Submitted:
13 April 2023
Posted:
13 April 2023
You are already at the latest version
Abstract
Keywords:
Introduction
Tropical Pacific Ocean HC in winter 2022
Impact of HC on the upcoming El Niño
Forecast uncertainty due to HFPs
Methods
Datasets
Statistics
Definition of index and event
Model experiments
Author Contributions
Acknowledgments
Data Availability and Code Availability
Conflicts of Interest
References
- Sarachik, E.S.; Cane, M.A. The El Niño-Southern Oscillation Phenomenon; Cambridge University Press: London, 2010; 384p. [Google Scholar]
- Yeh, S.W.; et al. ENSO Atmospheric Teleconnections and Their Response to Greenhouse Gas Forcing. Rev. Geophys. 2018, 56, 185–206. [Google Scholar] [CrossRef]
- Meinen, C.S.; McPhaden, M.J. Observations of warm water volume changes in the equatorial Pacific and their relationship to El Niño and La Niña, J. Clim. 2000, 13, 3551–3559. [Google Scholar] [CrossRef]
- Ramesh, N.; Murtugudde, R. All flavours of El Niño have similar early subsurface origins. Nat. Clim. Chang. 2013, 3, 42–46. [Google Scholar] [CrossRef]
- Jin, F.F. An equatorial ocean recharge paradigm for ENSO. Part I: Conceptual model. J. Atmos. Sci. 1997, 54, 811–829. [Google Scholar]
- Chen, D.; Cane, M.A.; Kaplan, A.; et al. Predictability of El Niño over the past 148 years. Nature 2004, 428, 733–736. [Google Scholar] [CrossRef]
- Puy, M.; Vialard, J.; Lengaigne, M.; et al. Influence of westerly wind events stochasticity on El Niño amplitude: The case of 2014 vs. 2015. Clim. Dyn. 2019, 52, 7435–7454. [Google Scholar]
- A brief report of global ocean monitoring by the Climate Prediction Center, NCEP/NOAA released on March 10, 2023. Available online: https://www.cpc.ncep.noaa.gov/products/GODAS/ocean_briefing_gif/global_ocean_monitoring_2023_03.ppt.
- Bjerknes, J. Atmospheric teleconnections from the equatorial Pacific. Mon. Wea. Rev. 1969, 97, 163–172. [Google Scholar] [CrossRef]
- Levine, A.F.Z.; McPhaden, M.J. How the 14 easterly wind burst gave the 2015–2016 El Niño a head start. Geophys. Res. Lett. 2016, 43, 2016GL069204. [Google Scholar] [CrossRef]
- Rasmusson, E.M.; Carpenter, T.H. Variations in tropical sea surface temperature and surface wind fields associated with the Southern Oscillation/El Niño. Mon. Wea. Rev. 1982, 110, 354–384. [Google Scholar] [CrossRef]
- Lian, T.; Chen, D.; Tang, Y. The Genesis of the 2014-2016 El Niño events, Sci. China Earth Sci. 2016, 60, 1589–1600. [Google Scholar] [CrossRef]
- A reference defining ENSO strength category. Available online: https://climatedataguide.ucar.edu /climate-data/Niño-sst-indices-Niño-12-3-34-4-oni-and-tni.
- Timmermann, A.; An, S.; Kug, J.-S.; et al. El Niño–Southern Oscillation complexity. Nature 2018, 559, 535–545. [Google Scholar] [CrossRef] [PubMed]
- Cai, W.; Wu, L.; Lengaigne, M.; et al. Pantropical climate interactions. Science 2019. [Google Scholar] [CrossRef] [PubMed]
- Penland, C.; Sardeshmukh, P. D. The optimal growth of tropical sea surface temperature anomalies. J. Clim. 1995, 8, 1999–2024. [Google Scholar] [CrossRef]
- Hayashi, M.; Watanabe, M. Importance of background seasonality over the eastern equatorial Pacific in a coupled atmosphere-ocean response to westerly wind events. Clim. Dyn. 2019, 52, 7309–7327. [Google Scholar] [CrossRef]
- Chang, P.; Zhang, L.; Saravanan, R.; et al. Pacific meridional mode and El Niño–Southern Oscillation. Geophys. Res. Lett. 2007, 34, L16608. [Google Scholar] [CrossRef]
- Ham, Y.-G.; Kug, J.-S.; Park, J.-Y.; et al. Sea surface temperature in the north tropical Atlantic as a trigger for El Niño/Southern Oscillation events. Nat. Geosci. 2013, 6, 112–116. [Google Scholar] [CrossRef]
- Hu, R.; Lian, T.; Feng, J.; et al. Pacific meridional mode does not induce strong positive SST anomalies in the central equatorial Pacific. J. Clim. 2023. [CrossRef]
- Lian, T.; Tang, Y.; Zhou, L.; et al. Westerly wind bursts simulated in CAM4 and CCSM4, Clim. Dyn. 2017, 50, 1353–1371. [Google Scholar]
- Lian, T.; Chen, D. The essential role of early-spring westerly wind burst in generating the centennial extreme 1997/98 El Niño. J. Clim. 2021, 34, 8377–8388. [Google Scholar] [CrossRef]
- Harrison, D.E.; Vecchi, G.A. Westerly wind events in the tropical Pacific, 1986–1995. J. Clim. 1997, 10, 3131–3156. [Google Scholar] [CrossRef]
- Eisenman, I.; Yu, L.; Tziperman, E. Westerly wind bursts: ENSO’s tail rather than the dog. J. Clim. 2005, 18, 5224–5238. [Google Scholar] [CrossRef]
- Chen, D.; Lian, T.; Fu, C.; et al. Strong influence of westerly wind bursts on El Niño diversity. Nat. Geosci. 2015, 8, 339–345. [Google Scholar] [CrossRef]
- McPhaden, M.J. Climate oscillations: Genesis and evolution of the 1997–98 El Niño. Science 1999, 283, 950–954. [Google Scholar] [CrossRef] [PubMed]
- McPhaden, M.J. Playing hide and seek with El Niño. Nat. Clim. Chang. 2015, 5, 791–795. [Google Scholar] [CrossRef]
- Chiodi, A. M.; Harrison, D.E. Observed El Niño SSTA development and the effects of easterly and westerly wind events in 2014/15. J. Clim. 2017, 30, 1505–1519. [Google Scholar] [CrossRef]
- Chiodi, A.; Harrison, D.E. Equatorial Pacific easterly wind surges and the onset of La Niña events. J. Clim. 2015, 28, 776–792. [Google Scholar] [CrossRef]
- Hu, S.; Fedorov, A.V. Exceptionally strong easterly wind burst stalling El Niño of 2014. Proc. Natl. Acad. Sci. 2016, 113, 2005–2010. [Google Scholar] [CrossRef]
- Hartten, L.M. Synoptic settings of westerly wind bursts. J. Geophys. Res. 1996, 101, 16997–17019. [Google Scholar] [CrossRef]
- Lian, T.; Chen, D.; Tang, Y.; et al. Linkage between westerly wind bursts and tropical cyclones. Geophys. Res. Lett. 2018. [Google Scholar] [CrossRef]
- Yu, L.; Rienecker, M.M. Evidence of an extratropical atmospheric influence during the onset of the 1997-98 El Niño. Geophys. Res. Lett. 1998, 25. [Google Scholar] [CrossRef]
- Feng, J.; Lian, T.; Ding, Y.; et al. Two Types of the East Asian Cold Surge and Their Impacts on El Niño, Geophys. Res. Lett. 2022, 49, e2021GL096108. [Google Scholar] [CrossRef]
- Puy, M.; Vialard, J.; Lengaigne, M.; et al. Modulation of equatorial Pacific westerly/easterly wind events by the Madden-Julian oscillation and convectively-coupled Rossby waves, Clim. Dyn. 2015, 46, 2155–2178. [Google Scholar]
- Feng, J.; Lian, T. Assessing the Relationship between MJO and Equatorial Pacific WWBs in Observations and CMIP5 Models. J. Clim. 2018, 31, 6393–6410. [Google Scholar] [CrossRef]
- Gebbie, G.; Tziperman, E. Predictability of SST-modulated westerly wind bursts. J. Clim. 2009, 22, 3894–3909. [Google Scholar] [CrossRef]
- Zuo, H.; Balmaseda, M.A.; Tietsche, S.; et al. The ECMWF operational ensemble reanalysis–analysis system for ocean and sea ice: A description of the system and assessment. Ocean Sci. 2019, 15, 779–808. [Google Scholar] [CrossRef]
- Saha, S.N.; Thiaw, C.; Wang, J.; et al. The NCEP Climate Forecast System. J. Clim. 2006, 19, 3483–3517. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Vertenstein, M.; Craig, T.; Middleton, A.; et al. CESM1.0.4 users guide; National Center of Atmosphere Research: Boulder, CO, 2012. [Google Scholar]
- Song, X.; Li, X.; Zhang, S.; et al. A new nudging scheme for the current operational climate prediction system of the National Marine Environmental Forecasting Center of China. Acta Oceanol. Sin. 2021, 41, 51–64. [Google Scholar] [CrossRef]
- Kleeman, R.; Tang, Y.; Moore, A. The calculation of climatically relevant singular vectors in the presence of weather noise. J. Atmos. Sci. 2003, 60, 2856–2867. [Google Scholar] [CrossRef]
- Liu, T.; Song, X.; Tang, Y.; et al. ENSO Predictability over the Past 137 Years Based on a CESM Ensemble Prediction System, J. Clim. 2022, 35, 763–777. [Google Scholar] [CrossRef]




Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).