399, 629–655. [Google Scholar]
- Ríos, E.; Del Carmen López Diaz, M.; Culebras, E.; Rodríguez-Avial, I.; Rodríguez-Avial, C. Resistance to fosfomycin is increasing and is significantly associated with extended-spectrum β-lactamase-production in urinary isolates of Escherichia coli. Med. Microbiol. Immunol. 2022, 211, 269–272. [Google Scholar] [CrossRef]
- Meletis, G.; Skoura, L. Polymyxin resistance mechanisms: From intrinsic re-sistance to mcr genes. Recent Pat. Antiinfect. Drug Discov. 2018, 13, 198–206. [Google Scholar] [CrossRef] [PubMed]
- Meletis, G. Carbapenem resistance: Overview of the problem and future perspectives. Ther. Adv. Infect. Dis. 2015, 3, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Seifert, H.; Blondeau, J.; Lucaßen, K.; Utt, E.A. Global update on the in vitro activity of tigecycline and comparators against isolates of Acinetobacter baumannii and rates of resistant phenotypes (2016–2018). J. Glob. Antimicrob. Resist. 2022, 31, 82–89. [Google Scholar] [CrossRef] [PubMed]
- Zak-Doron Y, Dishon Benattar Y, Pfeffer I; et al. The Association Between Empirical Antibiotic Treatment and Mortality in Severe Infections Caused by Carbapenem-resistant Gram-negative Bacteria: A Prospective Study. Clin Infect Dis. 2018, 67, 1815–1823. [Google Scholar]
- Kadri SS, Adjemian J, Lai YL; et al. Difficult-to-Treat Resistance in Gram-negative Bacteremia at 173 US Hospitals: Retrospective Cohort Analysis of Prevalence, Predictors, and Outcome of Resistance to All First-line Agents. Clin Infect Dis. 2018, 67, 1803–1814. [Google Scholar]
- Jafari, F.; Elyasi, S. Prevention of colistin induced nephrotoxicity: A review of preclinical and clinical data. Expert Rev. Clin. Pharmacol. 2021, 14, 1113–1131. [Google Scholar] [CrossRef] [PubMed]
- Meletis, G. Carbapenem resistance: Overview of the problem and future perspectives. Ther. Adv. Infect. Dis. 2016, 3, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Mancuso, G.; Midiri, A.; Gerace, E.; Biondo, C. Bacterial antimicrobial resistance: The most critical pathogens. Pathogens 2021, 10, 1310. [Google Scholar] [CrossRef]
- Protonotariou E, Meletis G, Pilalas D; et al. Polyclonal Endemicity of Carbapenemase-Producing Klebsiella pneumoniae in ICUs of a Greek Tertiary Care Hospital. Antibiotics (Basel). 2022, 11, 149. [Google Scholar]
- Magiorakos AP, Srinivasan A, Carey RB; et al. Multidrug-resistant, extensively drug resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect. 2012, 18, 268–281. [CrossRef]
- Mantzana P, Protonotariou E, Kassomenaki A; et al. In Vitro Synergistic Activity of Antimicrobial Combinations against Carbapenem- and Colistin-Resistant Acinetobacter baumannii and Klebsiella pneumoniae. Antibiotics (Basel). 2023, 12, 93.
- Papst L, Beović B, Pulcini C; et al. Antibiotic treatment of infections caused by carbapenem-resistant Gram-negative bacilli: An international ESCMID cross-sectional survey among infectious diseases specialists practicing in large hospitals. Clin Microbiol Infect. 2018, 24, 1070–1076. [CrossRef]
- Bergen, P.J.; Smith, N.M.; Bedard, T.B.; Bulman, Z.P.; Cha, R.; Tsuji, B.T. Rational com-binations of polymyxins with other antibiotics. Adv. Exp. Med. Biol. 2019, 1145, 251–288. [Google Scholar]
- Vardakas, K.Z.; Athanassaki, F.; Pitiriga, V.; Falagas, M.E. Clinical relevance of in vitro synergistic activity of antibiotics for multidrug-resistant Gram-negative infections: A systematic review. J. Glob. An-timicrob. Resist. 2019, 17, 250–259. [Google Scholar] [CrossRef]
- Karvouniaris M, Poulakou G, Tsiakos K; et al. ICU-Associated Gram-Negative Bloodstream Infection: Risk Factors Affecting the Outcome Following the Emergence of Colistin-Resistant Isolates in a Regional Greek Hospital. Antibiotics (Basel). 2022, 11, 405.
- Vincent JL, Rello J, Marshall J; et al. International study of the prevalence and outcomes of infection in intensive care units. JAMA. 2009, 302, 2323–2329. [Google Scholar] [CrossRef]
- Kalil AC, Metersky ML, Klompas M; et al. Management of Adults with Hospital-acquired and Ventilator-associated Pneumonia: 2016 Clinical Practice Guidelines by the Infectious Diseases Society of America and the American Thoracic Society. Clin Infect Dis. 2016, 63, e61–e111. [CrossRef]
- Protonotariou E, Mantzana P, Meletis G; et al. Microbiological characteristics of bacteremias among COVID-19 hospitalized patients in a tertiary referral hospital in Northern Greece during the second epidemic wave. FEMS Microbes. 2021, 2, xtab021.
- Bassetti M, Kanj SS, Kiratisin P; et al. Early appropriate diagnostics and treatment of MDR Gram-negative infections. JAC Antimicrob Resist. 2022, 4, dlac089. [CrossRef] [PubMed]
- Vandenbroucke, J.P.; von Elm, E.; Altman, D.G.; Gøtzsche, P.C.; Mulrow, C.D.; Pocock, S.J.; Poole, C.; Schlesselman, J.J.; Egger, M. For the STROBE Initiative Strengthening the Reporting of Observational Studies in Epidemiology (STROBE): Explanation and Elaboration. PLoS Med. 2007, 4, e296. [Google Scholar] [CrossRef] [PubMed]
- Charlson, M.E.; Pompei, P.; Ales, K.L.; MacKenzie, C.R. A new method of classifying prognostic comorbidity in longitudinal studies: Development and validation. J. Chronic Dis. 1987, 40, 373–383. [Google Scholar] [CrossRef] [PubMed]
- European Committee on Antimicrobial Susceptibility Testing. Breakpoint Tables for Interpretation of MICs and Zone Diameters Version 12.0. Available online: http://www.eucast.org (Accessed on 10 March 2023).
- Micek ST, Welch EC, Khan J; et al. Empiric combination antibiotic therapy is associated with improved outcome against sepsis due to gram-negative bacteria: A retrospective analysis. Antimicrob Agents Chemother. 2010, 54, 1742–1748. [CrossRef] [PubMed]
- Pop-Vicas, A.E.; D’Agata, E.M. The rising influx of multidrug-resistant Gram-negative bacilli into a tertiary care hospital. Clin Infect Dis 2005, 40, 1792–1798. [Google Scholar] [CrossRef]
- Patolia, S.; Abate, G.; Patel, N.; Patolia, S.; Frey, S. Risk factors and outcomes for multidrug-resistant Gram-negative bacilli bacteremia. Ther Adv Infect Dis. 2018, 5, 11–18. [Google Scholar] [CrossRef] [PubMed]
- Gudiol C, Bodro M, Simonetti A; et al. Changing aetiology, clinical features, antimicrobial resistance, and outcomes of bloodstream infection in neutropenic cancer patients. J Antimicrob Chemother 2011, 66, 657–663.
- Tsai, M.H.; Chu, S.M.; Hsu, J.F.; et al. Risk factors outcomes for multidrug-resistant Gram-negative bacteremia in the, N. I.C.U. Pediatrics 2014, 133, e322–e329. [Google Scholar] [CrossRef]
- Blot S, Vandewoude K, De Bacquer D; et al. Nosocomial bacteremia caused by antibiotic-resistant Gram-negative bacteria in critically ill patients: Clinical outcome and length of hospitalization. Clin Infect Dis 2002, 34, 1600–1606. [CrossRef]
- Tabah A, Buetti N, Staiquly Q; et al. Epidemiology and outcomes of hospital-acquired bloodstream infections in intensive care unit patients: The EUROBACT-2 international cohort study. Intensive Care Med. 2023, 49, 178–190. [Google Scholar] [CrossRef]
- Lye DC, Earnest A, Ling ML; et al. The impact of multidrug resistance in healthcare-associated and nosocomial Gram-negative bacteraemia on mortality and length of stay: Cohort study. Clin Microbiol Infect 2012, 18, 502–508. [CrossRef]
- Alkofide H, Alhammad AM, Alruwaili A; et al. Multidrug-Resistant and Extensively Drug-Resistant Enterobacteriaceae: Prevalence, Treatments, and Outcomes - A Retrospective Cohort Study. Infect Drug Resist. 2020, 13, 4653–4662. [CrossRef]
- Dietl B, Boix-Palop L, Gisbert L; et al. Risk factors associated with inappropriate empirical antimicrobial treatment in bloodstream infections. A cohort study. Front Pharmacol. 2023, 14, 1132530. [CrossRef] [PubMed]
- MacVane, S.H.; Tuttle, L.O.; Nicolau, D.P. Impact of extended-spectrum β-lactamase-producing organisms on clinical and economic outcomes in patients with urinary tract infection. J Hosp Med 2014, 9, 232–238. [Google Scholar] [CrossRef] [PubMed]
- Rottier WC, Ammerlaan HS, Bonten MJ; et al. Effects of confounders and intermediates on the association of bacteraemia caused by extended-spectrum β-lactamase-producing Enterobacteriaceae and patient outcome: A metaanalysis. J Antimicrob Chemother 2007, 60, 913–920.
- Viceconte, G.; Maraolo, A.E.; Iula, V.D.; Catania, M.R.; Tosone, G.; Orlando, R. Appropriateness of antibiotic prescription for targeted therapy of infections caused by multidrug-resistant bacteria: Assessment of the most common improper uses in a tertiary hospital in southern Italy. Infez Med. 2017, 25, 224–233. [Google Scholar]
- Weinberger, J.; Rhee, C.; Klompas, M. A Critical Analysis of the Literature on Time-to-Antibiotics in Suspected Sepsis. J Infect Dis. 2020;222(Suppl 2): S110-S118.
- Curran J, Lo J, Leung V; et al. Estimating daily antibiotic harms: An umbrella review with individual study meta-analysis. Clin Microbiol Infect. 2022, 28, 479–490. [CrossRef]
- Evans L, Rhodes A, Alhazzani W; et al. Surviving sepsis campaign: International guidelines for management of sepsis and septic shock 2021. Intensive Care Med. 2021, 47, 1181–1247. [CrossRef]
- Buetti N, Tabah A, Loiodice A; et al. Different epidemiology of bloodstream infections in COVID-19 compared to non-COVID-19 critically ill patients: A descriptive analysis of the Eurobact II study. Crit Care. 2022, 26, 319. [Google Scholar] [CrossRef]
- Pasquini Z, Barocci I, Brescini L; et al. Bloodstream infections in the COVID-19 era: Results from an Italian multi-centre study. Int J Infect Dis. 2021, 111, 31–36. [CrossRef]
- Teshome, B.F.; Vouri, S.M.; Hampton, N.; Kollef, M.H.; Micek, S.T. Duration of exposure to antipseudomonal β-lactam antibiotics in the critically ill and development of new resistance. Pharmacotherapy 2019, 39, 261–270. [Google Scholar] [CrossRef]
- Giacobbe, D.R.; Giani, T.; Bassetti, M.; Marchese, A.; Viscoli, C.; Rossolini, G.M. Rapid microbiological tests for bloodstream infections due to multidrug resistant Gram-negative bacteria: Therapeutic implications. Clin Microbiol Infect. 2020, 26, 713–722. [Google Scholar] [CrossRef]
- Banerjee R, Teng CB, Cunningham SA; et al. Randomized Trial of Rapid Multiplex Polymerase Chain Reaction-Based Blood Culture Identification and Susceptibility Testing. Clin Infect Dis. 2015, 61, 1071–1080. [CrossRef] [PubMed]
- Mohayya SM, Arsalan M, Narayanan N; et al. Impact of phenotypic rapid diagnostic assay on duration of empiric antibiotics for gram-negative bacteremia. Antimicrob Steward Healthc Epidemiol. 2023, 3, e22.
- Ohnuma T, Chihara S, Costin B; et al. Association of Appropriate Empirical Antimicrobial Therapy With In-Hospital Mortality in Patients With Bloodstream Infections in the US. JAMA Netw Open. 2023, 6, e2249353. [CrossRef] [PubMed]
- MacVane SH, Bhalodi AA, Dare RK; et al. Improving outcomes and antibiotic stewardship (IOAS) for patients with gram-positive bloodstream infections through use of rapid testing: A quasi-experimental multicentre study of the Accelerate PhenoTest BC Kit. J Antimicrob Chemother 2021, 76, 2453–2463. [CrossRef] [PubMed]
- Banerjee, R.; Komarow, L.; Virk, A.; et al. Randomized trial evaluating clinical impact of RAPid IDentification susceptibility testing for gram-negative bacteremia:, R. A.P.I.D.S.-G.N. Clin Infect Dis 2020, 73, e39–e46. [Google Scholar] [CrossRef] [PubMed]
- Tsalik EL, Bonomo RA, Fowler VG Jr. New molecular diagnostic approaches to bacterial infections and antibacterial resistance. Annu Rev Med 2018, 69, 379–394. [CrossRef] [PubMed]
- Timbrook, T.T.; Morton, J.B.; McConeghy, K.W.; Caffrey, A.R.; Mylonakis, E.; LaPlante, K.L. The effect of molecular rapid diagnostic testing on clinical outcomes in bloodstream infections: A systematic review and meta-analysis. Clin Infect Dis. 2017, 64, 15–23. [Google Scholar] [CrossRef]
- Akpan, M.R.; Isemin, N.U.; Udoh, A.E.; Ashiru-Oredope, D. Implementation of antimicrobial stewardship programmes in African countries: A systematic literature review. J Glob Antimicrob Resist. 2020, 22, 317–324. [Google Scholar] [CrossRef]
- Babowicz F, LaPlante R, Mitchell C; et al. Impact of Accelerate Pheno and BacT/Alert Virtuo on clinical processes and outcomes in patients with sepsis and concurrent gram-negative bacteremia. Antimicrob Agents Chemother 2021, 65, e02364–20. [CrossRef]
- Dare RK, Lusardi K, Pearson C; et al. Clinical impact of Accelerate Pheno rapid blood culture detection system in bacteremic patients. Clin Infect Dis 2021, 73, e4616–e4626. [CrossRef]
- Walsh TL, Bremmer DN, Moffa MA; et al. Impact of an antimicrobial stewardship program-bundled initiative utilizing Accelerate Pheno system in the management of patients with aerobic gram-negative bacilli bacteremia. Infection 2021, 49, 511–519. [CrossRef] [PubMed]
- Wang YC, Ku WW, Yang YS; et al. Is Polymicrobial Bacteremia an Independent Risk Factor for Mortality in Acinetobacter baumannii Bacteremia? J Clin Med. 2020, 9, 153. [CrossRef] [PubMed]
- McKenzie, F.E. Case mortality in polymicrobial bloodstream infections. J. Clin. Epidemiol. 2006, 59, 760–761. [Google Scholar] [CrossRef] [PubMed]
- Pavlaki M, Poulakou G, Drimousis P; et al. Polymicrobial bloodstream infections: Epidemiology and impact on mortality. J Glob Antimicrob Resist. 2013, 1, 207–212. [CrossRef] [PubMed]
- Roberts, F.J.; Geere, I.W.; Coldman, A. A three-year study of positive blood cultures, with emphasis on prognosis. Rev. Infect. Dis. 1991, 13, 34–46. [Google Scholar] [CrossRef]
- Ilavska I, Pichna P, Stopkova K; et al. Polymicrobial bacteremia in cancer patients: Analysis of risk factors, etiology and outcome in 214 episodes. Int J Antimicrob Agents. 1996, 7, 101–107. [CrossRef]
- Aliaga, L.; Mediavilla, J.D.; Llosá, J.; Miranda, C.; Rosa-Fraile, M. Clinical significance of polymicrobial versus monomicrobial bacteremia involving Pseudomonas aeruginosa. Eur J Clin Microbiol Infect Dis. 2000, 19, 871–874. [Google Scholar] [CrossRef]
- Liu, Q.; Wu, J.; Wang, Z.; Wu, X.; Wang, G.; Ren, J. Polymicrobial Bacteremia Involving Klebsiella pneumoniae in Patients with Complicated Intra-Abdominal Infections: Frequency, Co-Pathogens, Risk Factors, and Clinical Outcomes. Surg Infect (Larchmt). 2019, 20, 317–325. [Google Scholar] [CrossRef]
| Variable |
Total (N=157) |
28-days mortality | |
|---|---|---|---|
| Alive (N=78) |
Dead (N=79) |
||
| Age, mean (sd) | 67.63 (14.14) | 62.98 (14.33) | 72.28 (12.40) |
| Ward, N (%) ICU Other |
66 (42.04) 91 (57.96) |
29 (37.18) 49 (62.82) |
37 (46.84) 42 (53.16) |
| Creatinine Baseline, N (%) <1.2 mg/dl 1.2 – 1.9 mg/dl 2 – 3.4 mg/dl 3.5 – 4.9 mg/dl ≥5 mg/dl |
123 (78.21) 25 (16.03) 6 (3.85) - 3 (1.92) |
65 (84.42) 8 (10.83) 3 (3.85) - 1 (1.30) |
57 (72.15) 17 (21.52) 3 (3.38) - 2 (2.53) |
| Charlson Comorbidity Index mean (sd) |
3.89 (2.02) |
3.17 (1.82) | 4. 61 (1.96) |
| ICU days, median (IQR) | 1 (0, 30) | 3 (0, 45) | 1 (0, 18) |
| Hospital days, median (IQR) | 30.5 (19, 55) | 47 (25, 77) | 24 (16, 38) |
| PCT, N (%) < 1 ≥ 1 |
54 (44.26) 68 (55.74) |
36 (46.15) 24 (30.77) |
18 (22.78) 44 (55.70) |
| Time to adequate antimicrobial therapy ≤24 h >24 h None |
49 (31.41) 33 (21.15) 74 (47.44) |
29 (37.18) 17 (21.79) 32 (41.03) |
20 (25.36) 16 (20.25) 42 (53.16) |
| GNB, N (%) Acinetobacter baumanii Klebsiella pneumoniae Other species |
75 (49.02) 39 (25.49) 39 (25.49) |
31 (39.74) 19 (24.36) 26 (33.33) |
44 (55.70) 20 (25.32) 13 (16.46) |
| Type of Bacteremia, N(%) Primary Secondary |
93 (59.24) 64 (40.76) |
48 (61.54) 30 (38.46) |
45 (56.96) 34 (43.04) |
| Number of pathogens Isolated, N(%) 1 ≥ 2 |
135 (86.54) 21 (13.46) |
68 (87.18) 10 (12.82) |
67 (84.81) 11 (13.92) |
| Filmarray use, N (%) No Yes |
9 (5.73) 148 (94.27) |
3 (3.85) 75 (96.15) |
6 (7.59) 73 (92.41) |
| Active antibiotics in empirical treatment, N (%) 0 ≥ 1 |
108 (69.23) 48 (30.77) |
49 (62.82) 29 (37.18) |
59 (74.68) 19 (24.05) |
| Active antibiotics in targeted treatment, N (%) 0 ≥ 1 |
78 (50.00) 78 (50.00) |
36 (46.15) 42 (53.85) |
42 (53.16) 36 (45.56) |
| Intervention: Discontinuation of additional antibiotic, N (%) No Yes |
99 (63.46) 57 (36.54) |
54 (69.23) 24 (30.77) |
45 (56.96) 33 (41.77) |
| COVID-19 co-infection, N (%) No Yes |
104 (66.24) 53 (33.76) |
50 (64.10) 28 (35.90) |
54 (68.35) 25 (31.65) |
| MBL production | 49 (31.21) | 25 (32.05) | 24 (30.38) |
| KPC production | 36 (22.93) | 15 (19.23) | 21 (26.58) |
| Empirical: Colistin | 22 (14.01) | 12 (15.38) | 10 (12.66) |
| Empirical: Tigecycline | 17 (10.83) | 4 (5.13) | 13 (16.46) |
| Empirical: CAZ/AVI or MER/VAR |
1 (0.64) |
0 (0.00) |
1 (1.27) |
| Empirical: Col + Tig | 18 (11.46) | 13 (16.67) | 5 (6.33) |
| Empirical: Tig + CAZ/AVI | 1 (0.64) | 0 (0.00) | 1 (1.27) |
| Empical: Tig + Col + CAZ/AVI | 2 (1.27) | 2 (2.56) | 0 (0.00) |
| Variable | 28-days mortality | |
|---|---|---|
| OR (95%) | p-value | |
| Age | 1.05 (1.03, 1.08) | <0.001* |
| Ward ICU Other |
Ref. 0.67 (0.36,1.27) |
0.221 |
| Creatinine Baseline <1.2 mg/dl 1.2 – 1.9 mg/dl 2 – 3.4 mg/dl 3.5 – 4.9 mg/dl ≥5 mg/dl |
Ref. 2.42 (0.97, 6.05) 1.14 (0.22, 5.87) - 2.28 (0.20, 25.82) |
0.057 0.875 - 0.505 |
| Charlson Comorbidity Index | 1.51 (1.25, 1.83) | <0.001* |
| ICU days | 0.98 (0.97, 0.99) | 0.016* |
| Hospital days | 0.97 (0.95, 0.98) | <0.001* |
| PCT < 1 ≥ 1 |
Ref. 3.67 (1.73, 7.79) |
0.001* |
| Time to adequate antimicrobial therapy ≤24 h >24 h None |
Ref. 1.36 (0.56, 3.32) 1.90 (0.92, 3.95) |
0.493 0.085 |
| GNB Acinetobacter Klebsiella Other |
Ref. 0.74 (0.34, 1.64) 0.35 (0.16, 0.79) |
0.452 0.011* |
| Type of Bacteremia Primary Secondary |
Ref. 1.21 (0.64, 2.29) |
0.560 |
| Number of pathogens Isolated 1 ≥ 2 |
Ref. 1.12 (0.44, 2.80) |
0.815 |
| Filmarray use (Y/N) No Yes |
Ref. 0.49 (0.12, 2.02) |
0.321 |
| Active antibiotics in empirical treatment, N (%) 0 ≥ 1 |
Ref. 0.54 (0.27, 1.09) |
0.085 |
| Active antibiotics in targeted treatment, N (%) 0 ≥ 1 |
Ref. 0.73 (0.39, 1.38) |
0.337 |
| Intervention: Discontinuation of additional antibiotic, N (%) No Yes |
Ref. 1.65 (0.85, 3.19) |
0.136 |
| COVID COVID-19 co-infection, N (%) No Yes |
Ref. 0.83 (0.74, 1.59) |
0.573 |
| MBL production No Yes |
Ref. 0.93 (0.47, 1.81) |
0.821 |
| KPC production No Yes |
Ref. 1.52 (0.72, 3.23) |
0.275 |
| Empirical treatment :Colistin No Yes |
Ref. 0.79 (0.32, 1.97) |
0.623 |
| Empirical treatment: Tigecycline No Yes |
Ref. 3.64 (1.13, 11.73) |
0.030* |
| Empirical treatment: Col + tig No Yes |
Ref. 0.34 (0.11, 1.00) |
0.050 |
| OR: Odds Ratio, CI: confidence interval *Statistically significant at level 0.05 | ||
| Variable | 28-days mortality | |||
|---|---|---|---|---|
| Univariate analysis | Multivariable analysis | |||
| OR (95%) | p-value | OR (95%) | p-value | |
| Age | 1.05 (1.03, 1.08) | <0.001* | 1.03 (0.98, 1.08) | 0.234 |
| Ward ICU Other |
Ref. 0.67 (0.36,1.27) |
0.221 |
Ref. 0.54 (0.21, 1.42) |
0.218 |
| Charlson Comorbidity Index | 1.51 (1.25, 1.83) | <0.001* | 1.25 (0.88, 1.77) | 0.213 |
| PCT < 1 ≥ 1 |
Ref. 3.67 (1.73, 7.79) |
0.001* |
Ref. 2.84 (1.13, 7.11) |
0.025* |
| Time to adequate antimicrobial therapy ≤24 h >24 h None |
Ref. 1.36 (0.56, 3.32) 1.90 (0.92, 3.95) |
0.493 0.085 |
Ref. 1.36 (0.40, 4.61) 1.45 (0.50, 4.19) |
0.616 0.494 |
| GNB Acinetobacter baumanii Klebsiella pneumoniae Other species |
Ref. 0.74 (0.34, 1.64) 0.35 (0.16, 0.79) |
0.452 0.011* |
Ref. 0.78 (0.29, 2.12) 0.74 (0.24, 2.23) |
0.635 0.588 |
| Empirical treatment Tigecycline No Yes |
Ref. 3.64 (1.13, 11.73) |
0.030* |
Ref. 3.66 (0.64, 21.08) |
0.146 |
| Empirical treatment Col + tig No Yes |
Ref. 0.34 (0.11, 1.00) |
0.050 |
Ref. 0.64 (0.15, 2.74) |
0.544 |
| OR: Odds Ratio, CI: confidence interval *Statistically significant at level 0.05 |
||||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
