Ji, J.; Lin, S.; Xin, X.; Li, Y.; He, J.; Xu, X.; Zhao, Y.; Su, G.; Lu, X.; Yin, G. Effects of OsAOX1a Deficiency on Mitochondrial Metabolism at Critical Node of Seed Viability in Rice. Plants2023, 12, 2284.
Ji, J.; Lin, S.; Xin, X.; Li, Y.; He, J.; Xu, X.; Zhao, Y.; Su, G.; Lu, X.; Yin, G. Effects of OsAOX1a Deficiency on Mitochondrial Metabolism at Critical Node of Seed Viability in Rice. Plants 2023, 12, 2284.
Ji, J.; Lin, S.; Xin, X.; Li, Y.; He, J.; Xu, X.; Zhao, Y.; Su, G.; Lu, X.; Yin, G. Effects of OsAOX1a Deficiency on Mitochondrial Metabolism at Critical Node of Seed Viability in Rice. Plants2023, 12, 2284.
Ji, J.; Lin, S.; Xin, X.; Li, Y.; He, J.; Xu, X.; Zhao, Y.; Su, G.; Lu, X.; Yin, G. Effects of OsAOX1a Deficiency on Mitochondrial Metabolism at Critical Node of Seed Viability in Rice. Plants 2023, 12, 2284.
Abstract
Mitochondrial alternative oxidase 1a (AOX1a) plays an extremely important role in critical node of seed viability. However, the regulatory mechanism is still poorly understood. The study aims to identify regulatory mechanisms by comparing between OsAOX1a-RNAi and wild type (WT) rice seed during artificial aging treatment. Gain weight and P50 significantly decreased in OsAOX1a-RNAi rice seed, indicating that there might be impaired in seed development and storability. Compared to WT seeds in the 100%, 90%, 80%, and 70% germination, respectively, NADH and succinate-dependent O2 consumption, the activity mitochondrial malate dehydro-genase and ATP contents were decreased in OsAOX1a-RNAi seeds in the 100%, 90%, 80%, and 70% germination, respectively, indicating that mitochondrial status in the OsAOX1a-RNAi seeds after imbibition was weaken than the WT. In addition to, the reduced abundance of complex I N and P module subunits might showed that the capacity of mitochondrial electron transfer chain was significantly inhibited in the OsAOX1a-RNAi seed at critical node of seed viability. Above results might indicated that the ATP production was impaired in OsAOX1a-RNAi seeds during ageing. Therefore, we conclude that the activities of mitochondrial metabolism and alternative pathways were severely inhibited in OsAOX1a-RNAi seeds at critical node of viability, which was leading to accelerate the collapse of seed viability. The precise regulatory mechanism of the alternative pathway at the critical node of viability still needs to be further analyzed.
Keywords
alternative oxidase; mitochondria; critical node; rice
Subject
Biology and Life Sciences, Agricultural Science and Agronomy
Copyright:
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.