Submitted:
17 April 2023
Posted:
18 April 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. M. haemolytica isolates
2.2. Antimicrobial susceptibility testing
2.3. Whole Genome Sequencing
2.4. Statistical analysis
3. Results
3.1. Phenotypic susceptibility to 12 antimicrobials
3.2. WGS analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- EFSA. Assessment of animal diseases caused by bacteria resistant to antimicrobials: sheep and goats. EFSA J 2021, 19, e06956. [Google Scholar]
- Donachie, W. Pasteurellosis. In Diseases of Sheep, 4th ed.; Aitken, I.D., Ed.; Blackwell Publishing: Oxford, United Kingdom, 2007; pp. 224–231. [Google Scholar]
- García-Alvarez, A.; Fernández-Garayzábal, J.F.; Chaves, F.; Pinto, C.; Cid, D. Ovine Mannheimia haemolytica isolates from lungs with and without pneumonic lesions belong to similar genotypes. Vet. Microbiol. 2018, 219, 80–86. [Google Scholar] [CrossRef] [PubMed]
- Awosile, B.B.; Heider, L.C.; Saab, M.E.; McClure, J.T. Antimicrobial resistance in mastitis, respiratory and enteric bacteria and enteric bacteria isolated from ruminant animals from the Atlantic Provinces of Canada from 1994-2013. Can Vet J 2018, 59, 1099–1104. [Google Scholar] [PubMed]
- Bello, J.M.; Chacón, G.; Pueyo, R.; Lechuga, R.; Marco, L.; Marco, M.; Alvarez, C.; Fraile, L. Antimicrobial susceptibility of Mannheimia haemolytica and Pasteurella multocida isolated from ovine respiratory clinical cases in Spain and Portugal. Small Rumin Res 2019, 178, 85–93. [Google Scholar] [CrossRef]
- Michael, G.B.; Bossé, J.T.; Schwarz, S. Antimicrobial resistance in Pasteurellaceae of veterinary origin. Microbiol Spectr 2018, 6, 3–10. [Google Scholar] [CrossRef]
- Schwarz, S. , Silley, P., Simjee, S., Woodford, N., van Duijkeren, E., Johnson, A.P., Gaastra, W. Editorial: assessing the antimicrobial susceptibility of bacteria obtained from animals. J Antimicrob Chemother 2010, 65, 601–604. [Google Scholar] [CrossRef]
- Schink, A.K.; Hanke, D.; Semmler, T.; Brombach, J.; Bethe, A. ; Lübke-Becker, A.; Teske, K.; Müller, K.E.; Schwarz, S. Novel multiresistance-mediating integrative and conjugative elements carrying unusual antimicrobial resistance genes in Mannheimia haemolytica and Pasteurella multocida. J Antimicrob Chemother 2022, 77, 2033–2035. [Google Scholar] [CrossRef]
- Dassanayake, R.P.; Call, D.R.; Sawant, A.A.; Casavan, N.C.; Weiser, G.C.; Knowles, D.P.; Srikuma, S. Bibersteinia trehalosi inhibits the growth of Mannheimia haemolytica by a proximity-dependent mechanism. Appl Environ Microbiol 2010, 76, 1008–1013. [Google Scholar] [CrossRef]
- Clinical and Laboratory Standard Institute. Performance Standards For Antimicrobial Disk And Dilution Susceptibility Tests For Bacteria Isolated From Animals; approved standard, 3ed Ed. Document M31-A3, 2008, Wayne, Pensilvania, USA.
- Clinical and Laboratory Standard Institute. Performance standards for antimicrobial disk and dilution susceptibility tests for bacteria isolated from animals; Document VET08, approved standard, 4th Ed. 2018, Wayne, Pensilvania, USA.
- Clinical and Laboratory Standard Institute. Performance standards for antimicrobial disk and dilution susceptibility tests for bacteria isolated from animals; approved standard, 2nd Ed. Document M31-A2, 2002, Wayne, Pensilvania, USA.
- Rosco Diagnostica. Instrucciones para uso de Neo-Sensitabs. Revisión DBV0004E. Neo-Sensitabs ensayos de sensibilidad a los antimicrobianos. (https://docplayer.es/36963350-Rosco-diagnostica-instrucciones-para-uso-de-neo-sensitabs-revision-dbv0004e-fecha-de-neo-sensitabs-ensayos-de-sensibilidad-a-los-antimicrobianos.html).
- Quijada, N. M.; Rodriguez-Lazaro, D.; Eiros, J. M.; Hernandez, M. TORMES: an automated pipeline for whole bacterial genome analysis. Bioinformatics 2019, 35, 4207–4212. [Google Scholar] [CrossRef]
- Samper-Cativiela, C.; Dieguez-Roda, B.; Trigo da Roza, F.; Ugarte-Ruiz, M.; Elnekave, E.; Lim, S.; Hernandez, M.; Abad, D.; Collado, S. : Saez, J.L.: de Frutos, C.; Aguero, M.; Moreno, M.A.; Escudero, J.A.; Alvarez, J. Genomic characterization of multidrug-resistant Salmonella serovar Kentucky ST198 isolated in poultry flocks in Spain (2011-2017). Microb Genom 2022, 8, 000773. [Google Scholar] [CrossRef]
- Robertson, J.; Nash, J.H.E. MOB-suite: software tools for clustering, reconstruction and typing of plasmids from draft assemblies. Microb Genom 2018, 4, e000206. [Google Scholar] [CrossRef]
- Kobayashi, N.; Nishino, K.; Yamaguchi, A. Novel macrolide-specific ABC-type efflux transporter in Escherichia coli. J Bacteriol 2001, 183, 5639–5644. [Google Scholar] [CrossRef] [PubMed]
- Kadlec, K.; Watts, J.L.; Schwarz, S.; Sweeney, M.T. Plasmid-located extended-spectrum beta-lactamase gene blaROB-2 in Mannheimia haemolytica. J Antimicrob Chemother 2019, 74, 851–853. [Google Scholar] [CrossRef]
- Olsen, A.S.; Warrass, R.; Douthwaite, S. Macrolide resistance conferred by rRNA mutations in field isolates of Mannheimia haemolytica and Pasteurella multocida. J Antimicrob Chemother 2015, 70, 420–423. [Google Scholar] [CrossRef]
- Ozawa, M.; Asai, T.; Sameshima, T. Mutations in GyrA and ParC in fluoroquinolone-resistant Mannheimia haemolytica isolates from cattle in Japan. J Vet Med Sci 2009, 71, 493–494. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Yang, M.; Xu, Z.; Zheng, H.; Liang, W.; Zhou, R.; Wu, B.; Chen, H. Complete genome sequence of Pasteurella multocida HN06, a toxigenic strain of serogroup D. J Bacteriol 2012, 194, 3292–3293. [Google Scholar] [CrossRef]
- European Medicines Agency. Annual report 2019. Chapter 1 - key achievements in 2019. Antimicrobial resistance. Available online: http://www.ema.europa.eu/en/annual-report-2019/antimicrobial-resistance.html. [PubMed]
- Hansen, L.M.; McMurry, L.M.; Levy, S.B.; Hirsh, D.C. A new tetracycline resistance determinant, Tet H, from Pasteurella multocida specifying active efflux of tetracycline. Antimicrob Agents Chemother 1993, 37, 2699–2705. [Google Scholar] [CrossRef] [PubMed]
- Snyder, E.R.; Savitske, B.J.; Credille, B.C. Concordance of disk diffusion, broth microdilution, and whole-genome sequencing for determination of in vitro antimicrobial susceptibility of Mannheimia haemolytica. J Vet Intern Med 2020, 34, 2158–2168. [Google Scholar] [CrossRef]
- Freeman, C.N.; Herman, E.K.; Abi Younes, J.; Ramsay, D.E.; Erikson, N.; Stothard, P.; Links, M.G.; Otto, S.J.G.; Waldner, C. Evaluating the potential of third generation metagenomic sequencing for the detection of BRD pathogens and genetic determinants of antimicrobial resistance in chronically ill feedlot cattle. BMC Vet Res 2022, 18, 211. [Google Scholar] [CrossRef]
- Owen, J.R.; Noyes, N.; Young, A.E.; Prince, D.J.; Blanchard, P.C.; Lehenbauer, T.W.; Aly, S.S.; Davis, J.H.; O'Rourke, S.M.; Abdo, Z.; et al. Whole-Genome Sequencing and Concordance Between Antimicrobial Susceptibility Genotypes and Phenotypes of Bacterial Isolates Associated with Bovine Respiratory Disease. G3 2017, 7, 3059–3071. [Google Scholar]
- World Health Organization & WHO Advisory Group on Integrated Surveillance of Antimicrobial Resistance (AGISAR). Critically important antimicrobials for human medicine (6th rev.-2018). Geneva: World Health Organization; 2019. Licence: CC BY-NC-SA 3.0 IGO.
- Cid, D.; Fernández-Garayzábal, J.F. , Pinto, C., Dominguez, L; Vela, A.I. Antimicrobial susceptibility of Pasteurella multocida isolated from sheep and pigs in Spain. Acta Vet Hung 2019, 67, 489–498. [Google Scholar] [CrossRef] [PubMed]
- Lizarazo, Y.A.; Ferri, E.F.R.; de la Fuente, A.J.M.; Martín, C.B.G. Evaluation of changes in antimicrobial susceptibility patterns of Pasteurella multocida subsp multocida isolates from pigs in Spain in 1987–1988 and 2003–2004. Am J Vet Res 2006, 67, 663–668. [Google Scholar] [CrossRef]
- Dayao, D.; Gibson, J.S.; Blackall, P.J.; Turni, C. Antimicrobial resistance genes in Actinobacillus pleuropneumoniae, Haemophilus parasuis and Pasteurella multocida isolated from Australian pigs. Aust Vet J 2016, 94, 227–231. [Google Scholar] [CrossRef] [PubMed]
- Rerat, M.; Albini, S.; Jaquier, V.; Hussy, D. Bovine respiratory disease: efficacy of different prophylactic treatments in veal calves and antimicrobial resistance of isolated Pasteurellaceae. Prev Vet Med 2012, 103, 265–273. [Google Scholar] [CrossRef] [PubMed]
- Clothier, K.A.; Kinyon, J.M.; Griffith, R.W. Antimicrobial susceptibility patterns and sensitivity to tulathromycin in goat respiratory bacterial isolates. Vet Microbiol 2012, 156, 178–182. [Google Scholar] [CrossRef] [PubMed]
- Alhamami, T.; Chowdhury, P.R.; Gomes, N.; Carr, M.; Veltman, T.; Khazandi, M.; Mollinger, J.; Deutscher, A.T.; Turni, C.; Mahdi, L.; et al. First Emergence of Resistance to Macrolides and Tetracycline Identified in Mannheimia haemolytica and Pasteurella multocida Isolates from Beef Feedlots in Australia. Microorganisms 2021, 9, 1322. [Google Scholar] [CrossRef] [PubMed]
- Wright, C.L. , Strugnell, R.A.; Hodgson, A.L. Characterization of a Pasteurella multocida plasmid and its use to express recombinant proteins in P. multocida. Plasmid 1997, 37, 65–79. [Google Scholar] [CrossRef]
- Kehrenberg, C.; Schwarz, S. Occurrence and linkage of genes coding for resistance to sulfonamides, streptomycin and chloramphenicol in bacteria of the genera Pasteurella and Mannheimia. FEMS Microbiol Let 2001, 205, 283–290. [Google Scholar] [CrossRef]
- San Millan, A.; Escudero, J.A.; Gutierrez, B.; Hidalgo, L.; Garcia, N.; Llagostera, M.; Dominguez, L.; Gonzalez-Zorn, B. Multiresistance in Pasteurella multocida is mediated by coexistence of small plasmids. Antimicrob Agents Chemother 2009, 53, 3399–3404. [Google Scholar] [CrossRef]
| Antimicrobial agent | Units | IZD Breakpoints (mm) | No. of isolates showed IZD (mm) of:a | Resistant isolates (%) e | |||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 7-8 | 9-10 | 11-12 | 13-14 | 15-16 | 17-18 | 19-20 | 21-22 | 23-24 | 25-26 | 27-28 | 29-30 | 31-32 | 33-34 | 35-36 | >36 | from lungs with pneumonic lesions | from lungs without pneumonic lesions | Total | |||
| AMOX | 30 μg | ≤16b | 1 | 2 | 3 | 8 | 14 | 15 | 41 | 73 | 39 | 38 | 22 | 0,6 | 2,3 | 1,2 | |||||
| AMC | 30/15 μg | ≤16b | 1 | 2 | 8 | 10 | 14 | 51 | 59 | 48 | 40 | 23 | 0,6 | 0,0 | 0,4 | ||||||
| CEFT | 30 μg | ≤17c | 1 | 1 | 3 | 1 | 5 | 6 | 9 | 35 | 57 | 39 | 37 | 62 | 1,2 | 0,0 | 0,8 | ||||
| CEFQ | 30 U | ≤19b | 2 | 1 | 7 | 18 | 18 | 46 | 54 | 36 | 38 | 36 | 1,2 | 1,1 | 1,2 | ||||||
| LI+SP | 15/200 μg | ≤16b | 9 | 12 | 54 | 77 | 67 | 19 | 10 | 2 | 2 | 4 | 0,0 | 0,0 | 0,0 | ||||||
| GEN | 10 μg | ≤12d | 1 | 10 | 54 | 101 | 73 | 3 | 2 | 2 | 5 | 1 | 4 | 0,6 | 0,0 | 0,4 | |||||
| ERY | 78 μg | ≤18b | 22 | 32 | 62 | 65 | 45 | 16 | 8 | 2 | 3 | 1 | 0,0 | 0,0 | 0,0 | ||||||
| TYLO | 150 μg | ≤22b | 1 | 3 | 8 | 32 | 117 | 67 | 20 | 1 | 3 | 1 | 1 | 1 | 1 | 87.6 | 91.9 | 89,1 | |||
| FFC | 30 μg | ≤14c | 1 | 5 | 11 | 20 | 50 | 64 | 42 | 49 | 14 | 0,0 | 0,0 | 0,0 | |||||||
| ENRO | 10 μg | ≤16b | 1 | 1 | 5 | 16 | 17 | 54 | 63 | 31 | 34 | 34 | 0,0 | 2,3 | 0,8 | ||||||
| DOXYC | 80 μg | ≤18b | 1 | 4 | 3 | 1 | 17 | 19 | 57 | 80 | 38 | 24 | 12 | 0,6 | 0,0 | 0,4 | |||||
| TET | 30 μg | ≤14d | 5 | 3 | 3 | 3 | 4 | 4 | 36 | 72 | 60 | 43 | 16 | 3 | 2 | 2 | 5,9 | 1,1 | 4,3 | ||
| Resistotype | Antimicrobial familya | M. haemolytica isolates from lungs b | ||||||
|---|---|---|---|---|---|---|---|---|
| with pneumonic lesions | without pneumonic lesions | Total | ||||||
| MAC | LAC | TET | QUI | AMI | n = 169 | n = 87 | n=256 | |
| TIL c | 139 (82.2) | 75 (86.2) | 214 (83.6) | |||||
| TIL. TET | 6 (3.6) | 1 (1.1) | 7 (2.7) | |||||
| TIL. AMOX | 0 | 2 (2.3) | 2 (0.8) | |||||
| TIL. CEFQ | 0 | 1 (1.1) | 1 (0.4) | |||||
| TIL. AMOX. AMC. CEFT | 1 (0.6) | 0 | 1 (0.4) | |||||
| TIL. CEFQ. TET | 1 (0.6) | 0 | 1 (0.4) | |||||
| TIL. TET. DOX | 1 (0.6) | 0 | 1 (0.4) | |||||
| TIL. ENRO | 0 | 1 (1.1) | 1 (0.4) | |||||
| ENRO. | 0 | 1 (1.1) | 1 (0.4) | |||||
| CEFT. CEFQ. TET. GEN | 1 (0.6) | 0 | 1 (0.4) | |||||
| TET | 1 (0.6) | 0 | 1 (0.4) | |||||
| None | 19 (11.2) | 6 (6.7) | 25 (9.8) | |||||
| Resistance genes | Plasmids | Antimicrobial susceptibility phenotype (concentration ranges tested in ug/ml) | ||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| ID | IZD -TYLO (mm) | tetH | strA | sul2 | rep21 | IncP | pHN06 | SMX (8- 512) |
AMI (4- 128) |
TMP (0.25- 16) |
CIP (0.015-8) | TET (2- 32) |
MERO (0.03- 16) | AZI (2-64) |
NAL (4-64) |
CHL (8-64) |
FOT (0.25-4) | TGC (0.25-8) | TAZ (0.25- 8) | COL (1- 16) | AMP (1- 32) | GEN (0.5- 16) |
| M411 | 10 | 0 | 0 | 0 | 0 | 1 | 0 | >512 | 8 | ≤0,25 | ≤0,015 | ≤2 | 0,06 | ≤2 | ≤4 | ≤8 | ≤0,25 | ≤0,25 | ≤0,25 | ≤1 | ≤1 | 2 |
| M214 | 14 | 1 | 0 | 0 | 0 | 0 | 0 | >512 | 8 | ≤0,25 | ≤0,015 | ≤2 | ≤0,03 | ≤2 | ≤4 | ≤8 | ≤0,25 | ≤0,25 | ≤0,25 | ≤1 | ≤1 | 2 |
| M280 | 18 | 0 | 0 | 0 | 0 | 0 | 0 | >512 | 16 | ≤0,25 | ≤0,015 | ≤2 | ≤0,03 | ≤2 | ≤4 | ≤8 | ≤0,25 | ≤0,25 | ≤0,25 | ≤1 | ≤1 | 2 |
| M242 | 19 | 1 | 0 | 0 | 0 | 0 | 0 | ≤8 | 16 | 8 | ≤0,015 | 32 | ≤0,03 | ≤2 | ≤4 | ≤8 | ≤0,25 | ≤0,25 | ≤0,25 | ≤1 | ≤1 | 2 |
| M273 | 21 | 1 | 1 | 1 | 0 | 0 | 1 | 32 | ≤4 | 8 | ≤0,015 | 32 | ≤0,03 | ≤2 | ≤4 | ≤8 | ≤0,25 | ≤0,25 | ≤0,25 | ≤1 | ≤1 | ≤0,5 |
| M239 | 22 | 1 | 0 | 0 | 1 | 0 | 0 | |||||||||||||||
| M487 | 23 | 0 | 0 | 0 | 0 | 0 | 0 | |||||||||||||||
| M469 | 28 | 0 | 0 | 0 | 0 | 1 | 0 | |||||||||||||||
| M270 | 30 | 1 | 1 | 1 | 0 | 0 | 1 | |||||||||||||||
| M229 | 30 | 1 | 0 | 0 | 0 | 0 | 0 | |||||||||||||||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
