Submitted:
26 April 2023
Posted:
26 April 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Pavement friction
2.1. Pavement friction generalities
2.2. Longitudunal Frictional Forces
2.3. Lateral Frictional Forces
2.4. Combined Braking and Cornering
3. Measuring surface friction (skid resistance)
3.1. Measurement principles
- 0 – wheel speed is the same like vehicle speed, wheel rolls freely,
- 1 – wheel is fully blocked, and slides on the pavement surface.
3.2. Measurement devices
3.3. Measurement policy in EU
3.4. Measurement policy in Hungary
4. Pavement surface texture
4.1. Measurement principles
| Pavement Surface Characteristics | Vehicle Operating Parameters | Tire Properties | Environment |
|---|---|---|---|
|
Microtexture Macrotexture Megatexture/unevenness Material properties Temperature |
Slip speed (vehicle speed, breaking action) Driving maneuver (turning, overtaking) |
Foot Print Tread design and condition Rubber composition and hardness Inflation pressure Load Temperature |
Climate (wind temperature; rainfall-condensation; snow and ice) Contaminants (Anti-skid material; Dirt, mud, debris) |
4.2. Measurement principles
4.3. Measurement principles
- Micro-texture (λ < 0.5 mm, A = 1 to 500 µm)—Surface roughness quality at the sub-visible or microscopic level. It depends on the surface properties of the aggregate grains in the asphalt or concrete paving material.
- Macro-texture (λ = 0.5 to 50 mm, A = 0.1 to 20 mm)—Surface roughness quality de-fined by the mixture properties (shape, size, and gradation of aggregate) of asphalt paving mixtures and the method of finishing/texturing used on a concrete surface.
- Mega-texture (λ = 50 to 500 mm, A = 0.1 to 50 mm)—Texture with wavelengths in the same order of size as the pavement–tyre interface. It is mainly affected by the distress, defects, or “waviness” on the surface of road pavement.
- Wavelengths above 500 mm are defined as roughness (USA) or unevenness (UK).
4.4. Pavement texture measurement
4.5. Macro-texture properties of various asphalt mixture types
4.6. Hungarian regulation for measuring the macro texture
5. Aggregates characteristics
5.1. Aggregates characteristics generalities
5.2. Mechanical and physical properties of aggregates (Hungarian specifications)
5.3. Geometric properties in Hungarian specification
6. COST Action 354
6.1. COST Action 354 generalities
- longitudinal unevenness;
- transverse unevenness
- macro-texture (macro-roughness in the USA);
- skid resistance;
- rolling noise;
- air pollution;
- pavement structure;
- load bearing capacity.
6.1. Macro-texture performance indicators
- Volumetric method (sand patch test) is actually the spreading of a given amount of sand or glass bead on the pavement surface with help of a standard flat disk, then mea-suring the diameter of sand by a steel scale, taking 5 readings. The mean diameter can be used for the calculation of mean texture depth.
- Laser method, where the result of texture measurement done with a laser is inde-pendent on the measuring speed. Although numerous apparatus types (ARAN, Rav, Roadstar, Roar, RST, Rugolaser, SCRIM) are available, a measurement is almost exactly the same way is performed. The devices apply one or more laser beams aimed at various points of pavement surface, often in both wheel paths. The measurement is carried out always on a given line longitudinally, and each profile contains numerous, defined periodically performed level equalization.
| Index (note) | Verbal classification | MPD (mm) in the road class of | |
|---|---|---|---|
| motorway, primary road | secondary road | ||
| 1 | very good | min. 0.89 | min. 0.79 |
| 2 | good | 0.74-0.88 | 0.64-0.78 |
| 3 | appropriate | 0.64-0.73 | 0.54-0.63 |
| 4 | poor | 0.54-0.63 | 0.44-0.53 |
| 5 | very poor | max. 0.53 | max. 0.43 |
- motorways and main roads :
- local roads:
6.2. Macro-texture performance indicators
7. Summary
References
- Wallman, C.-G.; Åström, H. Friction Measurement Methods and the Correlation Between Road Friction and Traffic Safety – A Literature Review Report of the Swedish National Road and Traffic Institute, VTI meddelande 911A, Linköping, Sweden, 2001.
- Kuttesch, J. S. Quantifying the Relationship Between Skid Resistance and Wet Weather Accidents for Virginia Data, M.S. Thesis, Department of Civil Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, 2004, 147 p.
- Viner, H.; Sinhal R.; Parry, T. Review of UK Skid Resistance Policy, Paper prepared for 5th International Symposium on Pavement Surface Characteristics - Road and Airports, Toronto, Ontario, Canada, 2004, 12 p.
- Anupam, K.; Srirangam, S; Scarpas, A.; Kasbergen, C. Influence of Temperature on Tire-Pavement Friction: Analyses, Transportation Research Record: Journal of Transportation Research Board, 2369, 2013, pp. 114–124. [CrossRef]
- Hall, J.W.; Smith, K.L.; Titus-Glover, L.; Evans, L.D.; Wambold, J.C.; Yager, T.J.; Rado, Z. Guide for Pavement Friction. Contractor’s Final Report for National Cooperative Highway Research Program (NCHRP) Project 01-43, Transportation Research Board of the National Academies, Washington, D.C. 2009, 257 p. http://onlinepubs.trb.org/onlinepubs/nchrp/ nchrp_w108.pdf (Accessed June 2015).
- Meyer, W.E. Synthesis of Frictional Requirements Research, Report No. FHWA/RD-81/159, Federal Highway Administration (FHWA), Washington, D.C. 1982.
- Henry, J.J. Evaluation of Pavement Friction Characteristics, NCHRP Synthesis 291, National Cooperative Highway Research Program (NCHRP), Washington, D.C. 2000, 72 p.
- Gillespie, T.D. Fundamentals of Vehicle Dynamics, Society of Automotive Engineers (SAE), Warrendale, Pennsylvania, 1992, 519 p.
- Radt, H.S.; Milliken, W.F. Motions of Skidding Automobiles, Paper No. 600133 (205A), Society of Automotive Engineers (SAE), Warrendale, Pennsylvania, 1960.
- Do, M-T.; Roe, P. Report on State-of-the-Art of Test Methods. TYROSAFE project deliverable D04, 2008, 89 p.
- Descornet, G.; Schmidt, B.; Boulet, M.; Gothie, M.; Do, M-T.; Fafie, J.; Alonso, M.; Roe, P.; Forest, R.; Viner, H. Harmonization of European Routine and Research Measuring Equipment for Skid Resistance. HERMES final report, 2006, 161 p.
- Andriejauskas, T.; Vorobjovas, V.; Mielonas, V. Evaluation of Skid Resistance Characteristics and Measurement Methods, in: D. Cygas, T. Tollazzi (Eds.), In Proceedings of the 9th International Conference Environmental Engineering, VGTU Press, 2014, 9 p. [CrossRef]
- Kogbara, R. B.; Masad, E. A.; Kassem, E.; Scarpas A. T.; Anupam, K. A State-of-the-Art Review of Parameters Influencing Measurement and Modeling of Skid Resistance of Asphalt Pavements, Construction and Building Materials 2016, 114, pp. 602–617. [CrossRef]
- e-UT 09.02.23:1999 Az útburkolat-felület csúszásellenállásának vizsgálata. Mérés SCRIM-mérőkocsival. (Skid resistance testing of road surfaces. Measurement with SCRIM testing vehicles) Útügyi Műszaki Előírás (Road Technical Directives), 1999, 15 p.
- e-UT 09.02.27:2009 Az útburkolat-felület csúszásellenállásának vizsgálata. Mérés ASF-berendezéssel. (Skid resistance testing of road surfaces. Measurement by ASFT Equipment) Útügyi Műszaki Előírás (Road Technical Directives), 2009, 15 p.
- EN 13036-4: 2011 Road and airfield surface characteristics - Test methods - Part 4: Method for measurement of slip/skid re-sistance of a surface: The pendulum test, 2011, 32 p.
- Hall, J.W.; Smith, K.L.; Titus-Glover, L; Wambold, J.C.; Yager, T.J.; Rado, Z.: NCHRP Web-Only Document 108: Guide for Pavement Friction, Final Report for NCHRP Project 01-43, 2009.
- Permanent International Association of Road Congresses (PIARC). Report of the Committee on Surface Characteristics, In Proceedings of the 18th World Road Congress, Brussels, Belgium, 1987, 108 p.
- Sandburg, U. Influence of Road Surface Texture on Traffic Characteristics Related to Environment, Economy, and Safety: A State-of-the-Art Study Regarding Measures and Measuring Methods, VTI Report 53A-1997, Swedish National Road Administration, Borlange, Sweden, 1998, 94 p. https://trid.trb.org/view/1149891.
- Flintsch, G. W.; Al-Qadi, I.L.; Davis, R.; McGhee. K.K. Effect of HMA Properties on Pavement Surface Characteristics, In the Proceedings of the Pavement Evaluation Conference, Roanoke, Virginia, 2002, 16 p.
- Flintsch, G. W.; De Leon, E.; McGhee, K.K.; Al-Qadi, I.L. Pavement Surface Macrotexture Measurement and Application, Transportation Research Record: Journal of Transportation Research Board, 2003, 1860 pp. 168–177. [CrossRef]
- Bittelli, G.; Simone, A.; Girardi, F.; Lantieri C. Laser Scanning on Road Pavements: A New Approach for Characterizing Surface Texture, Sensors, 2012, 12, pp. 9110–9128. [CrossRef]
- EN 13036-1 Road and airfield surface characteristics - Test methods - Part 1: Measurement of pavement surface macrotexture depth using a volumetric patch technique. 2010, 11 p.
- ASTM E 965 Standard Test Method for Measuring Pavement Macrotexture Depth Using a Volumetric Technique. 2015, 4 p.
- ASTM E 2380 Standard Test Method for Measuring Pavement Texture Drainage Using an Outflow Meter, 2010, 4 p.
- ROSAN V - Technical Notes. Federal Highway Administration, Washington D.C.,1997, 6 p.
- ASTM E 2157-5 Standard Test Method for Measuring Pavement Macrotexture Properties Using the Circular Track Meter 2019, 5 p.
- e-UT 06.03.21: 2018 Útpályaszerkezetek aszfaltburkolati rétegeinek követelményei. (Requirements of the asphalt layers of road pavement structures),2018, 57 p. (In Hungarian).
- Ongel, A.; Lu, Q.; Harvey, J. Frictional Properties of Asphalt Concrete Mixes, In Proceedings of the Institution of Civil Engineers-Transportation 2009, 162, 1, pp. 19–26. [CrossRef]
- RST – Road Survey Tehnology. Ramboll RST, Malmö, Sweden, 2019, 5 p.
- EN 1097-8:2020 Tests for mechanical and physical properties of aggregates - Part 8: Determination of the polished stone value. 35 p. (2020).
- EN 1097-2:2020 Tests for mechanical and physical properties of aggregates - Part 2: Methods for the determination of resistance to fragmentation, 2020, 43 p.
- EN 1097-1:2011 Tests for mechanical and physical properties of aggregates - Part 1: Determination of the resistance to wear (micro-Deval). 2011, 14 p.
- EN 933-5:2022 Tests for geometrical properties of aggregates - Part 5: Determination of percentage of crushed particles in coarse and all-in natural aggregates. 2022, 20 p.
- EN 933-3:2012 Tests for geometrical properties of aggregates - Part 3: Determination of particle shape - Flakiness index. 2012, 11 p.
- e-UT 05.01.15:2018 Útépítési kőanyaghalmazok. (Road building stone masses), 2018, 74 p. (In Hungarian).
- COST 354 Performance Indicators for Road Pavements. Memorandum of Understanding, 2004.
- COST 354 Performance Indicators for Road Pavements. WP2 Selection and Assessment of Individual Performance Indicators. Final Report, 2007, 170 p.
- Gáspár L.; Károly R.: Útpályaszerkezetek makroérdességi és csúszásellenállási mutatói. (Macro roughness and skid resistance indicators of road pavements) Közlekedéstudományi Szemle 2007, 12, pp. 442-449. (In Hungarian).
- Gáspár L.: Útgazdálkodás (Road management) Akadémiai Kiadó, Budapest, 2003, 361 p. (In Hungarian).
- EN ISO 13473-1:2019 Characterization of pavement texture by use of surface profiles - Part 1: Determination of mean profile depth, 2019, 43 p.
- ASTM E 965-96 Standard Test Method for Measuring Pavement Macrotexture Depth Using a Volumetric Technique, 2011, 3 p.
- International Experiment to Compare and Harmonize Skid Resistance and Texture Measurements. PIARC Technical Committee 1 Surface Characteristics. ISBN: 84-87825-96-6, 1995, 430 p.
- Descornet, G. et al.: HERMES Project (Harmonization of European Routine and Research Measuring Equipment for Skid Resistance), FEHRL Report 2006/01, Brussels , 2006, 24 p.






| Title | Measuring principle | Main parameter | Tyre and wheel load |
|---|---|---|---|
| ADHERA | Longitudinal friction coefficient (LFC) |
Slip ratio: 1.0; Water film thickness: 1.0 mm; Measures macrotexture; Measurement speed: 40, 60, 90, 120 km/h; Measurement interval: 20 m. |
PIARC smooth profile tyre 165R15 (180 kPa) ; Wheel load: 2500 N. |
| ASFT | Longitudinal friction coefficient (LFC) |
Slip ratio: 0.12; Water film thickness:0-1.5 mm (ideally 0.9 mm) Measurement speed: 50, 70, 90 km/h Measurement interval: 10 m |
Trelleborg type 4.00-8" tyre (700±5 kPa); Wheel load: 2500 N |
| BV-11 | Longitudinal friction coefficient (LFC) |
Slip ratio: 0.17; Water film thickness: 0.5-1.0 mm; Measurement speed: 70 km/h; Measurement interval: 20 m. |
Trelleborg type T49 tyre (140 kPa); Wheel load: 1000 N. |
| GripTester | Longitudinal friction coefficient (LFC) |
Slip ratio: 0.15; Water film thickness: 0,5 mm; Measurement speed: 5-100 km/h; Measurement interval: 10-20 m or other. |
254 mm diameter smooth profile ASTM-tyre (140 kPa); Wheel load: 250 N. |
| RoadSTAR | Longitudinal friction coefficient (LFC) |
Slip ratio: 0.18; Water film thickness: 0.5 mm; Measures macrotexture; Measurement speed: 30, 60 km/h; Measurement interval: 50 m. |
PIARC tyre with tread; Wheel load: 3500 N. |
| ROAR DK | Longitudinal friction coefficient (LFC) |
Slip ratio: 0.2; Water film thickness: 0.5 mm; Measures macrotexture; Measurement speed: 60, 80 km/h; Measurement interval: >5 m. |
ASTM 1551 tyre (207 kPa); Wheel load: 1200 N. |
| ROAR NL | Longitudinal friction coefficient (LFC) |
Slip ratio: 0.86; Water film thickness: 0.5 mm; Measures macrotexture; Measurement speed: 50, 70 km/h; Measurement interval: 5-100 m. |
ASTM 1551 tyre (200 kPa); Wheel load: 1200 N. |
| RWS NL Skid Resistance Trailer |
Longitudinal friction coefficient (LFC) |
Slip ratio: 0.86; Water film thickness: 0.5 mm; Measurement speed: 50, 70 km/h; Measurement interval: 5-100 m. |
PIARC smooth profile tyre 165R15 (200 kPa); Wheel load: 1962 N. |
| Skiddometer BV-8 |
Longitudinal friction coefficient (LFC) |
Slip ratio: 1,0 or 0,14; Water film thickness: 0.5 mm; Measurement speed: 40, 60, 80 km/h; Measurement interval: 30-50 m. |
AIPCR tyre with longitudinal tread 165R15; Wheel load: 3500 N. |
| SRM | Longitudinal friction coefficient (LFC) |
Slip ratio: 0.15; Water film thickness: 0.5 mm; Measurement speed: 40, 60, 80 km/h; Measurement interval: 20 m or other. |
AIPCR tyre with longitudinal tread 165R15; Wheel load: 3500 N. |
| TRT | Longitudinal friction coefficient (LFC) |
Slip ratio: 0.15; Water film thickness: 0.5 mm; Measurement speed: 40-140 km/h; Measurement interval: 20 m or other. |
Smooth profile ASTM- tyre; Wheel load: 1000 N. |
| SRT-3 | Longitudinal friction coefficient (LFC) |
Slip ratio: 1.0; Water film thickness: 0.5 mm; Measurement speed: 60 km/h. |
Tyre with tread (200 kPa). |
| IMAG | Longitudinal friction coefficient (LFC) |
Slip ratio: 1.0; Water film thickness: 1.0 mm; Measurement speed: 65 km/h; |
PIARC smooth profile tyre; Wheel load: 1500 N. |
| SCRIM | Sideway friction coefficient (SFC) |
Slip angle: 20°; Water film thickness: 0.5 mm; Measures macrotexture; Measurement speed: 50 km/h; Measurement interval: >10 m. |
Avon SCRIM smooth profile tyre 76/508 (350 kPa); Wheel load: 1960 N |
| SKM | Sideway friction coefficient (SFC) | Slip angle: 20°; Water film thickness: 0,5 mm; Measurement speed: 50 km/h; Measurement interval: 100 m or other. |
Smooth profile tyre; Wheel load: 1960 N. |
| DFT Dynamic Friction Tester |
Rotating friction | For stationary measurements | |
| SRT Pendulum |
Pendulum test | For stationary measurements | |
| T2GO | Slow moving measurement; Longitudinal friction coefficient (LFC) |
Slip ratio: 0.2; Used for pedestrian/bicycle paths, road marking |
Two 75 mm width tyres. |
| VTI Portable Friction Tester (PFT) |
Slow moving measurement; Longitudinal friction coefficient (LFC) |
Used for pedestrian/bicycle paths |
| Pavement category | Hot Rolled Asphalt | Asphalt Concrete | Cement Concrete | Surface Dressing |
| I. | 0.80-0.50 | 0.75-0.50 | 0.75-0.50 | 0.90-0.50 |
| II. | 0.80-0.45 | 0.70-0.45 | 0.65-0.45 | 0.80-0.45 |
| III. | 0.70-0.40 | 0.64-0.40 | 0.64-0.40 | 0.80-0.40 |
| IV. | 0.64-0.33 | 0.64-0.33 | 0.64-0.33 |
| Pavement category | New pavement threshold | Warning threshold | Intervention level |
|---|---|---|---|
| I. | 0.84 | 0.75 | 0.70 |
| II. | 0.80 | 0.65 | 0.60 |
| III. | 0.70 | 0.55 | 0.45 |
| IV. | 0.65 | 0.45 | 0.35 |
| Asphalt mixture types | AC 8 kopó (F), AC 8 kopó (mF), AC 11 kopó (F), AC 11 kopó (mF), BBTM 4 A (mF), BBTM 8 A (mF), BBTM 8 B (mF), SMA 8 (mF), SMA 8 (mI), MA 11 (F), MA 11 (mF) |
AC 16 kopó (F), AC 16 kopó (mF), BBTM 11 A (mF), BBTM 11 B (mF), SMA 11 (mF), SMA 11 (mI) |
|---|---|---|
| Macro-texture compliance limit, mm, min. | 0.40 | 0.50 |
| Road type | Texture depth, mm |
|---|---|
| Motorways | >0.5 |
| Main road | >0.4 |
| Local roads | >0.3 |
| Urban roads, parking areas | none |
| Country | Index | Conversion function | Remarks |
|---|---|---|---|
| Austria | Skid resistance index | 9.9286-14.236 TP* | network level |
| Belgium | Skid resistance index | 4(SFC**-0.1)/3 | |
| Poland | Skid parameter | 100-180TP |
| Limits | Main roads | Local roads |
|---|---|---|
| Threshold values | TV = -0,23*OS+48 | TV = -0,23*OS+45 |
| Warning values | WV = -0,23*OS+56 | WV = -0,23*OS+54 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).