Submitted:
29 April 2023
Posted:
02 May 2023
You are already at the latest version
Abstract
Keywords:
Wide prevalence of temporal lobe epilepsy
Vagal nerve stimulation: an unorthodox treatment for TLE
Novel model for action of VNS in TLE
Hippocampal functional connectivity and epilepsy - in sleep and when awake
Paroxysmal activity during sleep and TLE
Visceral triggers of hippocampal paroxysmal activity
Mechanism of visceral trigger of TLE seizures
Putative mechanism of action of VNS and implications for therapy
Acknowledgements
References
- Akaike, K., Tanaka, S., Tojo, H., Fukumoto, S., Imamura, S., & Takigawa, M. (2001). Kainic acid-induced dorsal and ventral hippocampal seizures in rats. Brain Research, 900(1), 65–71. [CrossRef]
- Azzalini D, Rebollo I, & Tallon-Baudry C. (2019). Visceral Signals Shape Brain Dynamics and Cognition. Trends in Cognitive Sciences. 23:488-509. [CrossRef]
- Barbas, H., & Blatt, G. J. (1995). Topographically specific hippocampal projections target functionally distinct prefrontal areas in the rhesus monkey. Hippocampus, 5(6), 511–533. [CrossRef]
- Barnett, A. J., Man, V., & McAndrews, M. P. (2019). Parcellation of the Hippocampus Using Resting Functional Connectivity in Temporal Lobe Epilepsy. Frontiers in Neurology, 10. [CrossRef]
- Basheer R, Strecker R.E., Thakkar M.M., McCarley R.W. Adenosine and sleep-wake regulation. Prog. Neurobiol. 2004; 73: 379-396. [CrossRef]
- Beenhakker, M.P., Huguenard, J.R.. (2009). Neurons that fire together also conspire together: is normal sleep circuitry hijacked to generate epilepsy? Neuron, 62, 612–632. [CrossRef]
- Bernhardt, B. C., Hong, S., Bernasconi, A., & Bernasconi, N. (2013). Imaging structural and functional brain networks in temporal lobe epilepsy. Frontiers in human neuroscience, 7, 624. [CrossRef]
- Bragdon, A. C., Taylor, D. M., & Wilson, W. A. (1986). Potassium-induced epileptiform activity in area CA3 varies markedly along the septotemporal axis of the rat hippocampus. Brain Research, 378(1), 169–173. [CrossRef]
- Bonne, O., Vythilingam, M., Inagaki, M., Wood, S., Neumeister, A., Nugent,A.C., Snow, J., Luckenbaugh, D.A., Bain, E.E., Drevets, W.C., and Charney, D.S. (2008). Reduced posterior hippocampal volume in posttraumatic stress disorder. J. Clin. Psychiatry 69, 1087–1091. [CrossRef]
- Bordoni, B., Purgol, S., Bizzarri, A., Modica, M., & Morabito, B. (2018). The Influence of Breathing on the Central Nervous System. Cureus. [CrossRef]
- Buren, J. M. V., & Ajmone-Marsan, C. (1960). A Correlation of Autonomic and EEG Components in Temporal Lobe Epilepsy. Archives of Neurology, 3(6), 683–703. [CrossRef]
- Castle, M., Comoli, E., Loewy, A.D. (2005). Autonomic brainstem nuclei are linked to the hippocampus. Neuroscience. 134(2), 657-69. [CrossRef]
- Catenoix, H., Magnin, M., Mauguière, F., & Ryvlin, P. (2011). Evoked potential study of hippocampal efferent projections in the human brain. Clinical Neurophysiology, 122(12), 2488–2497. [CrossRef]
- Cechetto, D.F. & Saper, C.B. (1987). Evidence for a viscerotopic sensory representation in the cortex and thalamus in the rat. J. Comp. Neurol. 262:27–45. [CrossRef]
- Cenquizca, L.A., and Swanson, L.W. (2007). Spatial organization of direct hippocampal field CA1 axonal projections to the rest of the cerebral cortex. Brain Res. Brain Res. Rev. 56, 1–26. [CrossRef]
- Combi, R., Dalprà, L., Tenchini, M. L., and Ferini-Strambi, L. (2004). Autosomal dominant nocturnal frontal lobe epilepsy—a critical overview. J. Neurol. 251, 923–934. [CrossRef]
- Cirelli C. Sleep and synaptic changes. (2013). Curr Opin Neurobiol. 23(5):841-6. Epub 2013 Apr 23. PMID: 23623392; PMCID: PMC4552336. [CrossRef]
- Chase, M.H., Sterman, M.B., Clemente, C.D. (1966). Cortical and subcortical patterns of response to afferent vagal stimulation. Exp. Neurol. 16(1): 36–49. [CrossRef]
- Chase, M. H., Nakamura, Y., Clemente, C. D., & Sterman, M. B. (1967). Afferent vagal stimulation: neurographic correlates of induced EEG synchronization and desynchronization. Brain research, 5(2), 236–249. [CrossRef]
- Chokroverty S. & Nobili L. (2017). Sleep and Epilepsy. Sleep Disorders Medicine, pp 915–961. Springer-Verlag New York.
- Dinner, D. S. (2002). Effect of sleep on epilepsy. J. Clin. Neurophysiol. 19, 504–513. [CrossRef]
- Dong, H.W., & Swanson, L.W. (2006). Projections from bed nuclei of the stria terminalis, anteromedial area: cerebral hemisphere integration of neuroendocrine, autonomic, and behavioral aspects of energy balance. J. Comp. Neurol.494, 142–178. [CrossRef]
- Dorr, A.E,, Debonnel, G.. (2006). Effect of vagus nerve stimulation on serotonergic and noradrenergic transmission. J Pharmacol Exp Ther. 318(2):890-8. [CrossRef]
- Dorward, P. K., Burke, S. L., Jänig, W., & Cassell, J. (1987). Reflex responses to baroreceptor, chemoreceptor and nociceptor inputs in single renal sympathetic neurones in the rabbit and the effects of anaesthesia on them. Journal of the Autonomic Nervous System, 18(1), 39–54. [CrossRef]
- Dütsch, M., Hilz, M. J., & Devinsky, O. (2006). Impaired baroreflex function in temporal lobe epilepsy. Journal of Neurology, 253(10), 1300–1308. [CrossRef]
- Elliott, R.E. (2011). Efficacy of vagus nerve stimulation over time: review of 65 consecutive patients with treatment-resistant epilepsy treated with VNS > 10 years. Epilepsy Behav. 20(3):478-83. [CrossRef]
- Elul, R. (1964). Regional differences in the hippocampus of the cat. Electroencephalography and Clinical Neurophysiology, 16(5), 470–488. [CrossRef]
- Esghaei, M., Treue, S., & Vidyasagar, T. R. (2022). Dynamic coupling of oscillatory neural activity and its roles in visual attention. Trends in neurosciences, 45(4), 323–335. [CrossRef]
- Fanselow, M.S., & Dong, H-W. (2010). Are the Dorsal and Ventral Hippocampus Functionally Distinct Structures? Neuron, 65(1):7–19. [CrossRef]
- Frey, B.N., Andreazza, A.C., Nery, F.G., Martins, M.R., Quevedo, J., Soares, J.C., and Kapczinski, F. (2007). The role of hippocampus in the pathophysiology of bipolar disorder. Behav. Pharmacol. 18, 419–430. [CrossRef]
- Frysinger, R. C., & Harper, R. M. (1989). Cardiac and respiratory correlations with unit discharge in human amygdala and hippocampus. Electroencephalography and Clinical Neurophysiology, 72(6), 463–470. [CrossRef]
- Groves, D. A., and Brown, V. J. (2005). Vagal nerve stimulation: a review of its applications and potential mechanisms that mediate its clinical effects. Neurosci. Biobehav. Rev. 29, 493–500. [CrossRef]
- Bonaz, B., Sinniger, V., & Pellissier, S. (2017). Vagus nerve stimulation: a new promising therapeutic tool in inflammatory bowel disease. Journal of internal medicine, 282(1), 46–63. [CrossRef]
- GREEN, J. R., & SCHEETZ, D. G. (1964). SURGERY OF EPILEPTOGENIC LESIONS OF THE TEMPORAL LOBE. Archives of neurology, 10, 135–148. [CrossRef]
- Jan, M. M., Sadler, M., & Rahey, S. R. (2010). Electroencephalographic Features of Temporal Lobe Epilepsy. The Canadian Journal of Neurological Sciences, 37(04), 439–448. [CrossRef]
- Herman, S. T., and Walczak, T. S., Bazil, C. W. (2001). Distribution of partial seizures during the sleep-wake cycle: differences by seizure onset site. Neurology 56, 1453–1459. [CrossRef]
- Herman,J.P., Ostrander, M.M., Mueller, N.K., & Figueiredo, H. (2005). Limbic system mechanisms of stress regulation: hypothalamo-pituitary-adrenocortical axis. Prog. Neuropsychopharmacol. Biol. Psychiatry, 29, 1201–1213. [CrossRef]
- Herman, J. P., McKlveen, J. M., Ghosal, S., Kopp, B., Wulsin, A., Makinson, R., Scheimann, J., & Myers, B. (2016). Regulation of the Hypothalamic-Pituitary-Adrenocortical Stress Response. Comprehensive Physiology, 6(2), 603–621. [CrossRef]
- Herrmann, C. S. (2001). Human EEG responses to 1–100 Hz flicker: resonance phenomena in visual cortex and their potential correlation to cognitive phenomena. Exp. Brain Res. 137, 346–353. [CrossRef]
- Hofstra, W. A., & de Weerd, A. W. (2009). The circadian rhythm and its interaction with human epilepsy: a review of literature. Sleep Med. Rev. 13, 413–420. [CrossRef]
- Hutcheon, B., & Yarom, Y. (2000). Resonance, oscillation and the intrinsic frequency preferences of neurons. Trends Neurosci. 23, 216–222. [CrossRef]
- Isaeva, E., Romanov, A., Holmes, G. L., & Isaev, D. (2015). Status epilepticus results in region-specific alterations in seizure susceptibility along the hippocampal longitudinal axis. Epilepsy Research, 110, 166–170. [CrossRef]
- Foffani, G., Uzcategui, Y. G., Gal, B., & Menendez de la Prida, L. (2007). Reduced spike-timing reliability correlates with the emergence of fast ripples in the rat epileptic hippocampus. Neuron, 55(6), 930–941. [CrossRef]
- Karoly, P. J., Ung, H., Grayden, D. B., Kuhlmann, L., Leyde, K., Cook, M. J., & Freestone, D. R. (2017). The circadian profile of epilepsy improves seizure forecasting. Brain, 140(8), 2169–2182. [CrossRef]
- Karoly, P. J., Goldenholz, D. M., Freestone, D. R., Moss, R. E., Grayden, D. B., Theodore, W. H., & Cook, M. J. (2018). Circadian and circaseptan rhythms in human epilepsy: a retrospective cohort study. The Lancet Neurology. [CrossRef]
- Kishi, T., Tsumori, T., Ono, K., Yokota, S., Ishino, H., & Yasui, Y. Henke, P.G. (1990). Hippocampal pathway to the amygdala and stress ulcer development. Brain Res. Bull. 25, 691–695. [CrossRef]
- Kishi, T., Tsumori, T., Ono, K., Yokota, S., Ishino, H., and Yasui, Y. (2000). Topographical organization of projections from the subiculum to the hypothalamus in the rat. J. Comp. Neurol. 419, 205–222. [CrossRef]
- Krout, K. E., Kawano, J., Mettenleiter, T. C., & Loewy, A. D. (2002). CNS inputs to the suprachiasmatic nucleus of the rat. Neuroscience, 110(1), 73–92. [CrossRef]
- Lauer, C., Riemann, D., Lund, R., & Berger, M. (1987). Shortened REM latency: a consequence of psychological strain?. Psychophysiology, 24(3), 263–271. [CrossRef]
- Levichkina, E. V., Busygina, I. I., Pigareva, M. L., & Pigarev, I. N. (2021). The Mysterious Island: Insula and Its Dual Function in Sleep and Wakefulness. Frontiers in systems neuroscience, 14, 592660. [CrossRef]
- Levichkina, E., Pigareva, M. L., Limanskaya, A., & Pigarev, I. N. (2022). Somatovisceral Convergence in Sleep-Wake Cycle: Transmitting Different Types of Information via the Same Pathway. Frontiers in network physiology, 2, 840565. [CrossRef]
- Liu, Y., McAfee, S.S. & Heck, D.H. (2017). Hippocampal sharp-wave ripples in awake mice are entrained by respiration. Sci Rep 7, 8950 . [CrossRef]
- Lockmann, A. L. V., Laplagne, D. A., Leão, R. N., & Tort, A. B. L. (2016). A Respiration-Coupled Rhythm in the Rat Hippocampus Independent of Theta and Slow Oscillations. The Journal of Neuroscience, 36(19), 5338–5352. [CrossRef]
- Lunardi, M. S., Lin, K., Mameniškienė, R., Beniczky, S., Bogacz, A., Braga, P., Guaranha, M. S. B., Yacubian, E. M. T., Samaitienė, R., Baykan, B., Hummel, T., & Wolf, P. (2016). Olfactory stimulation induces delayed responses in epilepsy. Epilepsy & behavior : E&B, 61, 90–96. [CrossRef]
- Lunardi, M. dos S., Sukys-Claudino, L., Guarnieri, R., Walz, R., & Lin, K. (2011). Seizure precipitants and inhibiting factors in mesial temporal lobe epilepsy. Journal of the Neurological Sciences, 308(1-2), 21–24. [CrossRef]
- Maier, N., & Kempter, R. (2017). Hippocampal Sharp Wave/Ripple Complexes—Physiology and Mechanisms. Studies in Neuroscience, Psychology and Behavioral Economics, 227–249. [CrossRef]
- Majoie HJ, Rijkers K, Berfelo MW, et al. (2011). Vagus nerve stimulation in refractory epilepsy: effects on pro- and anti-inflammatory cytokines in peripheral blood. Neuroimmunomodulation. 18(1):52-6. [CrossRef]
- Marrosu, F., Serra, A., Maleci, A., Puligheddu, M., Biggio, G., & Piga, M. (2003). Correlation between GABA(A) receptor density and vagus nerve stimulation in individuals with drug-resistant partial epilepsy. Epilepsy research, 55(1-2), 59–70. [CrossRef]
- Mendes, R. A. V., Zacharias, L. R., Ruggiero, R. N., Leite, J. P., Moraes, M. F. D., & Lopes-Aguiar, C. (2019). Hijacking of hippocampal–cortical oscillatory coupling during sleep in temporal lobe epilepsy. Epilepsy & Behavior, 106608. [CrossRef]
- Mohanraj, R., Norrie, J., Stephen, L. J., Kelly, K., Hitiris, N., & Brodie, M. J. (2006). Mortality in adults with newly diagnosed and chronic epilepsy: a retrospective comparative study. The Lancet. Neurology, 5(6), 481–487. [CrossRef]
- Moser, M.B., Moser, E.I., Forrest, E., Andersen, P., and Morris, R.G. (1995). Spatial learning with a minislab in the dorsal hippocampus. Proc. Natl. Acad.Sci. USA, 92, 9697–9701. [CrossRef]
- Mure L. S. (2021). Intrinsically Photosensitive Retinal Ganglion Cells of the Human Retina. Frontiers in neurology, 12, 636330. [CrossRef]
- Nagaraja, D., & Chand, R. P. (1984). Eating epilepsy. Clinical Neurology and Neurosurgery, 86(2), 95–99. [CrossRef]
- Neafsey, E.J. (1990). Prefrontal cortical control of the autonomic nervous system: anatomical and physiological observations. Prog. Brain Res. 85:147–165. [CrossRef]
- Nemeroff, C. B., Mayberg, H. S., Krahl, S. E., McNamara, J., Frazer, A., Henry, T. R., George, M. S., Charney, D. S., & Brannan, S. K. (2006). VNS therapy in treatment-resistant depression: clinical evidence and putative neurobiological mechanisms. Neuropsychopharmacology, 31(7), 1345–1355. [CrossRef]
- Nieuwenhuys R. (2012). The insular cortex: a review. Prog. Brain Res. 195:123–163. [CrossRef]
- Ogren, J. A., Wilson, C. L., Bragin, A., Lin, J. J., Salamon, N., Dutton, R. A., Luders, E., Fields, T.A., Fried, I., Toga, A.W., Thompson, P.M., Engel, J., Staba, R. J. (2009). Three-dimensional surface maps link local atrophy and fast ripples in human epileptic hippocampus. Annals of Neurology, 66(6), 783–791. [CrossRef]
- Ongür, D., An, X., & Price, J.L.. (1998). Prefrontal cortical projections to the hypothalamus in macaque monkeys. J. Comp. Neurol. 401:480–505.
- Ongür, D., & Price, J.L. (2000). The organization of networks within the orbital and medial prefrontal cortex of rats, monkeys and humans. Cereb. Cortex. 10:206–219. [CrossRef]
- Pavlova, M. K., Shea, S. A., and Bromfield, E. B. (2004). Day/night patterns of focal seizures. Epilepsy Behav. 5, 44–49. [CrossRef]
- Petrovich, G.D., Canteras, N.S., and Swanson, L.W. (2001). Combinatorial amygdalar inputs to hippocampal domains and hypothalamic behaviorsystems. Brain Res. Brain Res. Rev. 38, 247–289. [CrossRef]
- Pigarev, I. N. (1994). Neurons of visual cortex respond to visceral stimulation during slow wave sleep. Neuroscience 62, 1237–1243. [CrossRef]
- Pigarev, I. N., Bagaev, V. A., Levichkina, E. V., Fedorov, G. O., and Busigina, I. I. (2013). Cortical visual areas process intestinal information during slow-wave sleep. Neurogastroenterol. Motil. 25, 268–275. [CrossRef]
- Pigarev, I.N., Pigareva, M.L. Sleep, emotions, and visceral control. Hum Physiol 39, 590–601 (2013). [CrossRef]
- Pigarev IN, Pigareva ML. Partial sleep in the context of augmentation of brain function. Front Syst Neurosci. 2014 May 1;8:75. PMID: 24822040; PMCID: PMC4013465. [CrossRef]
- Pigarev, I.N., Pigareva, M.L. & Levichkina, E. (2020). Probable mechanism of antiepileptic effect of the vagus nerve stimulation in the context of the recent results in sleep research. Front Neurosci.. [CrossRef]
- Radna, R.J. & MacLean, P.D. (1981). Vagal elicitation of respiratory-type and other unit responses in basal limbic structures of squirrel monkeys. Brain Res., 213, 45-61. [CrossRef]
- Rembado, I., Song, W., Su, D. K., Levari, A., Shupe, L. E., Perlmutter, S., Fetz, E., & Zanos, S. (2021). Cortical Responses to Vagus Nerve Stimulation Are Modulated by Brain State in Nonhuman Primates. Cerebral cortex, 31(12), 5289–5307. [CrossRef]
- Sackeim, H. A., Rush, A. J., George, M. S., Marangell, L. B., Husain, M. M., Nahas, Z., Johnson, C. R., Seidman, S., Giller, C., Haines, S., Simpson, R. K., Jr, & Goodman, R. R. (2001). Vagus nerve stimulation (VNS) for treatment-resistant depression: efficacy, side effects, and predictors of outcome. Neuropsychopharmacology, 25(5), 713–728. [CrossRef]
- Saper, C.B. (2002). The Central Autonomic Nervous System: Conscious Visceral Perception and Autonomic Pattern Generation. Annu. Rev. Neurosci. 25:433–69. [CrossRef]
- Saper, C.B., Scammell, T.E., and Lu, J. (2005). Hypothalamic regulation ofsleep and circadian rhythms. Nature 437, 1257–1263. [CrossRef]
- Semah, F., Picot, M. C., Adam, C., Broglin, D., Arzimanoglou, A., Bazin, B., Cavalcanti, D., & Baulac, M. (1998). Is the underlying cause of epilepsy a major prognostic factor for recurrence?. Neurology, 51(5), 1256–1262. [CrossRef]
- Shouse, M. N., da Silva, A. M., and Sammaritano, M. (1996). Circadian rhythm, sleep, and epilepsy. J. Clin. Neurophysiol. 13, 32–50. [CrossRef]
- Smith, S.J. (2005). EEG in the diagnosis, classification, and management of patients with epilepsy. J Neurol Neurosurg Psychiatry. 76 Suppl 2(Suppl 2):ii2-7. [CrossRef]
- Snider. K.H., Sullivan, K.A., Obrietan, K. (2018). Circadian Regulation of Hippocampal-Dependent Memory: Circuits, Synapses, and Molecular Mechanisms. Neural Plast. 7292540. [CrossRef]
- Sohanian Haghighi, H., & Markazi, A. H. D. (2019). Dynamic origin of spike and wave discharges in the brain. NeuroImage. [CrossRef]
- Sotiriou, E., Papatheodoropoulos, C., & Angelatou, F. (2005). Differential expression of γ-aminobutyric acid-A receptor subunits in rat dorsal and ventral hippocampus. Journal of Neuroscience Research, 82(5), 690–700. [CrossRef]
- Sperling MR, Harris A, Nei M et al. (2005). Mortality afterepilepsy surgery. Epilepsia, 46: 49–53. [CrossRef]
- Staba, R. J., Frighetto, L., Behnke, E. J., Mathern, G. W., Fields, T., Bragin, A., Ogren, J., Fried, I., Wilson, C. L., & Engel, J., Jr (2007). Increased fast ripple to ripple ratios correlate with reduced hippocampal volumes and neuron loss in temporal lobe epilepsy patients. Epilepsia, 48(11), 2130–2138. [CrossRef]
- Strange, B. A., Witter, M. P., Lein, E. S., & Moser, E. I. (2014). Functional organization of the hippocampal longitudinal axis. Nature Reviews Neuroscience, 15(10), 655–669. [CrossRef]
- Suarez, A.N., Hsu, T.M., Liu, C.M., Noble, E.E., Cortella, A.M., Nakamoto, E.M., Hahn, J.D., de Lartigue, G., & Kanoski, S.E. (2018). Gut vagal sensory signaling regulates hippocampus function through multi-order pathways. Nat Commun 9, 2181. [CrossRef]
- Swanson, L.W. (2000). Cerebral hemisphere regulation of motivated behavior. Brain Res. 886, 113–164. [CrossRef]
- Tamura, R., Ono, T., Fukuda, M., & Nishijo, H. (1991). Role of monkey hippocampus in recognition of food and nonfood. Brain research bulletin, 27(3-4), 457–461. [CrossRef]
- Téllez-Zenteno, J. F., & Hernández-Ronquillo, L. (2012). A review of the epidemiology of temporal lobe epilepsy. Epilepsy research and treatment, 2012, 630853. [CrossRef]
- Thierry, A.-M., Gioanni, Y., De ́ge ́ne ́tais, E., & Glowinski, J. (2000). Hippocampo-prefrontal cortex pathway: Anatomical and electrophysiological characteristics. Hippocampus, 10(4), 411–419. [CrossRef]
- Vidyasagar, T. R., Salzmann, E., & Creutzfeldt, O. D. (1991). Unit activity in the hippocampus and the parahippocampal temporobasal association cortex related to memory and complex behaviour in the awake monkey. Brain Research, 544(2), 269–278. [CrossRef]
- Vonck, E.J., Larsen, L.E. (2018). Vagus Nerve Stimulation: Mechanism of Action. In: Neuromodulation (Second Edition). Comprehensive Textbook of Principles, Technologies, and Therapies. pp 211-220. Elsevier.
- Yap, J. Y. Y., Keatch, C., Lambert, E., Woods, W., Stoddart, P. R., & Kameneva, T. (2020). Critical Review of Transcutaneous Vagus Nerve Stimulation: Challenges for Translation to Clinical Practice. Frontiers in Neuroscience, 14. [CrossRef]
- Zanchetti, A., Wang, S.C., Moruzzi, G. (1952). The effect of vagal afferent stimulation on the EEG pattern of the cat. Electroencephalogr. Clin. Neurophysiol. 4(3):357–361. [CrossRef]
- Zelano, C., Jiang, H., Zhou, G., Arora, N., Schuele, S., Rosenow, J., & Gottfried, J. A. (2016). Nasal Respiration Entrains Human Limbic Oscillations and Modulates Cognitive Function. The Journal of Neuroscience, 36(49), 12448–12467. [CrossRef]
- Zohar, D., Tzischinsky, O., Epstein, R., & Lavie, P. (2005). The effects of sleep loss on medical residents’ emotional reactions to work events: a cognitive energy model. Sleep, 28(1), 47-40.
- Wang, G. J., Yang, J., Volkow, N. D., Telang, F., Ma, Y., Zhu, W., Wong, C. T., Tomasi, D., Thanos, P. K., & Fowler, J. S. (2006). Gastric stimulation in obese subjects activates the hippocampus and other regions involved in brain reward circuitry. Proceedings of the National Academy of Sciences of the United States of America, 103(42), 15641–15645. [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
