Submitted:
15 April 2023
Posted:
17 April 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Risk of Cardiovascular Health Deterioration during and Post COVID-19
2.1. Epidemiology Evidence: Endothelial Dysfunction Is Linked to COVID-19 Associated Cardio Dysfunction
2.2. Prothrombotic State in COVID Infection
3. Beneficial Potential of N3PUFA as Conjunctive Supplements for Cardiovascular Health in Acute and Post COVID-19
3.1. N3PUFA and Endothelial Function
3.2. N3PUFA and Anti-Thrombotic Properties
3.3. N3PUFA and Inflammation
4. N3PUFA Form and Bioavailability
5. High N3PUFA Dose Can Be Essential in Protecting Cardiovascular Health in COVID-19
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- World Health Organization WHO Coronavirus (COVID-19) Dashboard Overview of Current Cases.
- Huertas, A.; Montani, D.; Savale, L.; Pichon, J.; Tu, L.; Parent, F.; Guignabert, C.; Humbert, M. Endothelial Cell Dysfunction: A Major Player in SARS-CoV-2 Infection (COVID-19)? Eur Respir J 2020, 56, 2001634. [CrossRef]
- Xu, S.; Ilyas, I.; Weng, J. Endothelial Dysfunction in COVID-19: An Overview of Evidence, Biomarkers, Mechanisms and Potential Therapies. Acta Pharmacol Sin 2022, 1–15. [CrossRef]
- Jw, Y.; H, T.; S, V. Endothelial Cell Control of Thrombosis. BMC cardiovascular disorders 2015, 15. [CrossRef]
- Ackermann, M.; Verleden, S.E.; Kuehnel, M.; Haverich, A.; Welte, T.; Laenger, F.; Vanstapel, A.; Werlein, C.; Stark, H.; Tzankov, A.; et al. Pulmonary Vascular Endothelialitis, Thrombosis, and Angiogenesis in Covid-19. N Engl J Med 2020, 383, 120–128. [CrossRef]
- Hamming, I.; W Timens; Ml, B.; At, L.; G, N.; H, van G. Tissue Distribution of ACE2 Protein, the Functional Receptor for SARS Coronavirus. A First Step in Understanding SARS Pathogenesis. The Journal of pathology 2004, 203. [CrossRef]
- Muniyappa, R.; Gubbi, S. COVID-19 Pandemic, Coronaviruses, and Diabetes Mellitus. American Journal of Physiology-Endocrinology Metabolism 2020, 318, E736–E741.
- Singh, A.K.; Gillies, C.L.; Singh, R.; Singh, A.; Chudasama, Y.; Coles, B.; Seidu, S.; Zaccardi, F.; Davies, M.J.; Khunti, K. %J D.; et al. Prevalence of Co-morbidities and Their Association with Mortality in Patients with COVID-19: A Systematic Review and Meta-analysis. 2020, 22, 1915–1924.
- Kevin J. Clerkin; Justin A. Fried; Jayant Raikhelkar; Gabriel Sayer; Jan M. Griffin; Amirali Masoumi; Sneha S. Jain; Daniel Burkhoff; Deepa Kumaraiah; LeRoy Rabbani; et al. COVID-19 and Cardiovascular Disease. 2020, 141, 1648–1655, doi:doi:10.1161/CIRCULATIONAHA.120.046941.
- Bansal, M. Cardiovascular Disease and COVID-19. Diabetes & Metabolic Syndrome: Clinical Research & Reviews 2020, 14, 247–250. [CrossRef]
- Shah, W.; Hillman, T.; Playford, E.D.; Hishmeh, L. Managing the Long Term Effects of Covid-19: Summary of NICE, SIGN, and RCGP Rapid Guideline. BMJ 2021, 372, n136. [CrossRef]
- Rezel-Potts, E.; Douiri, A.; Sun, X.; Chowienczyk, P.J.; Shah, A.M.; Gulliford, M.C. Cardiometabolic Outcomes up to 12 Months after COVID-19 Infection. A Matched Cohort Study in the UK. PLOS Medicine 2022, 19, e1004052. [CrossRef]
- Knight, R.; Walker, V.; Ip, S.; Cooper, J.A.; Bolton, T.; Keene, S.; Denholm, R.; Akbari, A.; Abbasizanjani, H.; Torabi, F.; et al. Association of COVID-19 with Arterial and Venous Vascular Diseases: A Population-Wide Cohort Study of 48 Million Adults in England and Wales 2021, 2021.11.22.21266512.
- Calder, P.C. Nutrition, Immunity and COVID-19. BMJ Nutr Prev Health 2020, 3, 74–92. [CrossRef]
- Mentella, M.C.; Scaldaferri, F.; Gasbarrini, A.; Miggiano, G.A.D. The Role of Nutrition in the COVID-19 Pandemic. Nutrients 2021, 13, 1093. [CrossRef]
- Gutiérrez, S.; Svahn, S.L.; Johansson, M.E. Effects of Omega-3 Fatty Acids on Immune Cells. Int J Mol Sci 2019, 20, 5028. [CrossRef]
- Williams-Bey, Y.; Boularan, C.; Vural, A.; Huang, N.-N.; Hwang, I.-Y.; Shan-Shi, C.; Kehrl, J.H. Omega-3 Free Fatty Acids Suppress Macrophage Inflammasome Activation by Inhibiting NF-ΚB Activation and Enhancing Autophagy. PLoS One 2014, 9, e97957. [CrossRef]
- Sung, J.; Jeon, H.; Kim, I.-H.; Jeong, H.S.; Lee, J. Anti-Inflammatory Effects of Stearidonic Acid Mediated by Suppression of NF-ΚB and MAP-Kinase Pathways in Macrophages. Lipids 2017, 52, 781–787. [CrossRef]
- Su, K.-P.; Lai, H.-C.; Yang, H.-T.; Su, W.-P.; Peng, C.-Y.; Chang, J.P.-C.; Chang, H.-C.; Pariante, C.M. Omega-3 Fatty Acids in the Prevention of Interferon-Alpha-Induced Depression: Results from a Randomized, Controlled Trial. Biol Psychiatry 2014, 76, 559–566. [CrossRef]
- Cucchi, D.; Camacho-Muñoz, D.; Certo, M.; Niven, J.; Smith, J.; Nicolaou, A.; Mauro, C. Omega-3 Polyunsaturated Fatty Acids Impinge on CD4+ T Cell Motility and Adipose Tissue Distribution via Direct and Lipid Mediator-Dependent Effects. Cardiovascular Research 2020, 116, 1006–1020. [CrossRef]
- Kang, K.W.; Kim, S.; Cho, Y.-B.; Ryu, S.R.; Seo, Y.-J.; Lee, S.-M. Endogenous N-3 Polyunsaturated Fatty Acids Are Beneficial to Dampen CD8+ T Cell-Mediated Inflammatory Response upon the Viral Infection in Mice. Int J Mol Sci 2019, 20, 4510. [CrossRef]
- Ramírez-Santana, M.; Zapata Barra, R.; Ñunque González, M.; Müller, J.M.; Vásquez, J.E.; Ravera, F.; Lago, G.; Cañón, E.; Castañeda, D.; Pradenas, M. Inverse Association between Omega-3 Index and Severity of COVID-19: A Case–Control Study. International Journal of Environmental Research and Public Health 2022, 19, 6445. [CrossRef]
- Hathaway, D.; Pandav, K.; Patel, M.; Riva-Moscoso, A.; Singh, B.M.; Patel, A.; Min, Z.C.; Singh-Makkar, S.; Sana, M.K.; Sanchez-Dopazo, R.; et al. Omega 3 Fatty Acids and COVID-19: A Comprehensive Review. Infect Chemother 2020, 52, 478–495. [CrossRef]
- Lu, R.; Zhao, X.; Li, J.; Niu, P.; Yang, B.; Wu, H.; Wang, W.; Song, H.; Huang, B.; Zhu, N.; et al. Genomic Characterisation and Epidemiology of 2019 Novel Coronavirus: Implications for Virus Origins and Receptor Binding. The Lancet 2020, 395, 565–574. [CrossRef]
- Wu, Z.; McGoogan, J.M. Characteristics of and Important Lessons From the Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72 314 Cases From the Chinese Center for Disease Control and Prevention. JAMA 2020, 323, 1239–1242. [CrossRef]
- Menter, T.; Haslbauer, J.D.; Nienhold, R.; Savic, S.; Hopfer, H.; Deigendesch, N.; Frank, S.; Turek, D.; Willi, N.; Pargger, H.; et al. Postmortem Examination of COVID-19 Patients Reveals Diffuse Alveolar Damage with Severe Capillary Congestion and Variegated Findings in Lungs and Other Organs Suggesting Vascular Dysfunction. Histopathology 2020, 77, 198–209. [CrossRef]
- Wichmann, D.; Sperhake, J.-P.; Lütgehetmann, M.; Steurer, S.; Edler, C.; Heinemann, A.; Heinrich, F.; Mushumba, H.; Kniep, I.; Schröder, A.S.; et al. Autopsy Findings and Venous Thromboembolism in Patients With COVID-19: A Prospective Cohort Study. Ann Intern Med 2020, 173, 268–277. [CrossRef]
- Muhammad, S.; Fischer, I.; Naderi, S.; Faghih Jouibari, M.; Abdolreza, S.; Karimialavijeh, E.; Aslzadeh, S.; Mashayekhi, M.; Zojaji, M.; Kahlert, U.D.; et al. Systemic Inflammatory Index Is a Novel Predictor of Intubation Requirement and Mortality after SARS-CoV-2 Infection. Pathogens 2021, 10, 58. [CrossRef]
- Ball, L.; Silva, P.L.; Giacobbe, D.R.; Bassetti, M.; Zubieta-Calleja, G.R.; Rocco, P.R.M.; Pelosi, P. Understanding the Pathophysiology of Typical Acute Respiratory Distress Syndrome and Severe COVID-19. Expert Rev Respir Med 2022, 16, 437–446. [CrossRef]
- Argenziano, M.G.; Bruce, S.L.; Slater, C.L.; Tiao, J.R.; Baldwin, M.R.; Barr, R.G.; Chang, B.P.; Chau, K.H.; Choi, J.J.; Gavin, N.; et al. Characterization and Clinical Course of 1000 Patients with Coronavirus Disease 2019 in New York: Retrospective Case Series. BMJ 2020, 369, m1996. [CrossRef]
- Lala, A.; Johnson, K.W.; Januzzi, J.L.; Russak, A.J.; Paranjpe, I.; Richter, F.; Zhao, S.; Somani, S.; Van Vleck, T.; Vaid, A.; et al. Prevalence and Impact of Myocardial Injury in Patients Hospitalized With COVID-19 Infection. J Am Coll Cardiol 2020, 76, 533–546. [CrossRef]
- Klok, F.A.; Kruip, M.J.H.A.; van der Meer, N.J.M.; Arbous, M.S.; Gommers, D. a. M.P.J.; Kant, K.M.; Kaptein, F.H.J.; van Paassen, J.; Stals, M. a. M.; Huisman, M.V.; et al. Incidence of Thrombotic Complications in Critically Ill ICU Patients with COVID-19. Thromb Res 2020, 191, 145–147. [CrossRef]
- Poissy, J.; Goutay, J.; Caplan, M.; Parmentier, E.; Duburcq, T.; Lassalle, F.; Jeanpierre, E.; Rauch, A.; Labreuche, J.; Susen, S.; et al. Pulmonary Embolism in Patients With COVID-19: Awareness of an Increased Prevalence. Circulation 2020, 142, 184–186. [CrossRef]
- Jenner, W.J.; Gorog, D.A. Incidence of Thrombotic Complications in COVID-19. J Thromb Thrombolysis 2021, 52, 999–1006. [CrossRef]
- Lippi, G.; Favaloro, E.J. D-Dimer Is Associated with Severity of Coronavirus Disease 2019: A Pooled Analysis. Thromb Haemost 2020, 120, 876–878. [CrossRef]
- Xiong, X.; Chi, J.; Gao, Q. Prevalence and Risk Factors of Thrombotic Events on Patients with COVID-19: A Systematic Review and Meta-analysis. Thrombosis Journal 2021, 19, 32. [CrossRef]
- Zhang, J.; Huang, X.; Ding, D.; Zhang, J.; Xu, L.; Hu, Z.; Xu, W.; Tao, Z. Comparative Study of Acute Lung Injury in COVID-19 and Non-COVID-19 Patients. 2021, 8. [CrossRef]
- Stals, M.A.M.; Grootenboers, M.J.J.H.; van Guldener, C.; Kaptein, F.H.J.; Braken, S.J.E.; Chen, Q.; Chu, G.; van Driel, E.M.; Iglesias Del Sol, A.; de Jonge, E.; et al. Risk of Thrombotic Complications in Influenza versus COVID-19 Hospitalized Patients. Res Pract Thromb Haemost 2021, 5, 412–420. [CrossRef]
- Williamson, E.J.; Walker, A.J.; Bhaskaran, K.; Bacon, S.; Bates, C.; Morton, C.E.; Curtis, H.J.; Mehrkar, A.; Evans, D.; Inglesby, P. Factors Associated with COVID-19-Related Death Using OpenSAFELY. Nature 2020, 584, 430–436.
- Holman, N.; Knighton, P.; Kar, P.; O’Keefe, J.; Curley, M.; Weaver, A.; Barron, E.; Bakhai, C.; Khunti, K.; Wareham, N.J.; et al. Risk Factors for COVID-19-Related Mortality in People with Type 1 and Type 2 Diabetes in England: A Population-Based Cohort Study. The Lancet Diabetes & Endocrinology 2020, 8, 823–833. [CrossRef]
- Gu, S.X.; Tyagi, T.; Jain, K.; Gu, V.W.; Lee, S.H.; Hwa, J.M.; Kwan, J.M.; Krause, D.S.; Lee, A.I.; Halene, S.; et al. Thrombocytopathy and Endotheliopathy: Crucial Contributors to COVID-19 Thromboinflammation. Nat Rev Cardiol 2021, 18, 194–209. [CrossRef]
- Hoffmann, M.; Kleine-Weber, H.; Schroeder, S.; Krüger, N.; Herrler, T.; Erichsen, S.; Schiergens, T.S.; Herrler, G.; Wu, N.-H.; Nitsche, A. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell 2020, 181, 271-280. e8.
- Katsoularis, I.; Fonseca-Rodríguez, O.; Farrington, P.; Jerndal, H.; Lundevaller, E.H.; Sund, M.; Lindmark, K.; Connolly, A.-M.F. Risks of Deep Vein Thrombosis, Pulmonary Embolism, and Bleeding after Covid-19: Nationwide Self-Controlled Cases Series and Matched Cohort Study. BMJ 2022, 377. [CrossRef]
- Giacca, M.; Shah, A.M. The Pathological Maelstrom of COVID-19 and Cardiovascular Disease. Nat Cardiovasc Res 2022, 1, 200–210. [CrossRef]
- Wang, J.; Jiang, M.; Chen, X.; Montaner, L.J. Cytokine Storm and Leukocyte Changes in Mild versus Severe SARS-CoV-2 Infection: Review of 3939 COVID-19 Patients in China and Emerging Pathogenesis and Therapy Concepts. J Leukoc Biol 2020, 108, 17–41. [CrossRef]
- Du, F.; Liu, B.; Zhang, S. COVID-19: The Role of Excessive Cytokine Release and Potential ACE2 down-Regulation in Promoting Hypercoagulable State Associated with Severe Illness. J Thromb Thrombolysis 2021, 51, 313–329. [CrossRef]
- Tay, M.Z.; Poh, C.M.; Rénia, L.; MacAry, P.A.; Ng, L.F.P. The Trinity of COVID-19: Immunity, Inflammation and Intervention. Nat Rev Immunol 2020, 20, 363–374. [CrossRef]
- Loo, J.; Spittle, D.A.; Newnham, M. COVID-19, Immunothrombosis and Venous Thromboembolism: Biological Mechanisms. Thorax 2021, 76, 412–420. [CrossRef]
- D, L.; X, O.; K, C.; Mp, S.; P, P.-P.; M, F.; Mt, M. Upregulation of Endothelial Nitric Oxide Synthase in Rat Aorta after Ingestion of Fish Oil-Rich Diet. American journal of physiology. Heart and circulatory physiology 2004, 287. [CrossRef]
- Petrosini, L.; Cutuli, D.; Caporali, P.; Ronci, M. N–3 Polyunsaturated Fatty Acids Supplementation Decreases Asymmetric Dimethyl Arginine and Arachidonate Accumulation in Aging Spontaneously Hypertensive Rats. European Journal of Nutrition 2005.
- Chisaki, K.; Okuda, Y.; Suzuki, S.; Miyauchi, T.; Soma, M.; Ohkoshi, N.; Sone, H.; Yamada, N.; Nakajima, T. Eicosapentaenoic Acid Suppresses Basal and Insulin-Stimulated Endothelin-1 Production in Human Endothelial Cells. Hypertens Res 2003, 26, 655–661. [CrossRef]
- Christensen, P.; Larsen, T.M.; Westerterp-Plantenga, M.; Macdonald, I.; Martinez, J.A.; Handjiev, S.; Poppitt, S.D.; et al Men and Women Respond Differently to Rapid Weight Loss: Metabolic Outcomes after a Low-Energy Diet in 2,500 Overweight, Pre-Diabetic Individuals in the PREVIEW Intervention Study. Diab Obesity Metab 2018, 20, 2840–2851.
- Wu, S.-Y.; Mayneris-Perxachs, J.; Lovegrove, J.A.; Todd, S.; Yaqoob, P. Fish-Oil Supplementation Alters Numbers of Circulating Endothelial Progenitor Cells and Microparticles Independently of ENOS Genotype1,2,3,4. The American Journal of Clinical Nutrition 2014, 100, 1232–1243. [CrossRef]
- Wu, J.H.Y.; Cahill, L.E.; Mozaffarian, D. Effect of Fish Oil on Circulating Adiponectin: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. J Clin Endocrinol Metab 2013, 98, 2451–2459. [CrossRef]
- Din, J.N.; Archer, R.M.; Harding, S.A.; Sarma, J.; Lyall, K.; Flapan, A.D.; Newby, D.E. Effect of ω-3 Fatty Acid Supplementation on Endothelial Function, Endogenous Fibrinolysis and Platelet Activation in Male Cigarette Smokers. Heart 2013, 99, 168–174. [CrossRef]
- Monahan, K.D.; Feehan, R.P.; Blaha, C.; McLaughlin, D.J. Effect of Omega-3 Polyunsaturated Fatty Acid Supplementation on Central Arterial Stiffness and Arterial Wave Reflections in Young and Older Healthy Adults. Physiol Rep 2015, 3, e12438. [CrossRef]
- Singhal, A.; Lanigan, J.; Storry, C.; Low, S.; Birbara, T.; Lucas, A.; Deanfield, J. Docosahexaenoic Acid Supplementation, Vascular Function and Risk Factors for Cardiovascular Disease: A Randomized Controlled Trial in Young Adults. J Am Heart Assoc 2013, 2, e000283. [CrossRef]
- Grenon, S.M.; Owens, C.D.; Nosova, E.V.; Hughes-Fulford, M.; Alley, H.F.; Chong, K.; Perez, S.; Yen, P.K.; Boscardin, J.; Hellmann, J.; et al. Short-Term, High-Dose Fish Oil Supplementation Increases the Production of Omega-3 Fatty Acid–Derived Mediators in Patients With Peripheral Artery Disease (the OMEGA-PAD I Trial). J Am Heart Assoc 2015, 4, e002034. [CrossRef]
- Isaksen, T.; Evensen, L.H.; Johnsen, S.H.; Jacobsen, B.K.; Hindberg, K.; Brækkan, S.K.; Hansen, J. Dietary Intake of Marine N-3 Polyunsaturated Fatty Acids and Future Risk of Venous Thromboembolism. Res Pract Thromb Haemost 2018, 3, 59–69. [CrossRef]
- Zhang, Y.; Ding, J.; Guo, H.; Liang, J.; Li, Y. Associations of Fish and Omega-3 Fatty Acids Consumption With the Risk of Venous Thromboembolism. A Meta-Analysis of Prospective Cohort Studies. Front Nutr 2020, 7, 614784. [CrossRef]
- Bonutti, P.M.; Sodhi, N.; Patel, Y.H.; Sultan, A.A.; Khlopas, A.; Chughtai, M.; Kolisek, F.R.; Williams, N.; Mont, M.A. Novel Venous Thromboembolic Disease (VTED) Prophylaxis for Total Knee Arthroplasty—Aspirin and Fish Oil. Ann Transl Med 2017, 5, S30. [CrossRef]
- Zheng, X.; Jia, R.; Li, Y.; Liu, T.; Wang, Z. Omega-3 Fatty Acids Reduce Post-Operative Risk of Deep Vein Thrombosis and Pulmonary Embolism after Surgery for Elderly Patients with Proximal Femoral Fractures: A Randomized Placebo-Controlled, Double-Blind Clinical Trial. Int Orthop 2020, 44, 2089–2093. [CrossRef]
- Lordan, S.; Smyth, T.J.; Soler-Vila, A.; Stanton, C.; Ross, R.P. The α-Amylase and α-Glucosidase Inhibitory Effects of Irish Seaweed Extracts. Food Chemistry 2013, 141, 2170–2176. [CrossRef]
- Chap, H. Forty Five Years with Membrane Phospholipids, Phospholipases and Lipid Mediators: A Historical Perspective. Biochimie 2016, 125, 234–249. [CrossRef]
- Fadeel, B.; Xue, D. The Ins and Outs of Phospholipid Asymmetry in the Plasma Membrane: Roles in Health and Disease. Crit Rev Biochem Mol Biol 2009, 44, 264–277. [CrossRef]
- Yeung, J.; Apopa, P.L.; Vesci, J.; Stolla, M.; Rai, G.; Simeonov, A.; Jadhav, A.; Fernandez-Perez, P.; Maloney, D.J.; Boutaud, O.; et al. 12-Lipoxygenase Activity Plays an Important Role in PAR4 and GPVI-Mediated Platelet Reactivity. Thromb Haemost 2013, 110, 569–581. [CrossRef]
- Ikei, K.N.; Yeung, J.; Apopa, P.L.; Ceja, J.; Vesci, J.; Holman, T.R.; Holinstat, M. Investigations of Human Platelet-Type 12-Lipoxygenase: Role of Lipoxygenase Products in Platelet Activation1. J Lipid Res 2012, 53, 2546–2559. [CrossRef]
- Adili, R.; Hawley, M.; Holinstat, M. Regulation of Platelet Function and Thrombosis by Omega-3 and Omega-6 Polyunsaturated Fatty Acids. Prostaglandins Other Lipid Mediat 2018, 139, 10–18. [CrossRef]
- Park, Y.; Schoene, N.; Harris, W. Mean Platelet Volume as an Indicator of Platelet Activation: Methodological Issues. Platelets 2002, 13, 301–306. [CrossRef]
- Zorov, D.B.; Juhaszova, M.; Sollott, S.J. Mitochondrial Reactive Oxygen Species (ROS) and ROS-Induced ROS Release. Physiol Rev 2014, 94, 909–950. [CrossRef]
- Laforge, M.; Elbim, C.; Frère, C.; Hémadi, M.; Massaad, C.; Nuss, P.; Benoliel, J.-J.; Becker, C. Tissue Damage from Neutrophil-Induced Oxidative Stress in COVID-19. Nature Reviews Immunology 2020, 20, 515–516. [CrossRef]
- Kashani, K.B. Hypoxia in COVID-19: Sign of Severity or Cause for Poor Outcomes. Mayo Clinic Proceedings 2020, 95, 1094–1096. [CrossRef]
- Xie, J.; Covassin, N.; Fan, Z.; Singh, P.; Gao, W.; Li, G.; Kara, T.; Somers, V.K. Association Between Hypoxemia and Mortality in Patients With COVID-19. Mayo Clinic Proceedings 2020, 95, 1138–1147. [CrossRef]
- Ribeiro, D.; Sousa, A.; Nicola, P.; Ferreira de Oliveira, J.M.P.; Rufino, A.T.; Silva, M.; Freitas, M.; Carvalho, F.; Fernandes, E. β-Carotene and Its Physiological Metabolites: Effects on Oxidative Status Regulation and Genotoxicity in in Vitro Models. Food and chemical toxicology 2020, 141, 111392. [CrossRef]
- Jump, D.B. The Biochemistry of N-3 Polyunsaturated Fatty Acids. J Biol Chem 2002, 277, 8755–8758. [CrossRef]
- Serhan, C.N. Pro-Resolving Lipid Mediators Are Leads for Resolution Physiology. Nature 2014, 510, 92–101. [CrossRef]
- Meydani, S.N.; Endres, S.; Woods, M.M.; Goldin, B.R.; Soo, C.; Morrill-Labrode, A.; Dinarello, C.A.; Gorbach, S.L. Oral (n-3) Fatty Acid Supplementation Suppresses Cytokine Production and Lymphocyte Proliferation: Comparison between Young and Older Women. J Nutr 1991, 121, 547–555. [CrossRef]
- Oh, D.Y.; Talukdar, S.; Bae, E.J.; Imamura, T.; Morinaga, H.; Fan, W.; Li, P.; Lu, W.J.; Watkins, S.M.; Olefsky, J.M. GPR120 Is an Omega-3 Fatty Acid Receptor Mediating Potent Anti-Inflammatory and Insulin-Sensitizing Effects. Cell 2010, 142, 687–698. [CrossRef]
- Mozaffarian, D.; Wu, J.H.Y. Omega-3 Fatty Acids and Cardiovascular Disease: Effects on Risk Factors, Molecular Pathways, and Clinical Events. Journal of the American College of Cardiology 2011, 58, 2047–2067. [CrossRef]
- Kaur, G.; Cameron-Smith, D.; Garg, M.; Sinclair, A.J. Docosapentaenoic Acid (22:5n-3): A Review of Its Biological Effects. Prog Lipid Res 2011, 50, 28–34. [CrossRef]
- Baker, E.J.; Miles, E.A.; Burdge, G.C.; Yaqoob, P.; Calder, P.C. Metabolism and Functional Effects of Plant-Derived Omega-3 Fatty Acids in Humans. Progress in Lipid Research 2016, 64, 30–56. [CrossRef]
- Innes, J.K.; Calder, P.C. Marine Omega-3 (N-3) Fatty Acids for Cardiovascular Health: An Update for 2020. Int J Mol Sci 2020, 21, 1362. [CrossRef]
- Calder, P.C. Very Long-Chain n-3 Fatty Acids and Human Health: Fact, Fiction and the Future. Proc Nutr Soc 2018, 77, 52–72. [CrossRef]
- Burri, L.; Hoem, N.; Banni, S.; Berge, K. Marine Omega-3 Phospholipids: Metabolism and Biological Activities. Int J Mol Sci 2012, 13, 15401–15419. [CrossRef]
- Richter, C.K.; Bowen, K.J.; Mozaffarian, D.; Kris-Etherton, P.M.; Skulas-Ray, A.C. Total Long-Chain n-3 Fatty Acid Intake and Food Sources in the United States Compared to Recommended Intakes: NHANES 2003–2008. Lipids 2017, 52, 917–927. [CrossRef]
- Ackman, R.G. The Absorption of Fish Oils and Concentrates. Lipids 1992, 27, 858–862. [CrossRef]
- Dyerberg, J.; Madsen, P.; Møller, J.M.; Aardestrup, I.; Schmidt, E.B. Bioavailability of Marine N-3 Fatty Acid Formulations. Prostaglandins, Leukotrienes and Essential Fatty Acids 2010, 83, 137–141. [CrossRef]
- West, A.L.; Burdge, G.C.; Calder, P.C. Lipid Structure Does Not Modify Incorporation of EPA and DHA into Blood Lipids in Healthy Adults: A Randomised-Controlled Trial. Br J Nutr 2016, 116, 788–797. [CrossRef]
- Sadovsky, R.; Kris-Etherton, P. Prescription Omega-3-Acid Ethyl Esters for the Treatment of Very High Triglycerides. Postgrad Med 2009, 121, 145–153. [CrossRef]
- EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA) Scientific Opinion on the Substantiation of Health Claims Related to Eicosapentaenoic Acid (EPA), Docosahexaenoic Acid (DHA), Docosapentaenoic Acid (DPA) and Maintenance of Normal Cardiac Function (ID 504, 506, 516, 527, 538, 703, 1128, 1317, 1324, 1325), Maintenance of Normal Blood Glucose Concentrations (ID 566), Maintenance of Normal Blood Pressure (ID 506, 516, 703, 1317, 1324), Maintenance of Normal Blood HDL-Cholesterol Concentrations (ID 506), Maintenance of Normal (Fasting) Blood Concentrations of Triglycerides (ID 506, 527, 538, 1317, 1324, 1325), Maintenance of Normal Blood LDL-Cholesterol Concentrations (ID 527, 538, 1317, 1325, 4689), Protection of the Skin from Photo-Oxidative (UV-Induced) Damage (ID 530), Improved Absorption of EPA and DHA (ID 522, 523), Contribution to the Normal Function of the Immune System by Decreasing the Levels of Eicosanoids, Arachidonic Acid-Derived Mediators and pro-Inflammatory Cytokines (ID 520, 2914), and “Immunomodulating Agent” (4690) Pursuant to Article 13(1) of Regulation (EC) No 1924/2006. EFSA Journal 2010, 8, 1796. [CrossRef]
- Food and Agriculture Organization of the United nations Fats and Fatty Acids in Human Nutrition. Report of an Expert Consultation, 10-14 November 2008, Geneva Available online: https://agris.fao.org/agris-search/search.do?recordID=XF2016049106 (accessed on 12 March 2023).
- Public Health England SACN Advice on Fish Consumption Available online: https://www.gov.uk/government/publications/sacn-advice-on-fish-consumption (accessed on 12 March 2023).
- Meyer, B.J.; Mann, N.J.; Lewis, J.L.; Milligan, G.C.; Sinclair, A.J.; Howe, P.R.C. Dietary Intakes and Food Sources of Omega-6 and Omega-3 Polyunsaturated Fatty Acids. Lipids 2003, 38, 391–398. [CrossRef]
- Howe, P.; Meyer, B.; Record, S.; Baghurst, K. Dietary Intake of Long-Chain ω-3 Polyunsaturated Fatty Acids: Contribution of Meat Sources. Nutrition 2006, 22, 47–53. [CrossRef]
- O’Keefe, J.H.; Jacob, D.; Lavie, C.J. Omega-3 Fatty Acid Therapy: The Tide Turns for a Fish Story. Mayo Clinic Proceedings 2017, 92, 1–3. [CrossRef]
- Marchioli, R. Dietary Supplementation with N-3 Polyunsaturated Fatty Acids and Vitamin E after Myocardial Infarction: Results of the GISSI-Prevenzione Trial. The Lancet 1999, 354, 447–455. [CrossRef]
- Yokoyama, M.; Origasa, H.; Matsuzaki, M.; Matsuzawa, Y.; Saito, Y.; Ishikawa, Y.; Oikawa, S.; Sasaki, J.; Hishida, H.; Itakura, H.; et al. Effects of Eicosapentaenoic Acid on Major Coronary Events in Hypercholesterolaemic Patients (JELIS): A Randomised Open-Label, Blinded Endpoint Analysis. The Lancet 2007, 369, 1090–1098. [CrossRef]
- Gissi-Hf Investigators Effect of N-3 Polyunsaturated Fatty Acids in Patients with Chronic Heart Failure (the GISSI-HF Trial): A Randomised, Double-Blind, Placebo-Controlled Trial. The Lancet 2008, 372, 1223–1230. [CrossRef]
- Einvik, G.; Klemsdal, T.O.; Sandvik, L.; Hjerkinn, E.M. A Randomized Clinical Trial on N-3 Polyunsaturated Fatty Acids Supplementation and All-Cause Mortality in Elderly Men at High Cardiovascular Risk. Eur J Cardiovasc Prev Rehabil 2010, 17, 588–592. [CrossRef]
- Galan, P.; Kesse-Guyot, E.; Czernichow, S.; Briancon, S.; Blacher, J.; Hercberg, S. Effects of B Vitamins and Omega 3 Fatty Acids on Cardiovascular Diseases: A Randomised Placebo Controlled Trial. BMJ 2010, 341, c6273. [CrossRef]
- Kromhout, D.; Giltay, E.J.; Geleijnse, J.M.; Alpha Omega Trial Group N-3 Fatty Acids and Cardiovascular Events after Myocardial Infarction. N Engl J Med 2010, 363, 2015–2026. [CrossRef]
- Rauch, B.; Schiele, R.; Schneider, S.; Diller, F.; Victor, N.; Gohlke, H.; Gottwik, M.; Steinbeck, G.; Del Castillo, U.; Sack, R.; et al. OMEGA, a Randomized, Placebo-Controlled Trial to Test the Effect of Highly Purified Omega-3 Fatty Acids on Top of Modern Guideline-Adjusted Therapy after Myocardial Infarction. Circulation 2010, 122, 2152–2159. [CrossRef]
- The ORIGIN Trial Investigators N–3 Fatty Acids and Cardiovascular Outcomes in Patients with Dysglycemia. N Engl J Med 2012, 367, 309–318. [CrossRef]
- The Risk and Prevention Study Collaborative Group N–3 Fatty Acids in Patients with Multiple Cardiovascular Risk Factors. N Engl J Med 2013, 368, 1800–1808. [CrossRef]
- Writing Group for the AREDS2 Research Group Effect of Long-Chain ω-3 Fatty Acids and Lutein + Zeaxanthin Supplements on Cardiovascular Outcomes: Results of the Age-Related Eye Disease Study 2 (AREDS2) Randomized Clinical Trial. JAMA Internal Medicine 2014, 174, 763–771. [CrossRef]
- Heydari, B.; Abdullah, S.; Pottala, J.V.; Shah, R.; Abbasi, S.; Mandry, D.; Francis, S.A.; Lumish, H.; Ghoshhajra, B.B.; Hoffman, U.; et al. Effect of Omega-3 Acid Ethyl Esters on Left Ventricular Remodeling After Acute Myocardial Infarction: The OMEGA-REMODEL Randomized Clinical Trial. Circulation 2016, 134, 378. [CrossRef]
- The ASCEND Study Collaborative Group Effects of N−3 Fatty Acid Supplements in Diabetes Mellitus. N Engl J Med 2018, 379, 1540–1550. [CrossRef]
- Manson, J.E.; Cook, N.R.; Lee, I.-M.; Christen, W.; Bassuk, S.S.; Mora, S.; Gibson, H.; Albert, C.M.; Gordon, D.; Copeland, T.; et al. Marine N−3 Fatty Acids and Prevention of Cardiovascular Disease and Cancer. N Engl J Med 2019, 380, 23–32. [CrossRef]
- Bhatt, D.L.; Steg, P.G.; Miller, M.; Brinton, E.A.; Jacobson, T.A.; Ketchum, S.B.; Doyle, R.T.; Juliano, R.A.; Jiao, L.; Granowitz, C.; et al. Cardiovascular Risk Reduction with Icosapent Ethyl for Hypertriglyceridemia. N Engl J Med 2019, 380, 11–22. [CrossRef]
- Hu, Y.; Hu, F.B.; Manson, J.E. Marine Omega-3 Supplementation and Cardiovascular Disease: An Updated Meta-Analysis of 13 Randomized Controlled Trials Involving 127 477 Participants. J Am Heart Assoc 2019, 8, e013543. [CrossRef]
- Bernasconi, A.A.; Wiest, M.M.; Lavie, C.J.; Milani, R.V.; Laukkanen, J.A. Effect of Omega-3 Dosage on Cardiovascular Outcomes: An Updated Meta-Analysis and Meta-Regression of Interventional Trials. Mayo Clin Proc 2021, 96, 304–313. [CrossRef]
- Maki, K.C.; Palacios, O.M.; Bell, M.; Toth, P.P. Use of Supplemental Long-Chain Omega-3 Fatty Acids and Risk for Cardiac Death: An Updated Meta-Analysis and Review of Research Gaps. Journal of Clinical Lipidology 2017, 11, 1152-1160.e2. [CrossRef]
- Elagizi, A.; Lavie, C.J.; O’Keefe, E.; Marshall, K.; O’Keefe, J.H.; Milani, R.V. An Update on Omega-3 Polyunsaturated Fatty Acids and Cardiovascular Health. Nutrients 2021, 13. [CrossRef]
| Pathological Significance | Effects of N3PUFA1 |
|---|---|
| Endothelial function | ↑ NO2 and eNOS3 activity |
| ↓ endothelin-1 | |
| ↑ endothelium-mediated vasodilation | |
| ↑ VSMC4 relaxation | |
| ↑ adiponectin | |
| Immunothrombosis | ↓ platelet activation |
| ↓platelet aggregations and TX5 release via COX-16 and 12-LOX7 | |
| ↓ affinity of TxA28 | |
| ↑ PGI29 production | |
| ↓ fibrinogen level | |
| ↑ tPA10 level | |
| ↓ pro-inflammatory cytokines (ILs11, TNF12) | |
| Inflammation | ↓ regulation of AP-113 and NFκB14 |
| ↓T-lymphocyte proliferation |
| Year | Trial | Population | No. Subjects | Age (yr) | Male (%) | Subjects Characteristics |
N3PUFA1, Dose |
Control | Study Period | Result |
|---|---|---|---|---|---|---|---|---|---|---|
| 1999 | GISSI-P [96] |
Italian | 11,324 | 59 | 84.7 | Surviving recent (≤3 months) myocardial infarction | N3PUFA, 1g/day | Vitamin E, 300 mg/day | 3.5 yr | ↓ RR2 of death = 10% (95% CI: 1 -18%);↓RR of CVD = 17% (95% CI: 3 - 29%) |
| 2007 | JELIS [97] |
Japanese | 18,645 | Average 61 | 31.4 | Total cholesterol ≥ 6·5 mmol/L | EPA3, 1.8g/day; statin | Statin only | 5 yr | ↓19% RR in major cardiovascular events |
| 2008 | GISSI-HF [99] |
Italian | 955 | ≥ 18 | 77.8 | With chronic heart failure of New York Heart Association class II-IV, irrespective of cause and left ventricular ejection fraction | N3PUFA, 1g/day | Placebo | 3.9 yr | ↓HR4 of death = 0.91 (95% CI: 0.833 - 0.998);↓HR of hospital admission for cardiovascular reasons = 0.92 (95% CI: 0.849 - 0.999) |
| 2010 | DOIT [99] |
Norwegian | 563 | 64–76 | 100 | Without overt cardiovascular disease | N3PUFA, 2.4 g/day | Placebo (corn oil) | 3 yr | ↓HR of death = 0.57 (95% CI: 0.29 - 1.10);↓HR of cardiovascular events = 0.86 (95% CI: 0.57 - 1.38) |
| 2010 | SU.FOL.OM3 [100] |
France | 2,501 | 45-80 | 79.5 | With a history of myocardial infarction, unstable angina, or ischaemic stroke | 5-methyltetrahydrofolate, 560 μg/day, vitamin B6, 3 mg/day, vitamin B12, 20 μg/day; N3PUFA, 0.6 g /day | Placebo | 4.7 yr | No significant effect on major cardiovascular events |
| 2010 | Alpha-OMEGA [101] |
Netherland | 4,837 | 60-80 | 78.0 | Had a myocardial infarction, received state-of-the-art antihypertensive, antithrombotic, and lipid-modifying therapy | N3PUFA, 0.376 g/day (EPA, 0.226 g/day; DHA5, 0.150 g/day) | ALA, 1.9 g/day | NA | → HR of major cardiovascular events = 1.01 (95% CI: 0.87 - 1.17) |
| 2010 | OMEGA [102] |
German | 3,851 | 64 | 74.4 | 3 to 14 days after acute myocardial infarction | N3PUFA (EE form), 1g/day | Placebo | 1 yr | No significant difference in sudden cardiac death, total mortality, major adverse cerebrovascular and cardiovascular events |
| 2012 | ORIGIN [103] |
Canadian | 12,536 | ≥ 50 | 40.0 | At high risk for cardiovascular events and had impaired fasting glucose, impaired glucose tolerance, or diabetes | N3PUFA (EE form), 0.9g/day | Placebo | 6.2 yr | → HR of time to death or admission to the hospital for cardiovascular causes, 0.97 (95% CI: 0.88 - 1.08) |
| 2013 | R&P [104] |
Italian | 12,513 | ≥ 65 | 61.5 | with multiple cardiovascular risk factors or atherosclerotic vascular disease but not myocardial infarction | N3PUFA (EE form), 1g/day | Placebo | 1 yr | → HR of the rates of majhor cardiovascular event, 1.01 (95% CI: 0.93 - 1.10) |
| 2014 | AREDS-2 [105] |
USA | 4,203 | 50-85 | 56.8 | With stable, existing CVD (>12 months since initial event) | N3PUFA, 1g/day (EPA, 650 mg/day; DHA, 350 mg/day); lutein, 10 mg/day; zeaxanthin, 2 mg/day | Placebo | 4.8 yr | → HR of risk of CVD or secondary CVD outcomes, 0.95; 95% CI, 0.78-1.17 |
| 2016 | OMEGA-REMODEL [106] |
USA | 358 | > 21 | 65.0 | With an acute MI | N3PUFA, 4g/day (EPA, 465mg/day; DHA, 375mg/day) | Corn oil (Linoleic acid, no N3PUFA, 600mg/day) | 6 mth | ↓ LVESVI6 (-5.8%, P = 0.017);↓ non-infarct myocardial fibrosis (-5.6%, P = 0.026) |
| 2018 | ASCEND [107] |
UK | 15,480 | ≥ 40 | 62.6 | With diabetes but without evidence of atherosclerotic cardiovascular disease | N3PUFA, 1g/day | Olive oil, 1g/day | 7.4 yr | No significant difference in serious vascular event or revascularization |
| 2019 | VITAL [108] |
USA | 25,871 | > 50 (males)> 55 (females) | 49.9 | Healthy | N3PUFA, 1g/day; vitamin D3 2000 IU/day | Placebo | 5.3 yr | No significant difference in serious vascular event; ↓ HR of MI= 0.71 (95% CI:0.59–0.9) |
| 2019 | REDUCE-IT | 71% (US, Canada, the Netherlands, Australia, New Zealand, and South Africa), 25.8% (Eastern European), 3.2% (Asia-Pacific) |
8,179 | ≥ 45 (established CVD) ≥ 50 (established T2DM) |
71.2 | With established cardiovascular disease or with diabetes and other risk factors, receiving statin therapy, fasting triglyceride level of 135 to 499 mg per deciliter (1.52 to 5.63 mmol per liter), a low-density lipoprotein cholesterol level of 41 to 100 mg per deciliter (1.06 to 2.59 mmol per liter) | EPA (icosapent ethyl highly purified EPA formulation), 4g/day | Placebo | 4.9 yr | ↓ HR of major cardiovascular events = 0.75 (95% CI: 0.68 - 0.83) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
