Submitted:
23 April 2023
Posted:
24 April 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Approaches and Methods
2.1. Bibliometric survey on digital agriculture
2.2. Survey on technologies used in digital agriculture
2.3. Methodology
3. Results
3.1. Bibliometric Study
- Annual Scientific Production

- Relevant Source

- Author Countries

- Author Organizations

- Co-occurrence Network

- Word Cloud

3.2. Digital Technologies Survey in the Five West Africa Countries
4. Discussions
4.1. Lesson learned
4.2. Recommendations
5. Conclusion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abu, N.S.; Bukhari, W.M.; Ong, C.H.; Kassim, A.M.; Izzuddin, T.A.; Sukhaimie, M.N.; Norasikin, M.A.; Rasid, A.F.A. Internet of Things Applications in Precision Agriculture: A Review. J. Robot. Control. (JRC) 2022, 3, 338–347. [Google Scholar] [CrossRef]
- Sott M., K. A Bibliometric Network Analysis of Recent Publications on Evolution Structure. A Bibliometric Network Analysis of Recent Publications on Evolution Structure. 2021.
- Singh, S.; Haneef, F.; Kumar, S.; Ongsakul V. Internet of things and agriculture relationship: a bibliometric analysis. Journal for Global Business Advancement,2020, 13. [CrossRef]
- Bouzembrak, Y. ; Klu¨che, M. ; Gavai, A. ; Marvin, H. J. P. Internet of Things in food safety: Literature review and a bibliometric analysis. Trends in Food Science & Technology, 2019, 94. [CrossRef]
- Sa nchez, J. M. ; Rodríguez, J. P. ; Espitia H. E. Bibliometric analysis of publications discussing the use of the artificial intelligence technique agent based models in sustainable agriculture. Heliyon,2022, 8. [CrossRef]
- Piot-lepetit, I. ; Florez, M.; Gauche K. Understanding the determinants of IT adoption in agriculture using an integrated TAM-TOE model: A bibliometric analysis. 170. EAAE Seminar: Governance of food chains and consumption dynamics: what are the impacts on food security and sustainability?, 2019.
- Iftikhar, A.; Ali, I.; Arslan, A.; Tarba, S. Digital Innovation, Data Analytics, and Supply Chain Resiliency: A Bibliometric-based Systematic Literature Review. Ann. Oper. Res. 2022, 1–24. [Google Scholar] [CrossRef]
- Abdollahi, A.; Rejeb, K.; Rejeb, A.; Mostafa, M.M.; Zailani, S. Wireless Sensor Networks in Agriculture: Insights from Bibliometric Analysis. Sustainability 2021, 13, 12011. [Google Scholar] [CrossRef]
- Iaksch, J. ; Fernandes, E. ; Borsato, M. ; Tecnolo´gica, U. Digitalization and Big Data in Smart Farming – Bibliometric and Systemic Analysis,2020.
- Singh, A.P.; Yerudkar, A.; Mariani, V.; Iannelli, L.; Glielmo, L. A Bibliometric Review of the Use of Unmanned Aerial Vehicles in Precision Agriculture and Precision Viticulture for Sensing Applications. Remote. Sens. 2022, 14, 1604. [Google Scholar] [CrossRef]
- Lohmer, J. ; Bugert; Lasch. Analysis of resilience strategies and ripple effect in blockchain coordinated supply chains: An agent- based simulation study. International journal of production economics, 2020. [Google Scholar]
- Cui, P.; Dixon, J.; Guin, U.; Dimase, D. A Blockchain-Based Framework for Supply Chain Provenance. IEEE Access 2019, 7, 157113–157125. [Google Scholar] [CrossRef]
- Akter, S.; Motamarri, S.; Hani, U.; Shams, R.; Fernando, M.; Babu, M.M.; Shen, K.N. Building dynamic service analytics capabilities for the digital marketplace. J. Bus. Res. 2020, 118, 177–188. [Google Scholar] [CrossRef]
- Dubey, R. ; Childe, G. A., S. J. ; Wamba, F.; Roubaud, S. ; Foropon, C. Empirical investigation of data analytics capability and organizational flexibility as complements to supply chain resilience. Int. J. Prod. Res., 2019. [CrossRef]
- Shafi, U.; Mumtaz, R.; García-Nieto, J.; Hassan, S.A.; Zaidi, S.A.R.; Iqbal, N. Precision Agriculture Techniques and Practices: From Considerations to Applications. Sensors 2019, 19, 3796. [Google Scholar] [CrossRef] [PubMed]
- Jaiswal, S. P. ; Bhadoria, V. S. ; Agrawal, A. ; Ahuja H. Internet Of Things (Iot) For Smart Agriculture And Farming In Developing Nations. International Journal of Scientific & Technology Research, 2019, 8.
- Mekonnen, Y.; Namuduri, S.; Burton, L.; Sarwat, A.; Bhansali, S. Review—Machine Learning Techniques in Wireless Sensor Network Based Precision Agriculture. J. Electrochem. Soc. 2019, 167, 037522. [Google Scholar] [CrossRef]
- Liu, Y. ; Ma, X. ; Shu , L. ; Hancke, G. P. ; Abu-Mahfouz, A. M. From Industry 4.0 to Agriculture 4.0: Current Status, Enabling Technologies, and Research Challenges, IEEE Transactions On Industrial Informatics, 2021, 17. [CrossRef]
- Aceto, G.; Persico, V.; Pescape´, A.; A survey on information and communication technologies for industry 4.0: State-of-the-art, tax- onomies, perspectives, and challenges, IEEE Commun. Surv. Tut., 2019, 21. [CrossRef]
- Micheni, E. ; Machii J. ; Murumba, J. Internet of Things, Big Data Analytics, and Deep Learning for Sustainable Precision Agricul- ture. ST-Africa 2022 Conference Proceedings Miriam Cunningham and Paul Cunningham (Eds) IST-Africa Institute and IIMC, 2022.
- Mushi, G.E.; Serugendo, G.D.M.; Burgi, P.-Y. Digital Technology and Services for Sustainable Agriculture in Tanzania: A Literature Review. Sustainability 2022, 14, 2415. [Google Scholar] [CrossRef]
- Bayih, A.Z.; Morales, J.; Assabie, Y.; de By, R.A. Utilization of Internet of Things and Wireless Sensor Networks for Sustainable Smallholder Agriculture. Sensors 2022, 22, 3273. [Google Scholar] [CrossRef]
- Aoga, J. ; Bae, J. ; Veljanoska, S. ; Nijssen S. ; Schaus P. Impact of weather factors on migration intention using machine learning algo- rithms. arXiv preprint, 2020.
- Gouly, Y.E.; Gusov, A. Digital technologies as the factor of development of agro-industrial clusters in the countries of africa. Proceedings of the International Scientific and Practical Conference “Digital agriculture - development strategy” (ISPC 2019). LOCATION OF CONFERENCE, RussiaDATE OF CONFERENCE. [CrossRef]
- Piegnède E. ; Roudier, P. ; Diedhiou, A. ; Hermann V.; N’Guessan, B.; Kobea, A. T. ; Konate´, D.; Bi Pe´ne´, C. Sugarcane yield forecast in Ivory Coast (West Africa) based on weather and vegetation index data Atmosphere. MDPI, 2021, 12. [CrossRef]
- Okafor, G.C.; Annor, T.; Odai, S.N.; Larbi, I. Land Use Landcover Change Monitoring and Projection in the Dano Catchment, Southwest Burkina Faso. Int. J. Adv. Remote. Sens. GIS 2019, 9, 3185–3204. [Google Scholar] [CrossRef]
- Forkuor, G.; Hounkpatin, O.K.L.; Welp, G.; Thiel, M. High Resolution Mapping of Soil Properties Using Remote Sensing Variables in South-Western Burkina Faso: A Comparison of Machine Learning and Multiple Linear Regression Models. PLOS ONE 2017, 12, e0170478. [Google Scholar] [CrossRef]
- Zougmore, T.-W.; Malo, S.; Kagembega, F.; Togueyini, A. Low cost IoT solutions for agricultures fish farmers in Afirca:a case study from Burkina Faso. 2018 1st International Conference on Smart Cities and Communities (SCCIC). LOCATION OF CONFERENCE, Burkina FasoDATE OF CONFERENCE; pp. 1–7.
- Soro, M-P. ; Marcellin Yao, K. ; Kouassi, G. L. B. ; Ouattara A. A. ; Diaco, T. Modeling the Spatio-Temporal Evolution of Chlorophyll-a in Three Tropical Rivers Comoe´, Bandama, and Bia Rivers (Coˆte d’Ivoire) by Artificial Neural Network. Applied wetland science, 2020.
- Musah, S.; Medeni, T.D.; Soylu, D. Assessment of Role of Innovative Technology through Blockchain Technology in Ghana’s Cocoa Beans Food Supply Chains. 2019 3rd International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT). LOCATION OF CONFERENCE, TurkeyDATE OF CONFERENCE; pp. 1–12.
- Vyas, S.; Shabaz, M.; Pandit, P.; Parvathy, L.R.; Ofori, I. Integration of Artificial Intelligence and Blockchain Technology in Healthcare and Agriculture. J. Food Qual. 2022, 2022, 1–11. [Google Scholar] [CrossRef]
- Wally, D. Exploring the Application of ICTs and Big Data Analytics on Climate Data in Climate-Smart Agriculture to Increase Productivity for Small-Scale Farmers: The Case of Ghana. PhD diss Aalborg University, 2021.
- Appiah-Badu, N.K.A.; Missah, Y.M.; Amekudzi, L.K.; Ussiph, N.; Frimpong, T.; Ahene, E. Rainfall Prediction Using Machine Learning Algorithms for the Various Ecological Zones of Ghana. IEEE Access 2021, 10, 5069–5082. [Google Scholar] [CrossRef]
- Nketia, K.; Asabere, S.; Ramcharan, A.; Herbold, S.; Erasmi, S.; Sauer, D. Spatio-temporal mapping of soil water storage in a semi-arid landscape of northern Ghana – A multi-tasked ensemble machine-learning approach. Geoderma 2022, 410, 115691. [Google Scholar] [CrossRef]
- Cedric, L.S.; Adoni, W.Y.H.; Aworka, R.; Zoueu, J.T.; Mutombo, F.K.; Krichen, M.; Kimpolo, C.L.M. Crops yield prediction based on machine learning models: Case of West African countries. Smart Agric. Technol. 2022, 2. [Google Scholar] [CrossRef]
- Nyamekye, C.; Kwofie, S.; Ghansah, B.; Agyapong, E.; Boamah, L.A. Assessing urban growth in Ghana using machine learning and intensity analysis: A case study of the New Juaben Municipality. Land Use Policy 2020, 99, 105057. [Google Scholar] [CrossRef]
- Abdullahi, U. S. ; Nyabam, M.; Orisekeh, K. ; Umar, S. ; Sani, B.; David, E.; Umoru, A. A. Exploiting IoT and LoRaWAN technologies for effective livestock monitoring in Nigeria. Arid Zone Journal of Engineering, Technology and Environment, 2019.
- Njoku, U. C. ; Agubor, C. K.; Ezema L. S. Development of a Long- Range WAN Weather and Soil Monitoring System for Rural Farmers. Eximia,2022 4.
- Ajao, L. A.; Agajo, J.; Muazu, M. B. ; Schuell, J. K. A scheduling- based algorithm for low energy consumption in smart agriculture precision monitoring system. Agricultural Engineering International, CIGR Journal, 2020,22.
- Borgwardt, H. Conception of smart farming solutions in the context of Botswana’s digital development: Identifying and evaluating potential innovations that enable smallholder farmers in Botswana to access data, connecting them to new resources, knowledge, and markets, based on a federated digital framework to advance Africa’s transition to a digital economy. Doctoral dissertation, 2022.
- Elijah, O. ; Orikumhi, I. ; Rahman, T. A. ; Babale, S. A.; Orakwue, S. I. Enabling smart agriculture in Nigeria: Application of IoT and data analytics. IEEE 3rd International Conference on Electro-Technology for National Development (NIGERCON), 2017.
- Manoharan, A.M.; Rathinasabapathy, V. Smart Water Quality Monitoring and Metering Using Lora for Smart Villages. 2018 2nd International Conference on Smart Grid and Smart Cities (ICSGSC). LOCATION OF CONFERENCE, MalaysiaDATE OF CONFERENCE; pp. 57–61.
- Bore, N. , Kinai, A.; Waweru, P., Wambugu, I., Mutahi, J., Kemunto, E., Eds.; Weldemariam, K. AGWS: Blockchain-enabled Small-scale Farm Digitization. IEEE International Conference on Blockchain and Cryptocurrency (ICBC), 2020. [Google Scholar]
- Omo-Ojugo, E. Relevance of Big Data Analytics in Agriculture: Focus on Nigeria Agricultural Sector. International Journal of Science and Research (IJSR), 2018.
- Umar, M.A.; Sani, B.M.; Suleiman, U. An Overview of Machine and Deep Learning Technologies Application in Agriculture: Opportunities and Challenges in Nigeria. SLU J. Sci. Technol. 2022, 4, 84–96. [Google Scholar] [CrossRef]
- Bello, R.W.; Ikeremo, E.S.; Olubummo, D.A. Application of Machine Learning Identification and Classification of Muturu and Keteku Cattle Species for a Smart Agricultural Practice in Developing Countries such as Nigeria. J. Appl. Sci. Environ. Manag. 2022, 26, 1259–1262. [Google Scholar] [CrossRef]
- Nwabueze, C. A. ; Akaneme, S. A. ; Nwabueze, and R. I. Enhancing agricultural production using wireless sensor network. Iconic Research and Engineering Journals,2019, 2.
- Oyedeji, A. A Review of Wireless Sensor Network Potential in Nigeria as a Tool for Sustainable Development. J. Eng. Sci. 2021, 28. [Google Scholar] [CrossRef]
- Asogwa, T. C. ; Obiokafor, I. N. Wireless Sensor Network(WSN): Applications in Oil and Gas and Agriculture Industries in Nigeria. 2018.
- Bhaga, T.D.; Dube, T.; Shekede, M.D.; Shoko, C. Impacts of Climate Variability and Drought on Surface Water Resources in Sub-Saharan Africa Using Remote Sensing: A Review. Remote. Sens. 2020, 12, 4184. [Google Scholar] [CrossRef]
| Papers | DigitalTechnology | Details | Applications |
|---|---|---|---|
| Benin | |||
| J. Aoga et al [23] | AI-Machine learning | random forest (RF), and extreme Gradient Boosting (XGB) | Crops, production (forecasting of soil properties) |
| Burkina Faso | |||
| Y. E. Gouly and A. Gusov [24] | digital platforms, artificial intelligence and robotics | Agro-industrial plateforme | Crops yield production (cereal and rice production), livestock and fisheries production |
| E. Pignede et al [25] | AI, Machinelearning, automatic learning | rainfall data, temperature data and sugarcane yields analysis | Sugarcane Yield Forecasting using random forest method |
| Gloria C. Okafor et al [26] | Satellite images | Rain fed agriculture prediction | cassava, yam, groundnut, maize and sorghum crops production |
| G. Forkuor et al [27] | IoT, WSN and IA | Satellite spectral data, Terrain and climatic variables analyzed based on Multiple linear regression (MLR), Random forest regression (RFR), Support vector machines for regression (SVM) and Stochastic gradient boosting (SGB) | prediction of soil properties |
| T. W. Zoug- more et al [28] | IoT | sensors measure parameters such ph, dissolved oxygen, water temperature, soil moisture and meteorological parameters (wind speed, air humidity, rainfall, sunshine | soil moisture properties for papaya and banana crop production |
| Cote d’Ivoire | |||
| M-P. Soro et al [29] | AI-Machine learning | Artificial Neural Network (ANN) | Riverine water monitoring |
| E. Pignede et al [30] | AI, Machine learning, automatique learning | rainfall data, temperature data and sugarcane yields analysis | Sugarcane YieldForecasting using random forest method |
| Ghana | |||
| S. Musah et al [31] | Blockchain | Transparency and traceability enhancement, unethical activities mitigation | Cocoa bean food supply chains |
| S. Vyas et al [32] | AI and Blockchain | food supply chains and drug supply chains management, quality maintenance and intelligent prediction. | Drug supply chain |
| D. Wally et al [33] | Big data and ICT | Satellites and remote sensors, Mobile phone and remote sensors, accounting software and GPS | farmers income increasing, data quality, ownership and accessibility |
| N. K. A. Appiah- Badu et al [34] | AI-machine learning | random forest and extreme gradient boosting method for rainfall prediction, temperature (minimum and maximum), relative humidity, Sunshine hours and wind speed data prediction | ecological zone |
| K. A. Nketia [35] | AI-Machine learning | Random Forest, extreme gradient boosting algorithms | soil water storage in landscape |
| L. S. Cedric et al [36] | AI and big data | crops yield prediction weather data and chemical data | predict bananas,dry beans, cassava, rice, maize, and seed cotton |
| C. Nyamekye et al [37] | AI-machine learning | evaluation of the transitions among the major land use/land cover categories in Machine Learning algorithms (random forest) and intensity analysis | environment |
| Nigeria | |||
| U. S. Abdul- lahi et al [38] | IoT-LoRaWAN | Precision agriculture that uses analytic measurements to optimize farming decisions | Livestock farming- IoT helps farmers to make lists, prepare reports, sort cows by category, and track each animal’s overall lifetime |
| U. C. Njoku et al [39] | Wireless Sensors Network (WSN)- LoRaWAN | Remote monitoring system of the environmental weather and soil conditions of the farmland in order to trigger irrigation automatically | field monitoring for rural farmers and automatic irrigation system |
| L. A. Ajao et al [40] | IoT: WSN-WIFI | Agro-climatic field parameters sensing using soil pH meter, soil moisture, and environmental temperature and humidity sensors. Energy consumption system managing using Algorithmic State Machine technique | Regular farm crops monitoring using low energy consumption system |
| H. Borg- wardt [41] | Digital platforms, GPS tracking solution with LORAWAN | Survey on smart farming and adoption | digital applications for market access and crowd farming, digital applications adoption |
| O. Elijah et al [42] | IoT and Data Analysis | The application of IoT technologies and Data analysis in agriculture: sensing monitoring, use of RFID.... | Plants Farms, AnimalFarms, Automated Machinery, Aquaponics |
| A. M. Manoha- ran, and V. Rathinasabapthy [43] | IoT-LoRaWAN | The LoRa mote along with sensors are placed in water tanks at villages and within corporation limits | smart village: water quality monitoring and distribution, Chemical leakage detection in rivers |
| N. Bore et al. [44] | blockchain | Agribusiness Digital Wallet (ADW) system development which leverages blockchain to formalize the interactions and enable seamless data flow in small-scale farming ecosystem | Small-scale farming formalization digital trust establishment among the agriculture stakeholders |
| E. Omo Ojugo [45] | Big Data | Big data analytic adoption for farming practices enhancement | Yield improvement |
| M. A. Umar et al. [46] | AI- Machine Learning and Deep Learning | Models such as ANN, SVM, EL/ RF, ANN-XY, CNN, MLR, hybrid ANN, LSTM, LR/Bagging tree, FFNN, DT, BP, GWR and XGBoost are used | Crop Management, Livestock Management, water, and Soil Management |
| R. W. Bello et al. [47] | AI- Machine Learning and Deep Learning | Enhanced mask region-based convolutional neural networks (mask RCNN) | breeding improvement |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
