Submitted:
07 May 2023
Posted:
09 May 2023
You are already at the latest version
Abstract
Keywords:
Air Travel and Infectious Diseases
Controlling the Spread of Infectious Diseases via Air Travel
Human Pathogens and Aircraft Lavatory Wastewater
Aircraft Lavatory Systems, Maintenance
Potential of Aircraft Lavatory Wastewater for Infectious Disease Surveillance
Previous Studies of Pathogens in Aircraft Wastewater as Proof of Concept
Estimated Scale of an Aircraft Wastewater Surveillance System
Aircraft Wastewater Sampling Logistics
Aircraft Wastewater Analytical Approaches
Challenges, Limitations, and Future Research Opportunities
Conclusions
Author Contributions
Funding
Acknowledgements
Conflicts of Interest
Author Statements
References
- IATA. Number of scheduled passengers boarded by the global airline industry from 2004 to 2022 (in millions). Statista https://www.statista.com/statistics/564717/airline-industry-passenger-traffic-globally/ (2022).
- IATA. Passenger Demand Recovery Continued in December 2022 & for the Full Year. IATA.org https://www.iata.org/en/pressroom/2023-releases/2023-02-06-02/ (2023).
- Tatem, A.J.; Rogers, D.J.; Hay, S.I. Global Transport Networks and Infectious Disease Spread. in Advances in Parasitology (eds. Hay, S.I., Graham, A. & Rogers, D.J.) vol. 62 293–343 (Academic Press, 2006).
- Ozonoff, D.; Pepper, L. Ticket to ride: Spreading germs a mile high. Lancet 2005, 365, 917–919. [Google Scholar] [CrossRef] [PubMed]
- Epidemiology in Relation to Air Travel. Indian Med. Gaz. 1933, 68, 292.
- Thomas, R. Geomedical systems: Intervention and control. (Routledge, 1992).
- Cox, N.J.; Subbarao, K. Global epidemiology of influenza: Past and present. Annu. Rev. Med. 2000, 51, 407–421. [Google Scholar] [CrossRef] [PubMed]
- Peiris JS, M.; Yuen, K.Y.; Osterhaus AD, M.E.; Stöhr, K. The Severe Acute Respiratory Syndrome. N. Engl. J. Med. 2003, 349, 2431–2441. [Google Scholar] [CrossRef]
- Crimean-Congo haemorrhagic fever case identified in England, following travel to Central Asia. GOV.UK https://www.gov.uk/government/news/crimean-congo-haemorrhagic-fever-case-identified-in-england-following-travel-to-central-asia (2022).
- Kuenzli, E. Antibiotic resistance and international travel: Causes and consequences. Travel Med. Infect. Dis. 2016, 14, 595–598. [Google Scholar] [CrossRef]
- Frost, I.; Van Boeckel, T.P.; Pires, J.; Craig, J.; Laxminarayan, R. Global geographic trends in antimicrobial resistance: The role of international travel. J. Travel Med. 2019, 26, taz036. [Google Scholar] [CrossRef]
- Phan, L.T.; Nguyen, T.V.; Luong, Q.C.; Nguyen, T.V.; Nguyen, H.T.; Le, H.Q.; Nguyen, T.T.; Cao, T.M.; Pham, Q.D. Importation and Human-to-Human Transmission of a Novel Coronavirus in Vietnam. N. Engl. J. Med. 2020, 382, 872–874. [Google Scholar] [CrossRef]
- Bogoch, I.; Maxim, T.; Acosta, H.; Bhatia, D.; Chen, S.; Huber, C.; Janes, A.; Yong, J.H.E.; Thomas, A.; Kraemer, M.U.G.; et al. Potential plague exportation from Madagascar via international air travel. Lancet Infect. Dis. 2018, 18, 247–248. [Google Scholar] [CrossRef]
- Toovey, S.; Jamieson, A. Rolling back malaria: How well is Europe doing? Travel Med. Infect. Dis. 2003, 1, 167–175. [Google Scholar] [CrossRef]
- Tatem, A.J.; Jia, P.; Ordanovich, D.; Falkner, M.; Huang, Z.; Howes, R.; Hay, S.I.; Gething, P.W.; Smith, D.L. The geography of imported malaria to non-endemic countries: A meta-analysis of nationally reported statistics. Lancet Infect. Dis. 2017, 17, 98–107. [Google Scholar] [CrossRef]
- Shu, P.Y.; Chien, L.J.; Chang, S.F.; Su, C.L.; Kuo, Y.C.; Liao, T.L.; Ho, M.S.; Lin, T.H.; Huang, J.H. Fever Screening at Airports and Imported Dengue. Emerg. Infect. Dis. 2005, 11, 460–462. [Google Scholar] [CrossRef] [PubMed]
- Khanh, N.C.; Thai, P.Q.; Quach, H.L.; Thi, N.A.H.; Dinh, P.C.; Duong, T.N.; Nghia, N.D.; Tu, T.A.; Dai Quang, T.; Nguyen, T.T.; et al. Transmission of SARS-CoV 2 During Long-Haul Flight. Emerg. Infect. Dis. 2020, 26, 2617–2624. [Google Scholar] [CrossRef] [PubMed]
- Mangili, A.; Gendreau, M.A. Transmission of infectious diseases during commercial air travel. Lancet 2005, 365, 989–996. [Google Scholar] [CrossRef] [PubMed]
- Mangili, A.; Vindenes, T.; Gendreau, M. Infectious Risks of Air Travel. Microbiol. Spectr. 2015, 3. [Google Scholar] [CrossRef] [PubMed]
- Rosca, E.C.; Heneghan, C.; Spencer, E.A.; Brassey, J.; Plüddemann, A.; Onakpoya, I.J.; Evans, D.H.; Conly, J.M.; Jefferson, T. Transmission of SARS-CoV-2 associated with aircraft travel: A systematic review. J. Travel Med. 2021, 8, taab133. [Google Scholar] [CrossRef]
- Costello, V.; Sowash, M.; Gaur, A.; Cardis, M.; Pasieka, H.; Wortmann, G.; Ramdeen, S. Imported Monkeypox from International Traveler, Maryland, USA, 2021. Emerg. Infect. Dis. 2022, 28, 1002–1005. [Google Scholar] [CrossRef] [PubMed]
- Rao, A.K.; Schulte, J.; Chen, T.H.; Hughes, C.M.; Davidson, W.; Neff, J.M.; Markarian, M.; Delea, K.C.; Wada, S.; Liddell, A.; et al. Monkeypox in a Traveler Returning from Nigeria—Dallas, Texas, July 2021. Morb. Mortal. Wkly. Rep. 2022, 71, 509–516. [Google Scholar] [CrossRef] [PubMed]
- Hobson, G.; Adamson, J.; Adler, H.; Firth, R.; Gould, S.; Houlihan, C.; Johnson, C.; Porter, D.; Rampling, T.; Ratcliffe, L. Family cluster of three cases of monkeypox imported from Nigeria to the United Kingdom, May 2021. Eurosurveillance 2021, 26, 2100745. [Google Scholar] [CrossRef]
- Hill, M.; Pollard, A.J. Detection of poliovirus in London highlights the value of sewage surveillance. Lancet 2022, 400, 1491–1492. [Google Scholar] [CrossRef]
- Haggett, P. The Geographical Structure of Epidemics; Oxford University Press: Oxford, UK, 2000. [Google Scholar]
- Bajardi, P.; Poletto, C.; Ramasco, J.J.; Tizzoni, M.; Colizza, V.; Vespignani, A. Human Mobility Networks, Travel Restrictions, and the Global Spread of 2009 H1N1 Pandemic. PLoS ONE 2011, 6, e16591. [Google Scholar] [CrossRef]
- Bogoch, I.I.; Creatore, M.I.; Cetron, M.S.; Brownstein, J.S.; Pesik, N.; Miniota, J.; Tam, T.; Hu, W.; Nicolucci, A.; Ahmed, S.; et al. Assessment of the potential for international dissemination of Ebola virus via commercial air travel during the 2014 west African outbreak. Lancet 2015, 385, 29–35. [Google Scholar] [CrossRef] [PubMed]
- Selvey, L.A.; Antão, C.; Hall, R. Evaluation of Border Entry Screening for Infectious Diseases in Humans. Emerg. Infect. Dis. 2015, 21, 197–201. [Google Scholar] [CrossRef] [PubMed]
- Huizer, Y.L.; Swaan, C.M.; Leitmeyer, K.C.; Timen, A. Usefulness and applicability of infectious disease control measures in air travel: A review. Travel Med. Infect. Dis. 2015, 13, 19–30. [Google Scholar] [CrossRef] [PubMed]
- Gostic, K.; Gomez, A.C.; Mummah, R.O.; Kucharski, A.J.; Lloyd-Smith, J.O. Estimated effectiveness of symptom and risk screening to prevent the spread of COVID-19. eLife 2020, 9, e55570. [Google Scholar] [CrossRef] [PubMed]
- Myers, J.F. Identification and Monitoring of International Travelers During the Initial Phase of an Outbreak of COVID-19—California, February 3–March 17, 2020. MMWR Morb. Mortal. Wkly. Rep. 2020, 69. [Google Scholar] [CrossRef]
- Johansson, M.A.; Wolford, H.; Paul, P.; Diaz, P.S.; Chen, T.H.; Brown, C.M.; Cetron, M.S.; Alvarado-Ramy, F. Reducing travel-related SARS-CoV-2 transmission with layered mitigation measures: Symptom monitoring, quarantine, and testing. BMC Med. 2021, 19, 94. [Google Scholar] [CrossRef] [PubMed]
- Bart, S.M. Effect of Predeparture Testing on Postarrival SARS-CoV-2–Positive Test Results Among International Travelers—CDC Traveler-Based Genomic Surveillance Program, Four U.S. Airports, March–September 2022. MMWR Morb. Mortal. Wkly. Rep. 2023, 72.
- Brockmann, D.; Helbing, D. The Hidden Geometry of Complex, Network-Driven Contagion Phenomena. Science 2013, 342, 1337–1342. [Google Scholar] [CrossRef]
- Christaki, E. New technologies in predicting, preventing and controlling emerging infectious diseases. ( 2015. [CrossRef]
- Colizza, V.; Barrat, A.; Barthélemy, M.; Vespignani, A. Predictability and epidemic pathways in global outbreaks of infectious diseases: The SARS case study. BMC Med. 2007, 5, 34. [Google Scholar] [CrossRef]
- Colizza, V.; Barrat, A.; Barthélemy, M.; Vespignani, A. The role of the airline transportation network in the prediction and predictability of global epidemics. Proc. Natl. Acad. Sci. USA 2006, 103, 2015–2020. [Google Scholar] [CrossRef]
- Colizza, V.; Barrat, A.; Barthélemy, M.; Vespignani, A. The Modeling of Global Epidemics: Stochastic Dynamics and Predictability. Bull. Math. Biol. 2006, 68, 1893–1921. [Google Scholar] [CrossRef] [PubMed]
- Hsu, C.-I.; Shih, H.-H. Transmission and control of an emerging influenza pandemic in a small-world airline network. Accid. Anal. Prev. 2010, 42, 93–100. [Google Scholar] [CrossRef] [PubMed]
- Nikolaou, P.; Dimitriou, L. Identification of critical airports for controlling global infectious disease outbreaks: Stress-tests focusing in Europe. J. Air Transp. Manag. 2020, 85, 101819. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, W.; Bivins, A.; Stephens, M.; Metcalfe, S.; Smith, W.J.; Sirikanchana, K.; Kitajima, M.; Simpson, S.L. Occurrence of multiple respiratory viruses in wastewater in Queensland, Australia: Potential for community disease surveillance. Sci. Total Environ. 2023, 864, 161023. [Google Scholar] [CrossRef] [PubMed]
- Hughes, B.; Duong, D.; White, B.J.; Wigginton, K.R.; Chan, E.M.G.; Wolfe, M.K.; Boehm, A.B. Respiratory Syncytial Virus (RSV) RNA in Wastewater Settled Solids Reflects RSV Clinical Positivity Rates. Environ. Sci. Technol. Lett. 2022, 9, 173–178. [Google Scholar] [CrossRef]
- Wolfe, M.K.; Duong, D.; Bakker, K.M.; Ammerman, M.; Mortenson, L.; Hughes, B.; Arts, P.; Lauring, A.S.; Fitzsimmons, W.J.; Bendall, E.; et al. Wastewater-Based Detection of Two Influenza Outbreaks. Environ. Sci. Technol. Lett. 2022, 9, 687–692. [Google Scholar] [CrossRef]
- Uluseker, C.; Kaster, K.M.; Thorsen, K.; Basiry, D.; Shobana, S.; Jain, M.; Kumar, G.; Kommedal, R.; Pala-Ozkok, I. A Review on Occurrence and Spread of Antibiotic Resistance in Wastewaters and in Wastewater Treatment Plants: Mechanisms and Perspectives. Front. Microbiol. 2021, 12. [Google Scholar] [CrossRef]
- Tiwari, A.; Kurittu, P.; Al-Mustapha, A.I.; Heljanko, V.; Johansson, V.; Thakali, O.; Mishra, S.K.; Lehto, K.-M.; Lipponen, A.; Oikarinen, S.; et al. Wastewater surveillance of antibiotic-resistant bacterial pathogens: A systematic review. Front. Microbiol. 2022, 13. [Google Scholar] [CrossRef]
- Bisseux, M.; Colombet, J.; Mirand, A.; Roque-Afonso, A.-M.; Abravanel, F.; Izopet, J.; Archimbaud, C.; Peigue-Lafeuille, H.; Debroas, D.; Bailly, J.-L.; et al. Monitoring human enteric viruses in wastewater and relevance to infections encountered in the clinical setting: A one-year experiment in central France, 2014 to 2015. Eurosurveillance 2018, 23, 17–00237. [Google Scholar] [CrossRef]
- Yan, T.; O’Brien, P.; Shelton, J.M.; Whelen, A.C.; Pagaling, E. Municipal Wastewater as a Microbial Surveillance Platform for Enteric Diseases: A Case Study for Salmonella and Salmonellosis. Environ. Sci. Technol. 2018, 52, 4869–4877. [Google Scholar] [CrossRef]
- Kilaru, P.; Hill, D.; Anderson, K.; Collins, M.B.; Green, H.; Kmush, B.L.; Larsen, D.A. Wastewater Surveillance for Infectious Disease: A Systematic Review. Am. J. Epidemiol. 2023, 192, 305–322. [Google Scholar] [CrossRef] [PubMed]
- Crank, K.; Chen, W.; Bivins, A.; Lowry, S.; Bibby, K. Contribution of SARS-CoV-2 RNA shedding routes to RNA loads in wastewater. Sci. Total Environ. 2022, 806, 150376. [Google Scholar] [CrossRef] [PubMed]
- Jones, D.L.; Rhymes, J.M.; Wade, M.J.; Kevill, J.L.; Malham, S.K.; Grimsley, J.M.; Rimmer, C.; Weightman, A.J.; Farkas, K. Suitability of aircraft wastewater for pathogen detection and public health surveillance. Sci. Total Environ. 2023, 856, 159162. [Google Scholar] [CrossRef]
- Amoruso, I.; Baldovin, T. On-board toilets of long-haul flights: Is sewage epidemiology effective for COVID-19 global surveillance? Travel Med. Infect. Dis. 2021, 40, 102006. [Google Scholar] [CrossRef]
- Li, P.; Zhang, T.; Zhang, Y. Measuring the flushing-generated flow and aerosols in lavatory of commercial aircraft. Build. Environ. 2022, 214, 108948. [Google Scholar] [CrossRef]
- Lacey, S.E.; Abelmann, A.; Dorevitch, S. Exposure to Human Waste from Spills while Servicing Aircraft Lavatories: Hazards and Methods of Prevention. Ind. Health 2010, 48, 123–128. [Google Scholar] [CrossRef]
- Burton, N.C.; McCleery, R.E. Case Studies Exposure Potentials During Cleaning, Overhauling and Repairing of Aircraft Lavatory Tanks and Hardware. Appl. Occup. Environ. Hyg. 2010, 15, 803–808. [Google Scholar] [CrossRef]
- Ahmed, W.; Bivins, A.; Simpson, S.L.; Bertsch, P.M.; Ehret, J.; Hosegood, I.; Metcalfe, S.S.; Smith, W.J.; Thomas, K.V.; Tynan, J.; et al. Wastewater surveillance demonstrates high predictive value for COVID-19 infection on board repatriation flights to Australia. Environ. Int. 2022, 158, 106938. [Google Scholar] [CrossRef]
- Rilstone, V. The Potential Breach Vectors in Biosecurity Practices and the Issues Associated with Airplane Lavatory Waste. (Queen’s University, 2019).
- Shieh, Y.S.; Baric, R.S.; Sobsey, M.D. Detection of low levels of enteric viruses in metropolitan and airplane sewage. Appl. Environ. Microbiol. 1997, 63, 4401–4407. [Google Scholar] [CrossRef]
- Petersen, T.N.; Rasmussen, S.; Hasman, H.; Carøe, C.; Bælum, J.; Schultz, A.C.; Bergmark, L.; Svendsen, C.A.; Lund, O.; Sicheritz-Pontén, T.; et al. Meta-genomic analysis of toilet waste from long distance flights; a step towards global surveillance of infectious diseases and antimicrobial resistance. Sci. Rep. 2015, 5, 11444. [Google Scholar] [CrossRef]
- Heß, S.; Kneis, D.; Österlund, T.; Li, B.; Kristiansson, E.; Berendonk, T.U. Sewage from Airplanes Exhibits High Abundance and Diversity of Antibiotic Resistance Genes. Environ. Sci. Technol. 2019, 53, 13898–13905. [Google Scholar] [CrossRef] [PubMed]
- Hjelmsø, M.H.; Mollerup, S.; Jensen, R.H.; Pietroni, C.; Lukjancenko, O.; Schultz, A.C.; Aarestrup, F.M.; Hansen, A.J. Metagenomic analysis of viruses in toilet waste from long distance flights—A new procedure for global infectious disease surveillance. PLoS ONE 2019, 14, e0210368. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, W.; Bertsch, P.M.; Angel, N.; Bibby, K.; Bivins, A.; Dierens, L.; Edson, J.; Ehret, J.; Gyawali, P.; Hamilton, K.A.; et al. Detection of SARS-CoV-2 RNA in commercial passenger aircraft and cruise ship wastewater: A surveillance tool for assessing the presence of COVID-19 infected travellers. J. Travel Med. 2020, 27, taaa116. [Google Scholar] [CrossRef] [PubMed]
- Albastaki, A.; Naji, M.; Lootah, R.; Almeheiri, R.; Almulla, H.; Almarri, I.; Alreyami, A.; Aden, A.; Alghafri, R. First confirmed detection of SARS-COV-2 in untreated municipal and aircraft wastewater in Dubai, UAE: The use of wastewater based epidemiology as an early warning tool to monitor the prevalence of COVID-19. Sci. Total. Environ. 2020, 760, 143350–143350. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, W.; Bivins, A.; Smith, W.J.; Metcalfe, S.; Stephens, M.; Jennison, A.V.; Moore, F.A.; Bourke, J.; Schlebusch, S.; McMahon, J.; et al. Detection of the Omicron (B. 1.1. 529) variant of SARS-CoV-2 in aircraft wastewater. Sci. Total Environ. 2022, 820, 153171. [Google Scholar] [CrossRef] [PubMed]
- Le Targa, L.; Wurtz, N.; Lacoste, A.; Penant, G.; Jardot, P.; Annessi, A.; Colson, P.; La Scola, B.; Aherfi, S. SARS-CoV-2 Testing of Aircraft Wastewater Shows That Mandatory Tests and Vaccination Pass before Boarding Did Not Prevent Massive Importation of Omicron Variant into Europe. Viruses 2022, 14, 1511. [Google Scholar] [CrossRef] [PubMed]
- Farkas, K.; Williams, R.; Alex-Sanders, N.; Grimsley, J.M.; Pântea, I.; Wade, M.J.; Woodhall, N.; Jones, D.L. Wastewater-based monitoring of SARS-CoV-2 at UK airports and its potential role in international public health surveillance. PLOS Glob. Public Health 2023, 3, e0001346. [Google Scholar] [CrossRef]
- Morfino, R.C. Notes from the Field: Aircraft Wastewater Surveillance for Early Detection of SARS-CoV-2 Variants—John F. Kennedy International Airport, New York City, August–September 2022. MMWR Morb. Mortal. Wkly. Rep. 2023, 72, 210. [Google Scholar] [CrossRef]
- World air passenger traffic evolution, 1980-2020–Charts–Data & Statistics. IEA https://www.iea.org/data-and-statistics/charts/world-air-passenger-traffic-evolution-1980-2020.
- Wilkerson, J.T.; Jacobson, M.Z.; Malwitz, A.; Balasubramanian, S.; Wayson, R.; Fleming, G.; Naiman, A.D.; Lele, S.K. Analysis of emission data from global commercial aviation: 2004 and 2006. Atmospheric Meas. Tech. 2010, 10, 6391–6408. [Google Scholar] [CrossRef]
- APIS/I-92 Monitor. https://www.trade.gov/data-visualization/apisi-92-monitor.
- U.S. airports-international passenger traffic 2021. Statista https://www.statista.com/statistics/639826/leading-airports-united-states-for-international-air-passenger-traffic/.
- Metabiota. Metabiota Risk Report No. 3: Monitoring and risk analytics for the 2019 novel coronavirus (COVID-19) epidemic. https://metabiota.com/sites/default/files/inline-files/Metabiota_Risk_Report_No.3-25Feb2020-COVID-2019_0.pdf (2020).
- Balcan, D.; Gonçalves, B.; Hu, H.; Ramasco, J.J.; Colizza, V.; Vespignani, A. Modeling the spatial spread of infectious diseases: The GLobal Epidemic and Mobility computational model. J. Comput. Sci. 2010, 1, 132–145. [Google Scholar] [CrossRef]
- Balcan, D.; Hu, H.; Goncalves, B.; Bajardi, P.; Poletto, C.; Ramasco, J.J.; Paolotti, D.; Perra, N.; Tizzoni, M.; Broeck, W.V.D.; et al. Seasonal transmission potential and activity peaks of the new influenza A(H1N1): A Monte Carlo likelihood analysis based on human mobility. BMC Med. 2009, 7, 45–45. [Google Scholar] [CrossRef] [PubMed]
- Broeck, W.V.D.; Gioannini, C.; Gonçalves, B.; Quaggiotto, M.; Colizza, V.; Vespignani, A. The GLEaMviz computational tool, a publicly available software to explore realistic epidemic spreading scenarios at the global scale. BMC Infect. Dis. 2011, 11, 37–37. [Google Scholar] [CrossRef]
- Tatem, A.J.; Huang, Z.; DAS, A.; Qi, Q.; Roth, J.; Qiu, Y. Air travel and vector-borne disease movement. Parasitology 2012, 139, 1816–1830. [Google Scholar] [CrossRef] [PubMed]
- Ehret, J.; Cook, J.; King, T.; Limited, Q.A. Aircraft Lavatory Wastewater Sampling Utilising the Qantas Sample Trap (QST) MK III. ( 2022. [CrossRef]
- European Commission. Ad-hoc guidance: Wastewater sampling of aircrafts for SARS-CoV-2 surveillance. https://wastewater-observatory.jrc.ec.europa.eu/static/pdf/Sampling%20Aircrafts_FINAL_Version%209%20Jan%202023.pdf (2023).
- Karthikeyan, S.; Ronquillo, N.; Belda-Ferre, P.; Alvarado, D.; Javidi, T.; Longhurst, C.A.; Knight, R. High-Throughput Wastewater SARS-CoV-2 Detection Enables Forecasting of Community Infection Dynamics in San Diego County. mSystems 2021, 6, e00045-21. [Google Scholar] [CrossRef] [PubMed]
- Quick, J.; Loman, N.J.; Duraffour, S.; Simpson, J.T.; Severi, E.; Cowley, L.; Bore, J.A.; Koundouno, R.; Dudas, G.; Mikhail, A.; et al. Real-time, portable genome sequencing for Ebola surveillance. Nature 2016, 530, 228–232. [Google Scholar] [CrossRef]
- Capone, D.; Berendes, D.; Cumming, O.; Knee, J.; Nalá, R.; Risk, B.B.; Stauber, C.; Zhu, K.; Brown, J. Analysis of Fecal Sludges Reveals Common Enteric Pathogens in Urban Maputo, Mozambique. Environ. Sci. Technol. Lett. 2020, 7, 889–895. [Google Scholar] [CrossRef]
- Wang, D.; Coscoy, L.; Zylberberg, M.; Avila, P.C.; Boushey, H.A.; Ganem, D.; DeRisi, J.L. Microarray-based detection and genotyping of viral pathogens. Proc. Natl. Acad. Sci. USA 2002, 99, 15687–15692. [Google Scholar] [CrossRef]
- Bivins, A.; Lott, M.; Shaffer, M.; Wu, Z.; North, D.; Lipp, E.K.; Bibby, K. Building-level wastewater surveillance using tampon swabs and RT-LAMP for rapid SARS-CoV-2 RNA detection. Environ. Sci. Water Res. Technol. 2022, 8, 173–183. [Google Scholar] [CrossRef]
- Kolm, C.; Martzy, R.; Führer, M.; Mach, R.L.; Krska, R.; Baumgartner, S.; Farnleitner, A.H.; Reischer, G.H. Detection of a microbial source tracking marker by isothermal helicase-dependent amplification and a nucleic acid lateral-flow strip test. Sci. Rep. 2019, 9, 393. [Google Scholar] [CrossRef]
- Zasada, A.A.; Mosiej, E.; Prygiel, M.; Polak, M.; Wdowiak, K.; Formińska, K.; Ziółkowski, R.; Żukowski, K.; Marchlewicz, K.; Nowiński, A.; et al. Detection of SARS-CoV-2 Using Reverse Transcription Helicase Dependent Amplification and Reverse Transcription Loop-Mediated Amplification Combined with Lateral Flow Assay. Biomedicines 2022, 10, 2329. [Google Scholar] [CrossRef] [PubMed]
- Lara-Jacobo, L.R.; Islam, G.; Desaulniers, J.-P.; Kirkwood, A.E.; Simmons, D.B.D. Detection of SARS-CoV-2 Proteins in Wastewater Samples by Mass Spectrometry. Environ. Sci. Technol. 2022, 56, 5062–5070. [Google Scholar] [CrossRef] [PubMed]
- Agan, M.L.; Taylor, W.R.; Willis, W.A.; Lair, H.; Murphy, A.; Marinelli, A.; Young, I.; New, G.D.; Islam Juel, M.A.; Dornburg, A.; et al. Wastewater as a back door to serology? medRxiv 2022. [CrossRef]
- Kaminski, M.M.; Abudayyeh, O.O.; Gootenberg, J.S.; Zhang, F.; Collins, J.J. CRISPR-based diagnostics. Nat. Biomed. Eng. 2021, 5, 643–656. [Google Scholar] [CrossRef] [PubMed]
- Broughton, J.P.; Deng, X.; Yu, G.; Fasching, C.L.; Servellita, V.; Singh, J.; Miao, X.; Streithorst, J.A.; Granados, A.; Sotomayor-Gonzalez, A.; et al. CRISPR–Cas12-based detection of SARS-CoV-2. Nat. Biotechnol. 2020, 38, 870–874. [Google Scholar] [CrossRef]
- Levy, J.I.; Andersen, K.G.; Knight, R.; Karthikeyan, S. Wastewater surveillance for public health | Science. ( 2023.
- Li, J.; Hosegood, I.; Powell, D.; Tscharke, B.; Lawler, J.; Thomas, K.V.; Mueller, J.F. A global aircraft-based wastewater genomic surveillance network for early warning of future pandemics. Lancet Glob. Heal. 2023, 11, e791–e795. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, W.; Bivins, A.; Metcalfe, S.; Smith, W.J.; Ziels, R.; Korajkic, A.; McMinn, B.; Graber, T.E.; Simpson, S.L. RT-qPCR and ATOPlex sequencing for the sensitive detection of SARS-CoV-2 RNA for wastewater surveillance. Water Res. 2022, 220, 118621. [Google Scholar] [CrossRef]
- Ng, T.F.F.; Marine, R.; Wang, C.; Simmonds, P.; Kapusinszky, B.; Bodhidatta, L.; Oderinde, B.S.; Wommack, K.E.; Delwart, E. High Variety of Known and New RNA and DNA Viruses of Diverse Origins in Untreated Sewage. J. Virol. 2012, 86, 12161–12175. [Google Scholar] [CrossRef]
- Bibby, K.; Peccia, J. Identification of Viral Pathogen Diversity in Sewage Sludge by Metagenome Analysis. Environ. Sci. Technol. 2013, 47, 1945–1951. [Google Scholar] [CrossRef]
- Bibby, K.; Viau, E.; Peccia, J. Viral metagenome analysis to guide human pathogen monitoring in environmental samples. Lett. Appl. Microbiol. 2011, 52, 386–392. [Google Scholar] [CrossRef] [PubMed]
- Karthikeyan, S.; Levy, J.I.; De Hoff, P.; Humphrey, G.; Birmingham, A.; Jepsen, K.; Farmer, S.; Tubb, H.M.; Valles, T.; Tribelhorn, C.E.; et al. Wastewater sequencing reveals early cryptic SARS-CoV-2 variant transmission. Nature 2022, 609, 101–108. [Google Scholar] [CrossRef] [PubMed]
- Izquierdo-Lara, R.; Elsinga, G.; Heijnen, L.; Munnink, B.B.O.; Schapendonk, C.M.; Nieuwenhuijse, D.; Kon, M.; Lu, L.; Aarestrup, F.M.; Lycett, S.; et al. Monitoring SARS-CoV-2 Circulation and Diversity through Community Wastewater Sequencing, the Netherlands and Belgium. Emerg. Infect. Dis. 2021, 27, 1405–1415. [Google Scholar] [CrossRef] [PubMed]
- Crits-Christoph, A.; Kantor, R.S.; Olm, M.R.; Whitney, O.N.; Al-Shayeb, B.; Lou, Y.C.; Flamholz, A.; Kennedy, L.C.; Greenwald, H.; Hinkle, A.; et al. Genome Sequencing of Sewage Detects Regionally Prevalent SARS-CoV-2 Variants. mBio 2021, 12, e02703-20. [Google Scholar] [CrossRef]
- Ahmed, W.; Bivins, A.; Bertsch, P.M.; Bibby, K.; Choi, P.M.; Gyawali, P.; Hamilton, K.A.; Haramoto, E.; Kitajima, M.; Simpson, S.L.; et al. Surveillance of SARS-CoV-2 RNA in wastewater: Methods optimization and quality control are crucial for generating reliable public health information. Curr. Opin. Environ. Sci. Health 2020, 17, 82–93. [Google Scholar] [CrossRef]
- Lodder, W.; Husman, A.M.d.R. SARS-CoV-2 in wastewater: Potential health risk, but also data source. Lancet Gastroenterol. Hepatol. 2020, 5, 533–534. [Google Scholar] [CrossRef]
- Nkambule, S.; Johnson, R.; Mathee, A.; Mahlangeni, N.; Webster, C.; Horn, S.; Mangwana, N.; Dias, S.; Sharma, J.R.; Ramharack, P.; et al. Wastewater-based SARS-CoV-2 airport surveillance: Key trends at the Cape Town International Airport. J. Water Health 2023, 21, 402–408. [Google Scholar] [CrossRef]
- La Rosa, G.; Mancini, P.; Veneri, C.; Ferraro, G.B.; Lucentini, L.; Iaconelli, M.; Suffredini, E. Detection of Monkeypox Virus DNA in Airport Wastewater, Rome, Italy. Emerg. Infect. Dis. 2023, 29, 193–196. [Google Scholar] [CrossRef]
- IATA. Future of the Airline Industry 2035. https://www.iata.org/contentassets/086e8361b2f4423e88166845afdd2f03/iata-future-airline-industry.pdf (2018).
- IATA. Passenger confidence is fundamental to the recovery in air travel. (2020).
- Sotomayor-Castillo, C.; Radford, K.; Li, C.; Nahidi, S.; Shaban, R.Z. Air travel in a COVID-19 world: Commercial airline passengers’ health concerns and attitudes towards infection prevention and disease control measures. Infect. Dis. Heal. 2020, 26, 110–117. [Google Scholar] [CrossRef]
- de Vries, L.; Koopmans, M.; Morton, A.; van Baal, P. The economics of improving global infectious disease surveillance. BMJ Glob. Heal. 2021, 6, e006597. [Google Scholar] [CrossRef]
- The cost of not preparing for infectious diseases. Wellcome https://wellcome.org/news/cost-of-not-preparing-for-infectious-diseases (2021).
- COVID-19′s impact on the global aviation sector | McKinsey. https://www.mckinsey.com/industries/travel-logistics-and-infrastructure/our-insights/taking-stock-of-the-pandemics-impact-on-global-aviation.
- Madden, D. The Covid-19 Pandemic Has Cost The Global Tourism Industry $935 Billion. Forbes https://www.forbes.com/sites/duncanmadden/2021/01/14/the-covid-19-pandemic-has-cost-the-global-tourism-industry-935-billion/.
| Fecal-shed Pathogen # flights sampled/week 10% LH passenger survey rate Mean 10th-90th Percentile |
Urine-shed Pathogen # flights sampled/week 10% LH passenger survey rate Mean 10th-90th Percentile |
|
|---|---|---|
| 2019 Global Long-haul Passengers (196 million total) |
3,570 (95% CI: 3,540-3,600) 2,910-4,350 |
1,240 (95%CI: 1,230-1,250) 1,040-1,470 |
| 2021 US International Passengers (50.9 million total) |
925 (95% CI: 918-931) 756–1,030 |
322 (95% CI: 319-324) 269-381 |
| U.S. Airport (annual international passenger volume, 2021) [70] |
Fecal-shed Pathogen # flights sampled/week 10% LH passenger survey rate |
Urine-shed Pathogen # flights sampled/week 10% LH passenger survey rate |
|---|---|---|
| JFK (6.36 million) | 170 | 59 |
| MIA (5.93 million) | 159 | 55 |
| LAX (3.87 million) | 104 | 36 |
| EWR (3.23 million) | 87 | 30 |
| IAH (3.21 million) | 86 | 30 |
| DFW (2.91 million) | 78 | 27 |
| ATL (2.78 million) | 74 | 26 |
| ORD (2.64 million) | 71 | 25 |
| FLL (1.96 million) | 53 | 18 |
| IAD (1.63 million) | 43 | 16 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
