Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Docking-Based Evidence for the Potential of ImmunoDefender: A Novel Formulated Essential Oil Blend Incorporating Synergistic Antiviral Bioactive Compounds as Promising Mpro Inhibitors Against SARS-CoV-2

Version 1 : Received: 10 April 2023 / Approved: 13 April 2023 / Online: 13 April 2023 (12:41:47 CEST)

A peer-reviewed article of this Preprint also exists.

Ksouri, A.; Klouz, A.; Bouhaouala-Zahar, B.; Moussa, F.; Bezzarga, M. Docking-Based Evidence for the Potential of ImmunoDefender: A Novel Formulated Essential Oil Blend Incorporating Synergistic Antiviral Bioactive Compounds as Promising Mpro Inhibitors against SARS-CoV-2. Molecules 2023, 28, 4296. Ksouri, A.; Klouz, A.; Bouhaouala-Zahar, B.; Moussa, F.; Bezzarga, M. Docking-Based Evidence for the Potential of ImmunoDefender: A Novel Formulated Essential Oil Blend Incorporating Synergistic Antiviral Bioactive Compounds as Promising Mpro Inhibitors against SARS-CoV-2. Molecules 2023, 28, 4296.

Abstract

Essential oils have demonstrated antiviral activity, but their toxicity can hinder their use as therapeutic agents. Recently, some essential oil components have been used within safe levels of acceptable daily intake limits without causing toxicity. The "ImmunoDefender," a novel antiviral compound made from a well-known mixture of essential oils, is considered highly effective in treating SARS-CoV-2 infections. The components and doses were chosen based on existing information about their structure and toxicity. Blocking the Main Protease (Mpro) of SARS-CoV-2 with high affinity and capacity is critical for inhibiting the virus's pathogenesis and transmission. In-silico studies were conducted to examine the molecular interactions between the main essential oil components in "ImmunoDefender" and SARS-CoV-2 Mpro. The screening results showed that six key components of ImmunoDefender formed stable complexes with Mpro via its active catalytic site with binding energies ranging from -8.75 to -10.30 kcal/mol, respectively for Cinnamtannin B1, Cinnamtannin B2, Pavetannin C1, Syzyginin B, Procyanidin C1, and Tenuifolin. Furthermore, three essential oil bioactive inhibitors, Cinnamtannin B1, Cinnamtannin B2, and Pavetannin C, have a significant ability to bind to the allosteric site of the main protease with binding energies of -11.12, -10.74, and -10.79 kcal/mol, These results suggest that these essential oil bioactive compounds may play a role in preventing the attachment of the translated polyprotein to Mpro, inhibiting the virus's pathogenesis and transmission. These components also had drug-like characteristics similar to approved and effective drugs, suggesting further pre-clinical and clinical studies are needed to confirm the generated in-silico outcomes.

Keywords

ImmunoDefender; Essential oils (EO),; Bioactive molecules; antiviral, SARS-CoV-2; Main-Protease; active & allosteric sites.

Subject

Biology and Life Sciences, Biology and Biotechnology

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.