Submitted:
05 May 2023
Posted:
06 May 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Magnetic Integration for e-mobility and telecom/microprocessor applications
3.1. DC-DC converters
3.1.1. Telecom industry
3.1.2. Auxiliary Power Module (APMs):
3.1.3. On board chargers (OBCs):
3.2. Three phase AC-DC and DC-AC converters for e-mobility applications
3.2.1. Traction inverters:
3.2.2. Off-board chargers:
3. Magnetic Integration for filtering applications
3.1. Single phase systems:
3.2. Three phase systems:
3.3. Integration to desensitize parasitic effects:
4. Technology Roadmap
5. Conclusion

References
- Reusch, D.; Lee, F.C. High frequency bus converter with integrated matrix transformers for CPU and telecommunications applications. Proc. IEEE Energy Convers. Congr. Expo., Sep. 2010, pp. 2446–2450.
- Fei, C.; Lee, F.C.; Li, Q. High-Efficiency High-Power-Density LLC Converter With an Integrated Planar Matrix Transformer for High-Output Current Applications. IEEE Trans. Ind. Electron. 2017, 64, 9072–9082. [Google Scholar] [CrossRef]
- Ahmed, M.H.; Nabih, A.; Lee, F.C.; Li, Q. Low-Loss Integrated Inductor and Transformer Structure and Application in Regulated LLC Converter for 48-V Bus Converter. IEEE J. Emerg. Sel. Top. Power Electron. 2019, 8, 589–600. [Google Scholar] [CrossRef]
- D. Huang, S. D. Huang, S. Ji, and F. C. Lee, “LLC resonant converter with matrix transformer,” IEEE Trans. Power Electron., vol. 29, no. 8, pp. 4339–4347, Oct. 2014.
- M. Ahmed, C. M. Ahmed, C. Fei, F. C. Lee, and Q. Li, “High-efficiency high power-density 48/1 V sigma converter voltage regulator module,” in Proc. IEEE Appl. Power Electron. Conf. Expo. (APEC), Mar. 2017, pp. 2207. [Google Scholar]
- Li, B.; Li, Q.; Lee, F.C. High-Frequency PCB Winding Transformer With Integrated Inductors for a Bi-Directional Resonant Converter. IEEE Trans. Power Electron. 2018, 34, 6123–6135. [Google Scholar] [CrossRef]
- Wang, S.; Wu, H.; Lee, F.C.; Li, Q. Integrated Matrix Transformer with Optimized PCB Winding for High-Efficiency High-Power-Density LLC Resonant Converter. APEC 07-Twenty-Second Annual IEEE Applied Power Electronics Conference and Exposition, Anaheim, CA, USA, 2007, pp. 1630-1635.
- Bo, Y.; Lee, F.C.; Zhang, A.J.; Guisong, H. LLC Resonant Converter for Front End DC/DC Conversion. In Proceedings of the APEC 2002, Dallas, TX, USA, 10–14 March 2002; Volume 2, pp. 1108–1112. [Google Scholar]
- Li, M.; Ouyang, Z.; Andersen, M.A.E. High frequency LLC resonant converter with magnetic shunt integrated planar transformer. 2018 IEEE Applied Power Electronics Conference and Exposition (APEC), San Antonio, TX, USA, 2018, pp. 2678–2685.
- Chen, W.; Lee, F.; Zhou, X.; Xu, P. Integrated planar inductor scheme for multi-module interleaved quasi-square-wave (QSW) DC/DC converter. 30th Annual IEEE Power Electronics Specialists Conference. Record. (Cat. No.99CH36321), Charleston, SC, USA, 1999, pp. 759-762 vol.2.
- Zhu, F.; Li, Q.; Lee, F.C. Modeling and Analysis of Multi-Phase Coupled Inductor Structures for Voltage Regulators. 2021 IEEE Energy Conversion Congress and Exposition (ECCE), Vancouver, BC, Canada, 2021, pp. 5507-5514.
- Li, J.; Sullivan, C.; Schultz, A. Coupled-inductor design optimization for fast-response low-voltage DC-DC converters. Seventeenth Annual IEEE Applied Power Electronics Conference and Exposition (Cat. No.02CH37335), Mar. 2002, vol. 2, pp. 817–823 vol.2.
- Wong, P.-L.; Xu, P.; Yang, P.; Lee, F. Performance improvements of interleaving VRMs with coupling inductors. IEEE Trans. Power Electron. 2001, 16, 499–507. [Google Scholar] [CrossRef]
- Y. Dong, “Investigation of Multiphase Coupled-Inductor Buck Converters in Point-of-Load Applications,” PhD dissertation, 2009.
- Ahmed, M.; Fei, C.; Lee, F.C.; Li, Q. High efficiency two-stage 48V VRM with PCB winding matrix transformer. 2016 IEEE Energy Conversion Congress and Exposition (ECCE). 016 IEEE Energy Conversion Congress and Exposition (ECCE), Milwaukee, WI, USA, 2016, pp. 1-8.
- K. Leong, G. K. Leong, G. Deboy, K. Krischan and A. Muetze, "A single stage 54V to 1.8V multi-phase cascaded buck voltage regulator module," in Applied Power Electronics Conference and Exposition (APEC), 2015 IEEE, Charlotte, 15. 20 March.
- Fei, C.; Lee, F.C.; Li, Q. Multi-step Simplified Optimal Trajectory Control (SOTC) for fast transient response of high frequency LLC converters. in IEEE Energy Conversion Congress and Exposition (ECCE), Montreal, QC, 2015.
- Fei, C.; Lee, F.C.; Li, Q. High-Efficiency High-Power-Density LLC Converter With an Integrated Planar Matrix Transformer for High-Output Current Applications. IEEE Trans. Ind. Electron. 2017, 64, 9072–9082. [Google Scholar] [CrossRef]
- Mu, M.; Lee, F.C. Design and Optimization of a 380–12V High-Frequency, High-Current LLC Converter with GaN Devices and Planar Matrix Transformers. IEEE J. Emerg. Sel. Top. Power Electron. 2016, 4, 854–862. [Google Scholar] [CrossRef]
- Dong, Y.; Zhou, J.; Lee, F.C.; Xu, M.; Wang, S. Twisted Core Coupled Inductors for Microprocessor Voltage Regulators. IEEE Trans. Power Electron. 2008, 23, 2536–2545. [Google Scholar] [CrossRef]
- Jin, K.; Xu, M.; Lee, F.C.; Sun, Y. Self-driven schemes for 12V self-driven voltage regulator. 2009 IEEE Energy Conversion Congress and Exposition. ECCE 2009. 2009 IEEE Energy Conversion Congress and Exposition, San Jose, CA, USA, 2009; pp. 1648–1654.
- Sun, J.; Ren, Y.; Xu, M.; Lee, F.C. Light Load Efficiency Improvement for Laptop VRs. PEC 07 - Twenty-Second Annual IEEE Applied Power Electronics Conference and Exposition. APEC 07 -Twenty-Second Annual IEEE Applied Power Electronics Conference and Exposition, Anaheim, CA, USA, 2007; pp. 120–126.
- Li, Q.; Dong, Y.; Lee, F.C. High density low profile coupled inductor design for integrated Point-of-Load converter. 2010 IEEE Applied Power Electronics Conference and Exposition - APEC 2010. 2010 Twenty-Fifth Annual IEEE Applied Power Electronics Conference and Exposition (APEC), Palm Springs, CA, USA, 2010; pp. 79–85.
- Ahmed, M.H.; Lee, F.C.; Li, Q. LLC Converter with Integrated Magnetics Application for 48V Rack Architecture in Future Data Centers. 2019 IEEE Conference on Power Electronics and Renewable Energy (CPERE). in Proc. IEEE Conf. Power Electron. Renew. Energy (CPERE), Oct. 2019; pp. 437–443.
- Lou, X.; Li, Q. 300A Single-stage 48V Voltage Regulator with Multiphase Current Doubler Rectifier and Integrated Transformer. 2022 IEEE Applied Power Electronics Conference and Exposition (APEC). 2022 IEEE Applied Power Electronics Conference and Exposition (APEC), Houston, TX, USA, 2022; pp. 1004–1010.
- Xu, P.; Wu, Q.; Wong, P.-L.; Lee, F. A novel integrated current doubler rectifier. APEC 2000. Fifteenth Annual IEEE Applied Power Electronics Conference and Exposition (Cat. No.00CH37058), New Orleans, LA, USA, 2000.
- L. Balogh, “The performance of the current doubler rectifier with synchronous rectification”, High Frequency Power Conversion Conference Proceedings, pp. 216-225, 95. 19 May.
- Xu, M.; Zhou, J.; Lee, F. A Current-Tripler dc/dc Converter. IEEE Trans. Power Electron. 2004, 19, 693–700. [Google Scholar] [CrossRef]
- Mu, M.; Lee, F.C. Design and Optimization of a 380–12V High-Frequency, High-Current LLC Converter with GaN Devices and Planar Matrix Transformers. IEEE J. Emerg. Sel. Top. Power Electron. 2016, 4, 854–862. [Google Scholar] [CrossRef]
- Wang, C.; Li, M.; Ouyang, Z.; Zhang, Z.; Zsurzsan, G.; Andersen, M.A.E. High Step-Down Single-Stage DC-DC Converter with Improved Planar Matrix Transformer for High-Current Data Center Application. 2022 IEEE Applied Power Electronics Conference and Exposition (APEC). 2022 IEEE Applied Power Electronics Conference and Exposition (APEC), Houston, TX, USA, 2022; pp. 709–715.
- Prakash, P.R.; Nabih, A.; Li, Q. Design Optimization of PCB-Winding Matrix Transformer for 400V/12V Unregulated LLC Converter. 2021 IEEE Energy Conversion Congress and Exposition (ECCE). 2021 IEEE Energy Conversion Congress and Exposition (ECCE), Vancouver, BC, Canada, 2021; pp. 1777–1784.
- Fei, C.; Yang, Y.; Li, Q.; Lee, F.C. Shielding Technique for Planar Matrix Transformers to Suppress Common-Mode EMI Noise and Improve Efficiency. IEEE Trans. Ind. Electron. 2017, 65, 1263–1272. [Google Scholar] [CrossRef]
- Xu, P.; Wu, Q.; Wong, P.-L.; Lee, F. A novel integrated current doubler rectifier. APEC 2000 - Applied Power Electronics Conference. 2000, pp. 735–740.
- Sun, J.; Mehrotra, V. Orthogonal winding structures and design for planar integrated magnetics. Nineteenth Annual IEEE Applied Power Electronics Conference and Exposition, 2004. APEC ’04. vol. 55, no. 3, pp.1463-1469, March, 2008.
- Wikipedia, “Combined charging system,” 2022, Accessed Aug. 5, 2022. [Online]. Available: https://en.wikipedia.
- Wikipedia, “Chademo,” 2022, Accessed: Aug. 5, 2022. [Online]. Available online: https://en.wikipedia.org/wiki/CHAdeMO.
- Hsieh, H.-I.; Lin, P.-C.; Hsieh, G.-C.; Lin, H.-Y. LLC charger using matrix core coupling for power transfer to electric vehicle. 2015 IEEE 6th International Symposium on Power Electronics for Distributed Generation Systems (PEDG). 2015 IEEE 6th International Symposium on Power Electronics for Distributed Generation Systems (PEDG), Aachen, Germany, 2015; pp. 1–8.
- Jin, F.; Nabih, A.; Li, Z.; Li, Q. A Single Phase CLLC Resonant Converter with a Novel Matrix Integrated Transformer. 2022 IEEE Energy Conversion Congress and Exposition (ECCE). 2022 IEEE Energy Conversion Congress and Exposition (ECCE), Detroit, MI, USA, 2022; pp. 1–8.
- Zou, S.; Lu, J.; Mallik, A.; Khaligh, A. Modeling and Optimization of an Integrated Transformer for Electric Vehicle On-Board Charger Applications. IEEE Trans. Transp. Electrification 2018, 4, 355–363. [Google Scholar] [CrossRef]
- Marques, E.G.; da Silva, S.V.; Mendes, A. A new magnetic coupler for EVs chargers based on plug-in and IPT technologies. 2017 IEEE Energy Conversion Congress and Exposition (ECCE). Cincinnati, OH, USA, 2017; pp. 2760–2766.
- Mukherjee, S.; Ruiz, J.M.; Barbosa, P. A High Power Density Wide Range DC–DC Converter for Universal Electric Vehicle Charging. IEEE Trans. Power Electron. 2022, 38, 1998–2012. [Google Scholar] [CrossRef]
- Bhattacharya, S.; Mascarella, D.; Joos, G.; Cyr, J.-M.; Xu, J. A Dual Three-Level T-NPC Inverter for High-Power Traction Applications. IEEE J. Emerg. Sel. Top. Power Electron. 2016, 4, 668–678. [Google Scholar] [CrossRef]
- Bernet, S. Recent developments of high power converters for industry and traction applications. IEEE Trans. Power Electron. 2000, 15, 1102–1117. [Google Scholar] [CrossRef]
- Zhao, X.; Jiang, D.; Li, Q.; Ma, Y.; Liu, Y. An Application of Variable Switching Frequency PWM on SiC-Based Paralleled Inverters for Motor Drive. 2020 IEEE 9th International Power Electronics and Motion Control Conference (IPEMC2020-ECCE Asia). 2020 IEEE 9th International Power Electronics and Motion Control Conference (IPEMC2020-ECCE Asia), Nanjing, China, 2020; pp. 1151–1155.
- Ohn, S.; Phukan, R.; Dong, D.; Burgos, R.; Boroyevich, D.; Gopal, M.; Nielebock, S. Modeling of $N$-Parallel Full-SiC AC–DC Converters by Four Per-Phase Circuits. IEEE Trans. Power Electron. 2020, 36, 6142–6146. [Google Scholar] [CrossRef]
- Phukan, R.; Nam, D.; Dong, D.; Burgos, R.; Mondal, G.; Nielebock, S. Highly Integrated Monolithic Filter Building Block for SiC based Three-Phase Interleaved Converters. 2021 IEEE Applied Power Electronics Conference and Exposition (APEC), Phoenix, AZ, USA, 2021, pp. 2876-2882; pp. 2876–2882.
- Li, Q.; Jiang, D.; Shen, Z.; Zhang, Y.; Liu, Z. Variable Switching Frequency PWM Strategy for High-Frequency Circulating Current Control in Paralleled Inverters With Coupled Inductors. IEEE Trans. Power Electron. 2019, 35, 5366–5380. [Google Scholar] [CrossRef]
- Ohn, S.; Phukan, R.; Dong, D.; Burgos, R.; Boroyevich, D.; Mondal, G.; Nielebock, S. Modular Filter Building Block for Modular full-SiC AC-DC Converters by an Arrangement of Coupled Inductors. 2020 IEEE Energy Conversion Congress and Exposition (ECCE), Detroit, MI, USA, 2020; pp. 4130–4136.
- Phukan, R.; Ohn, S.; Dong, D.; Burgos, R.; Mondal, G.; Nielebock, S. Evaluation of Modular AC Filter Building Blocks for Full SiC based Grid-Tied Three Phase Converters. 2020 IEEE Energy Conversion Congress and Exposition (ECCE), Detroit, MI, USA, 2020; pp. 1835–1841.
- Phukan, R.; Ohn, S.; Dong, D.; Burgos, R.; Mondal, G.; Nielebock, S. Design and Optimization of a Highly Integrated Modular Filter Building Block for Three-Level Grid Tied Converters. 2020 IEEE Energy Conversion Congress and Exposition (ECCE), Detroit, MI, USA, 2020; pp. 4949–4956.
- Phukan, R.; Nam, D.; Ohn, S.; Mondal, G.; Nielebock, S.; Dong, D.; Burgos, R. Design of an Indirectly Coupled Filter Building Block for Modular Interleaved AC–DC Converters. IEEE Trans. Power Electron. 2022, 37, 13343–13357. [Google Scholar] [CrossRef]
- Phukan, R.; Ohn, S.; Dong, D.; Burgos, R.; Mondal, G.; Nielebock, S. Fault Tolerant Operation of Interleaved Converters using a Bypass Switch Arrangement. 2021 IEEE Applied Power Electronics Conference and Exposition (APEC), Phoenix, AZ, USA, 2021; pp. 2657–2661.
- Gohil, G.; Bede, L.; Teodorescu, R.; Kerekes, T.; Blaabjerg, F. An Integrated Inductor for Parallel Interleaved Three-Phase Voltage Source Converters. IEEE Trans. Power Electron. 2015, 31, 3400–3414. [Google Scholar] [CrossRef]
- Gohil, G.; Bede, L.; Teodorescu, R.; Kerekes, T.; Blaabjerg, F. Integrated inductor for interleaved operation of two parallel three-phase voltage source converters. 2015 17th European Conference on Power Electronics and Applications (EPE'15 ECCE-Europe), Geneva, Switzerland, 2015; pp. 1–10.
- Gohil, G.; Bede, L.; Teodorescu, R.; Kerekes, T.; Blaabjerg, F. Magnetic Integration for Parallel Interleaved VSCs Connected in a Whiffletree Configuration. IEEE Trans. Power Electron. 2016, 31, 7797–7808. [Google Scholar] [CrossRef]
- Phukan, R.; Ohn, S.; Dong, D.; Burgos, R. An Approach to Localize Circulating Current for Three Phase Interleaved AC-DC Converters. 2021 IEEE Applied Power Electronics Conference and Exposition (APEC), Phoenix, AZ, USA, 2021; pp. 1848–1853.
- Gohil, G.; Bede, L.; Teodorescu, R.; Kerekes, T.; Blaabjerg, F. Design of the trap filter for the high power converters with parallel interleaved VSCs. IECON 2014 - 40th Annual Conference of the IEEE Industrial Electronics Society, Dallas, TX, USA, 2014; pp. 2030–2036.
- Phukan, R.; Ohn, S.; Nielebock, S.; Mondal, G.; Dong, D.; Burgos, R. Comparison Between Interconnected Filter Blocks for Three-Phase AC–DC Interleaved Converters. IEEE J. Emerg. Sel. Top. Power Electron. 2022, 10, 5956–5968. [Google Scholar] [CrossRef]
- Marques, E.G.; da Silva, S.V.; Mendes, A. A new magnetic coupler for EVs chargers based on plug-in and IPT technologies. in Proc. IEEE Energy Convers. Congr. Expo., Cincinnati, OH, USA, 2017; pp. 2760–2766.
- Khaligh, A.; D’Antonio, M. Global Trends in High-Power On-Board Chargers for Electric Vehicles. IEEE Trans. Veh. Technol. 2019, 68, 3306–3324. [Google Scholar] [CrossRef]
- Mukherjee, S.; Kumar, A.; Chakraborty, S. Comparison of DAB and LLC DC–DC Converters in High-Step-Down Fixed-Conversion-Ratio (DCX) Applications. IEEE Trans. Power Electron. 2020, 36, 4383–4398. [Google Scholar] [CrossRef]
- Han, D.; Morris, C.; Choi, W.; Sarlioglu, B. Common mode voltage cancellation in PWM motor drives with balanced inverter topology. IECON 2016 - 42nd Annual Conference of the IEEE Industrial Electronics Society, Florence, Italy, 2016; pp. 4313–4318.
- Shi, R.; Semsar, S.; Lehn, P.W. Constant Current Fast Charging of Electric Vehicles via a DC Grid Using a Dual-Inverter Drive. IEEE Trans. Ind. Electron. 2017, 64, 6940–6949. [Google Scholar] [CrossRef]
- Liu, Y.; Jiang, S.; Liang, W.; Wang, H.; Peng, J. Modeling and Design of the Magnetic Integration of Single- and Multi-Stage EMI Filters. IEEE Trans. Power Electron. 2019, 35, 276–288. [Google Scholar] [CrossRef]
- Hedayati, M.H.; John, V. Novel integrated CM inductor for single-phase power converters with reduced EMI. 2015 IEEE International Transportation Electrification Conference (ITEC), Chennai, India, 2015; pp. 1–6.
- Jiang, S.; Liu, Y.; Mei, Z.; Peng, J.; Lai, C.-M. A Magnetic Integrated LCL–EMI Filter for a Single-Phase SiC-MOSFET Grid-Connected Inverter. IEEE J. Emerg. Sel. Top. Power Electron. 2019, 8, 601–617. [Google Scholar] [CrossRef]
- Li, X.; Liu, Y.; Yang, J.; Wu, X. Decoupled Magnetic Integration of Symmetrical LCL Filter With a Common-Mode Inductor for Single-Phase Grid-Connected Converters. IEEE J. Emerg. Sel. Top. Ind. Electron. 2021, 3, 966–977. [Google Scholar] [CrossRef]
- Jiang, S.; Liu, Y.; Ye, X.; Pan, X. Design of a Fully Integrated EMI Filter for a Single-Phase Grid-Connected Inverter. IEEE Trans. Ind. Electron. 2020, 68, 12296–12309. [Google Scholar] [CrossRef]
- Jiang, S.; Wang, W.; Wang, P.; Xu, D.G. A Fully Integrated Common-Mode Choke Design Embedded With Differential-Mode Capacitances. IEEE Trans. Power Electron. 2021, 37, 5501–5513. [Google Scholar] [CrossRef]
- Lu, Z.; Liu, Y.; Yin, J. Design of Planar Magnetic Integrated LCL-EMI Filter for the Grid-Connected Inverter. in IEEE Transactions on Power Electronics, vol. 37, no. 5; pp. 493–497.
- Jianjiang, L.; Lili, C.; Xuemei, Z.; Long, H.; Cuifen, L.; Lidong, C. Design on the planar magnetic integrated EMI filter based on U-shaped magnetic core. 2017 8th International Conference on Mechanical and Intelligent Manufacturing Technologies (ICMIMT), Cape Town, 2017; pp. 159–163.
- M. Ali, R. M. Ali, R. Bushra, J. Friebe and A. Mertens, "Design and Potential of EMI CM Chokes with Integrated DM Inductance," 2022 24th European Conference on Power Electronics and Applications (EPE’22 ECCE Europe), Hanover, Germany, 2022, pp. 1-10.
- Phukan, R.; Zhao, X.; Chang, C.-W.; Dong, D.; Burgos, R.; Debbou, M.; Platt, A.; Asfaux, P. Enhanced Three-Phase AC Common-Mode Filter With Optimized Damping Network for VFDs. IEEE Trans. Ind. Appl. 2023, 59, 4274–4286. [Google Scholar] [CrossRef]
- Erickson, R. Optimal single resistors damping of input filters. APEC ’99. Fourteenth Annual Applied Power Electronics Conference and Exposition. 1999 Conference Proceedings (Cat. No.99CH36285), Dallas, TX, USA, 1999; pp. 1073–1079 vol.2.
- Phukan, R.; Zhao, X.; Chang, C.-W.; Dong, D.; Burgos, R.; Debbou, M.; Platt, A.; Asfaux, P. Characterization and Mitigation of Conducted Emissions in a SiC Based Three-Level T-Type Motor Drive for Aircraft Propulsion. IEEE Trans. Ind. Appl. 2023, 59, 3400–3412. [Google Scholar] [CrossRef]
- Phukan, R.; Zhao, X.; Chang, C.-W.; Dong, D.; Burgos, R.; Plat, A.; Mustapha, D. Optimized DC-AC EMI Filter Design for DC-Fed High Speed SiC-Based Motor Drive. 2022 IEEE Energy Conversion Congress and Exposition (ECCE), Detroit, MI, USA, 2022; pp. 1–8.
- Ohn, S.; Yu, J.; Burgos, R.; Boroyevich, D.; Suryanarayana, H. Reduced Common-Mode Voltage PWM Scheme for Full-SiC Three-Level Uninterruptible Power Supply With Small DC-Link Capacitors. IEEE Trans. Power Electron. 2019, 35, 8638–8651. [Google Scholar] [CrossRef]
- Phukan, R.; Zhao, X.; Asfaux, P.; Dong, D.; Burgos, R. Investigation of Staggered PWM Scheme for AC Common Mode Current Minimization in SiC-Based Three-Phase Inverters. IEEE Trans. Transp. Electrification 2022, 8, 4378–4390. [Google Scholar] [CrossRef]
- Maillet, Y.; Lai, R.; Wang, S.; Wang, F.; Burgos, R.; Boroyevich, D. High-Density EMI Filter Design for DC-Fed Motor Drives. IEEE Trans. Power Electron. 2009, 25, 1163–1172. [Google Scholar] [CrossRef]
- Lai, R.; Maillet, Y.; Wang, F.; Wang, S.; Burgos, R.; Boroyevich, D. An Integrated EMI Choke for Differential-Mode and Common-Mode Noise Suppression. IEEE Trans. Power Electron. 2009, 25, 539–544. [Google Scholar] [CrossRef]
- Phukan, R.; Zhao, X.; Chang, C.-W.; Dong, D.; Burgos, R.; Mustapha, D.; Platt, A. A Compact Integrated DM-CM Filter with PCB Embedded DC Current Sensor for High Altitude High Current Applications. 2022 IEEE Transportation Electrification Conference and Expo (ITEC), Anaheim, CA, USA, 2022; pp. 923–928.
- Zhao, X.; Hu, J.; Ravi, L.; Dong, D.; Burgos, R.; Chandrasekaran, S.; Eddins, R. Planar Common-Mode EMI Filter Design and Optimization for High-Altitude 100-kW SiC Inverter/Rectifier System. IEEE J. Emerg. Sel. Top. Power Electron. 2022, 10, 5290–5303. [Google Scholar] [CrossRef]
- H. Song, J. H. Song, J. Wang, Y. Xu, R. Burgos, and D. Boroyevich, “A high-density single-turn inductor for a 6 kV SiC-based power electronics building 705 block,” in Proc. IEEE Appl. Power Electron. Conf. Expo. (APEC), 706 Oct. 2020, pp. 1127. [Google Scholar]
- Fang, J.; Li, H.; Tang, Y. A Magnetic Integrated LLCL Filter for Grid-Connected Voltage-Source Converters. IEEE Trans. Power Electron. 2016, 32, 1725–1730. [Google Scholar] [CrossRef]
- Jiang, S.; Liu, Y.; Mei, Z.; Peng, J.; Lai, C.-M. A Magnetic Integrated LCL–EMI Filter for a Single-Phase SiC-MOSFET Grid-Connected Inverter. IEEE J. Emerg. Sel. Top. Power Electron. 2019, 8, 601–617. [Google Scholar] [CrossRef]
- Liu, Y.; See, K.Y.; Tseng, K.J.; Simanjorang, R.; Lai, J.-S. Magnetic Integration of Three-Phase LCL Filter With Delta-Yoke Composite Core. IEEE Trans. Power Electron. 2016, 32, 3835–3843. [Google Scholar] [CrossRef]
- Pan, D.; Ruan, X.; Bao, C.; Li, W.; Wang, X. Magnetic Integration of the LCL Filter in Grid-Connected Inverters. IEEE Trans. Power Electron. 2013, 29, 1573–1578. [Google Scholar] [CrossRef]
- Li, X.; Fang, J.; Lin, P.; Tang, Y. Active Magnetic Decoupling for Improving the Performance of Integrated LCL-Filters in Grid-Connected Converters. IEEE Trans. Ind. Electron. 2017, 65, 1367–1376. [Google Scholar] [CrossRef]
- Fang, J.; Li, X.; Yang, X.; Tang, Y. An Integrated Trap-LCL Filter With Reduced Current Harmonics for Grid-Connected Converters Under Weak Grid Conditions. IEEE Trans. Power Electron. 2017, 32, 8446–8457. [Google Scholar] [CrossRef]
- Valdivia, V.; Pleite, J.; Zumel, P.; Gonzalez, C.; Lazaro, A. Three phase LCL filter and transformer with integrated magnetics for grid connected converters. 2008 34th Annual Conference of IEEE Industrial Electronics, Orlando, FL, USA, 2008; pp. 1027–1032.
- Ohn, S.; Park, Y.; Sul, S.-K. Multi-level operation of triple two-level PWM converters. 2015 IEEE Energy Conversion Congress and Exposition (ECCE), Montreal, QC, Canada, 2015; pp. 4283–4289.
- Ohn, S.; Zhang, X.; Burgos, R.; Boroyevich, D. Differential-Mode and Common-Mode Coupled Inductors for Parallel Three-Phase AC–DC Converters. IEEE Trans. Power Electron. 2018, 34, 2666–2679. [Google Scholar] [CrossRef]
- Zhang, X.; Burgos, R.; Boroyevich, D. Passive component loss minimization for interleaved dc-dc boost converters in electric vehicle applications. 2016 IEEE 8th International Power Electronics and Motion Control Conference (IPEMC-ECCE Asia), Hefei, China, 2016; pp. 1412–1418.
- Ohn, S.; Phukan, R.; Dong, D.; Burgos, R.; Boroyevich, D.; Gopal, M.; Nielebock, S. Modeling of $N$-Parallel Full-SiC AC–DC Converters by Four Per-Phase Circuits. IEEE Trans. Power Electron. 2020, 36, 6142–6146. [Google Scholar] [CrossRef]
- Phukan, R.; Burgos, R. Alternate Filter Structures for Circulating Current and Conducted Noise Mitigation. IEEE Trans. Power Electron. 2022, 37, 14052–14056. [Google Scholar] [CrossRef]
- Ma, Z.; Yao, J.; Wang, S.; Sheng, H.; Lakshmikanthan, S.; Osterhout, D. Radiated EMI Reduction with Double Shielding Techniques in Active-clamp Flyback Converters. 2021 IEEE International Joint EMC/SI/PI and EMC Europe Symposium, Raleigh, NC, USA, 2021; pp. 1064–1069.
- W. Tan, X. W. Tan, X. Margueron, T. Duquesne and N. Idir, "An Improved Parasitic Capacitance Cancellation Method for Planar Differential Mode Inductor in EMI Filters," 2012 7th International Conference on Integrated Power Electronics Systems (CIPS), Nuremberg, Germany, 2012, pp. 1-6.
- Chen, R.; van Wyk, J.; Wang, S.; Odendaal, W. Application of structural winding capacitance cancellation for integrated EMI filters by embedding conductive layers. Conference Record of the 2004 IEEE Industry Applications Conference, 2004. 39th IAS Annual Meeting., Seattle, WA, USA, 2004, pp. 2679- 2686 vol.4.
- Wang, S.; Lee, F.C.; van Wyk, J.D. Design of Inductor Winding Capacitance Cancellation for EMI Suppression. IEEE Trans. Power Electron. 2006, 21, 1825–1832. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, S.; Li, Y.; Wang, Q.; Fu, D. Two-Capacitor Transformer Winding Capacitance Models for Common-Mode EMI Noise Analysis in Isolated DC–DC Converters. IEEE Trans. Power Electron. 2017, 32, 8458–8469. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, H.; Wang, S.; Sheng, H.; Chng, C.P.; Lakshmikanthan, S. Investigating Switching Transformers for Common Mode EMI Reduction to Remove Common Mode EMI Filters and Y-Capacitors in Flyback Converters. IEEE J. Emerg. Sel. Top. Power Electron. 2018, 6, 2287–2301. [Google Scholar] [CrossRef]
- Phukan, R.; Chen, S.-Y.; Dong, D.; Burgos, R.; Mondal, G.; Krupp, H.; Nielebock, S. Design of a Three-Phase Three-Level Back-to-Back Bridge Interconnection-Based Filter Scheme. IEEE J. Emerg. Sel. Top. Power Electron. 2023, 11, 3208–3222. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, Y.; Wang, S. Radiated EMI Modeling of the Non-Isolated DC-DC Power Converters with Attached Cables. 2018 IEEE Energy Conversion Congress and Exposition (ECCE), Portland, OR, USA, 2018; pp. 4203–4209.
- Zhang, H.; Wang, S. Near Magnetic Field Assessment and Reduction for Magnetic Inductors with Magnetic Moment Analysis. IEEE Trans. Power Electron. 2021, PP, 1–1. [Google Scholar] [CrossRef]
- Zhang, B.; Wang, S. Analysis and Reduction of the Near Magnetic Field Emission From Toroidal Inductors. IEEE Trans. Power Electron. 2019, 35, 6251–6268. [Google Scholar] [CrossRef]
- Li, Q.; Lim, M.; Sun, J.; Ball, A.; Ying, Y.; Lee, F.C.; Ngo, K. Technology roadmap for high frequency integrated DC-DC converter. 2009 IEEE 6th International Power Electronics and Motion Control Conference, Wuhan, China, 2009; pp. 1–8.
- Available online: https://cmmaterials.com/blog/f/high-voltage-inductors-for-gan-and-sic-based-power-converters.
- Available online: https://www.kemet.com/en/us/technical-resources/bms-and-kemet-metcom-inductors.html.
- Available online: https://article.murata.com/en-us/article/characteristics-of-compact-metal-alloy-power-inductors.
- Available online: https://techweb.rohm.com/trend/engineer/4804/.
- Ge, T.; Yan, Y.; Lu, G.-Q.; Ngo, K. Over-Molded Inductor (OMI)—Feasibility Demonstration in a DC–DC Converter. IEEE Trans. Ind. Electron. 2017, 64, 5738–5740. [Google Scholar] [CrossRef]
- de Jong, E.; Ferreira, B.; Bauer, P. Toward the Next Level of PCB Usage in Power Electronic Converters. IEEE Trans. Power Electron. 2008, 23, 3151–3163. [Google Scholar] [CrossRef]
- Meurer, E.; de Haan, S. On the common mode resonant frequency of transformers. in Proc. European Power Electronics (EPE), pp.1-6, Sept. 2007.







| Core Type | Properties (Bsat, µr at 10 kHz) | Operating Frequency Range | Application Domain |
|---|---|---|---|
| Ferrites | 0.3 T, < 3000 | 100 kHz – 1 MHz | Transformers, CM-EMI filters (gapped) |
| Nanocrystalline | 1.2 T, < 20000 | 10 kHz – 10 MHz | CM-EMI Filters |
| Silicon Steel | 1.7 T, 500-1500 | < 1 kHz | Grid-side line inductor for PFCs |
| Amorphous and Gapped Cores | 1.5 T, 500-3000 | 60 Hz - | Line inductor for PFCsTransformers |
| Powder Cores | 1.1 T, < 500 | 60 Hz – 10 MHz | Line inductors |
| Material | Frequency Range |
|---|---|
| CoZrNb Amorphous | 100 kHz to 5 MHz |
| NiZn Ferrite | 1 MHz to 30 MHz |
| CoZrO Granular Film | 5 MHz to 100 MHz |
| CoNiFe thin film alloy | |
| Iron Powder | 10 kHz to 1 MHz |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).