Submitted:
26 April 2023
Posted:
27 April 2023
Read the latest preprint version here
Abstract
Keywords:
1. Introduction
2. Discussion
3. Conclusion
Author’s Note
References
- Ramos, I.; Bernal-Rubio, D.; Durham, N.; Belicha-Villanueva, A.; Lowen, A.C.; Steel, J.; Fernandez-Sesma, A. Effects of receptor binding specificity of avian influenza virus on the human innate immune response. Journal of virology 2011, 85, 4421–4431. [Google Scholar] [CrossRef] [PubMed]
- Luczo, J.M.; Stambas, J.; Durr, P.A.; Michalski, W.P.; Bingham, J. Molecular pathogenesis of H5 highly pathogenic avian influenza: the role of the haemagglutinin cleavage site motif. Reviews in medical virology 2015, 25, 406–430. [Google Scholar] [CrossRef] [PubMed]
- Sriwilaijaroen, N.; Suzuki, Y. Roles of Glycans and Non-glycans on the Epithelium and in the Immune System in H1-H18 Influenza A Virus Infections. Methods in molecular biology (Clifton, N.J.) 2022, 2556, 205–242. [Google Scholar] [CrossRef] [PubMed]
- Scheibner, D.; Salaheldin, A.H.; Bagato, O.; Zaeck, L.M.; Mostafa, A.; Blohm, U.; Müller, C.; Eweas, A.F.; Franzke, K.; Karger, A.; Schäfer, A.; Gischke, M.; Hoffmann, D.; Lerolle, S.; Li, X.; Abd El-Hamid, H.S.; Veits, J.; Breithaupt, A.; Boons, G.J.; Matrosovich, M.; … Abdelwhab, E.M. Phenotypic effects of mutations observed in the neuraminidase of human origin H5N1 influenza A viruses. PLoS pathogens 2023, 19, e1011135. [Google Scholar] [CrossRef]
- Taylor, M.W. Interferons. Viruses and Man: A History of Interactions 2014, 101–119. [CrossRef]
- Chan, R.W.; Yuen, K.M.; Yu, W.C.; Ho, C.C.; Nicholls, J.M.; Peiris, J.S.; Chan, M.C. Influenza H5N1 and H1N1 virus replication and innate immune responses in bronchial epithelial cells are influenced by the state of differentiation. PloS one 2010, 5, e8713. [Google Scholar] [CrossRef] [PubMed]
- Yu, W.C.; Chan, R.W.; Wang, J.; Travanty, E.A.; Nicholls, J.M.; Peiris, J.S.; Mason, R.J.; Chan, M.C. Viral replication and innate host responses in primary human alveolar epithelial cells and alveolar macrophages infected with influenza H5N1 and H1N1 viruses. Journal of virology 2011, 85, 6844–6855. [Google Scholar] [CrossRef]
- Huo, C.; Xiao, K.; Zhang, S.; Tang, Y.; Wang, M.; Qi, P.; Xiao, J.; Tian, H.; Hu, Y. H5N1 Influenza a Virus Replicates Productively in Pancreatic Cells and Induces Apoptosis and Pro-Inflammatory Cytokine Response. Frontiers in cellular and infection microbiology 2018, 8, 386. [Google Scholar] [CrossRef] [PubMed]
- Siegers, J.Y.; van de Bildt, M.W.G.; Lin, Z.; Leijten, L.M.; Lavrijssen, R.A.M.; Bestebroer, T.; Spronken, M.I.J.; De Zeeuw, C.I.; Gao, Z.; Schrauwen, E.J.A.; Kuiken, T.; van Riel, D. Viral Factors Important for Efficient Replication of Influenza A Viruses in Cells of the Central Nervous System. Journal of virology 2019, 93, e02273–18. [Google Scholar] [CrossRef]
- Chan, R.W.; Leung, C.Y.; Nicholls, J.M.; Peiris, J.S.; Chan, M.C. Proinflammatory cytokine response and viral replication in mouse bone marrow derived macrophages infected with influenza H1N1 and H5N1 viruses. PloS one 2012, 7, e51057. [Google Scholar] [CrossRef]
- Short, K.R.; Kedzierska, K.; van de Sandt, C.E. Back to the Future: Lessons Learned From the 1918 Influenza Pandemic. Frontiers in cellular and infection microbiology 2018, 8, 343. [Google Scholar] [CrossRef]
- Zhao, H.; Zhou, J.; Jiang, S.; Zheng, B.J. Receptor binding and transmission studies of H5N1 influenza virus in mammals. Emerging microbes & infections 2013, 2, e85. [Google Scholar] [CrossRef]
- Li, K.; McCaw, J.M.; Cao, P. Enhanced viral infectivity and reduced interferon production are associated with high pathogenicity for influenza viruses. PLoS computational biology 2023, 19, e1010886. [Google Scholar] [CrossRef] [PubMed]
- Peiris, J.S.; Cheung, C.Y.; Leung, C.Y.; Nicholls, J.M. Innate immune responses to influenza A H5N1: friend or foe? Trends in immunology 2009, 30, 574–584. [Google Scholar] [CrossRef] [PubMed]
- Malik, G.; Zhou, Y. Innate Immune Sensing of Influenza A Virus. Viruses 2020, 12, 755. [Google Scholar] [CrossRef] [PubMed]
- Gourbal, B.; Pinaud, S.; Beckers, G.J.M.; Van Der Meer, J.W.M.; Conrath, U.; Netea, M.G. Innate immune memory: An evolutionary perspective. Immunological reviews 2018, 283, 21–40. [Google Scholar] [CrossRef]
- Palmieri, B.; Vadala', M.; Palmieri, L. Immune memory: an evolutionary perspective. Human vaccines & immunotherapeutics 2021, 17, 1604–1606. [Google Scholar] [CrossRef]
- Scarcella, M.; d'Angelo, D.; Ciampa, M.; Tafuri, S.; Avallone, L.; Pavone, L.M.; De Pasquale, V. The Key Role of Lysosomal Protease Cathepsins in Viral Infections. International journal of molecular sciences 2022, 23, 9089. [Google Scholar] [CrossRef] [PubMed]
- Us, D. Kuş gribinde sitokin firtinasi [Cytokine storm in avian influenza]. Mikrobiyoloji bulteni 2008, 42, 365–380. [Google Scholar]
- Nogales, A.; Martinez-Sobrido, L.; Topham, D.J.; DeDiego, M.L. Modulation of Innate Immune Responses by the Influenza A NS1 and PA-X Proteins. Viruses 2018, 10, 708. [Google Scholar] [CrossRef]
- Li, Z.; Jiang, Y.; Jiao, P.; Wang, A.; Zhao, F.; Tian, G.; Wang, X.; Yu, K.; Bu, Z.; Chen, H. The NS1 gene contributes to the virulence of H5N1 avian influenza viruses. Journal of virology 2006, 80, 11115–11123. [Google Scholar] [CrossRef]
- Wang, J.; Zeng, Y.; Xu, S.; Yang, J.; Wang, W.; Zhong, B.; Ge, J.; Yin, L.; Bu, Z.; Shu, H.B.; Chen, H.; Lei, C.Q.; Zhu, Q. A Naturally Occurring Deletion in the Effector Domain of H5N1 Swine Influenza Virus Nonstructural Protein 1 Regulates Viral Fitness and Host Innate Immunity. Journal of virology 2018, 92, e00149–18. [Google Scholar] [CrossRef] [PubMed]
- Bornholdt, Z.A.; Prasad, B.V. X-ray structure of NS1 from a highly pathogenic H5N1 influenza virus. Nature 2008, 456, 985–988. [Google Scholar] [CrossRef] [PubMed]
- Carrillo, B.; Choi, J.M.; Bornholdt, Z.A.; Sankaran, B.; Rice, A.P.; Prasad, B.V. The influenza A virus protein NS1 displays structural polymorphism. Journal of virology 2014, 88, 4113–4122. [Google Scholar] [CrossRef] [PubMed]
- Kerry, P.S.; Ayllon, J.; Taylor, M.A.; Hass, C.; Lewis, A.; García-Sastre, A.; Randall, R.E.; Hale, B.G.; Russell, R.J. A transient homotypic interaction model for the influenza A virus NS1 protein effector domain. PloS one 2011, 6, e17946. [Google Scholar] [CrossRef] [PubMed]
- Evseev, D.; Magor, K.E. Molecular Evolution of the Influenza A Virus Non-structural Protein 1 in Interspecies Transmission and Adaptation. Frontiers in microbiology 2021, 12, 693204. [Google Scholar] [CrossRef]
- Long, J.X.; Peng, D.X.; Liu, Y.L.; Wu, Y.T.; Liu, X.F. Virulence of H5N1 avian influenza virus enhanced by a 15-nucleotide deletion in the viral nonstructural gene. Virus genes 2008, 36, 471–478. [Google Scholar] [CrossRef]
- Kato, Y.S.; Fukui, K.; Suzuki, K. Mechanism of a Mutation in Non-Structural Protein 1 Inducing High Pathogenicity of Avian Influenza Virus H5N1. Protein and peptide letters 2016, 23, 372–378. [Google Scholar] [CrossRef]
- Kajihara, M.; Sakoda, Y.; Soda, K.; Minari, K.; Okamatsu, M.; Takada, A.; Kida, H. The PB2, PA, HA, NP, and NS genes of a highly pathogenic avian influenza virus A/whooper swan/Mongolia/3/2005 (H5N1) are responsible for pathogenicity in ducks. Virology journal 2013, 10, 45. [Google Scholar] [CrossRef]
- Li, W.; Wang, G.; Zhang, H.; Xin, G.; Zhang, D.; Zeng, J.; Chen, X.; Xu, Y.; Cui, Y.; Li, K. Effects of NS1 variants of H5N1 influenza virus on interferon induction, TNFalpha response and p53 activity. Cellular & molecular immunology 2010, 7, 235–242. [Google Scholar] [CrossRef]
- Park, E.S.; Dezhbord, M.; Lee, A.R.; Kim, K.H. The Roles of Ubiquitination in Pathogenesis of Influenza Virus Infection. International journal of molecular sciences 2022, 23, 4593. [Google Scholar] [CrossRef]
- Lamotte, L.A.; Tafforeau, L. How Influenza A Virus NS1 Deals with the Ubiquitin System to Evade Innate Immunity. Viruses 2021, 13, 2309. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.; Li, J.; Fan, W.; Zheng, W.; Yu, M.; Chen, C.; Sun, L.; Bi, Y.; Ding, C.; Gao, G.F.; Liu, W. Robust Lys63-Linked Ubiquitination of RIG-I Promotes Cytokine Eruption in Early Influenza B Virus Infection. Journal of virology 2016, 90, 6263–6275. [Google Scholar] [CrossRef]
- Ferraris, O.; Casalegno, J.S.; Frobert, E.; Bouscambert Duchamp, M.; Valette, M.; Jacquot, F.; Raoul, H.; Lina, B.; Ottmann, M. The NS Segment of H1N1pdm09 Enhances H5N1 Pathogenicity in a Mouse Model of Influenza Virus Infections. Viruses 2018, 10, 504. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Zhang, L.; Yao, Z.; Xing, L.; Liu, K. In vitro and in vivo characterization of a novel H1N1/2009 influenza virus reassortant with an NS gene from a highly pathogenic H5N1 virus, isolated from a human. Archives of virology 2017, 162, 2633–2642. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.H.; Hsu, C.F.; Lai, X.Q.; Chan, Y.R.; Li, H.C.; Lo, S.Y. Cellular PSMB4 Protein Suppresses Influenza A Virus Replication through Targeting NS1 Protein. Viruses 2022, 14, 2277. [Google Scholar] [CrossRef]
- Tsai, P.L.; Chiou, N.T.; Kuss, S.; García-Sastre, A.; Lynch, K.W.; Fontoura, B.M. Cellular RNA binding proteins NS1-BP and hnRNP K regulate influenza A virus RNA splicing. PLoS pathogens 2013, 9, e1003460. [Google Scholar] [CrossRef]
- Tawaratsumida, K.; Phan, V.; Hrincius, E.R.; High, A.A.; Webby, R.; Redecke, V.; Häcker, H. Quantitative proteomic analysis of the influenza A virus nonstructural proteins NS1 and NS2 during natural cell infection identifies PACT as an NS1 target protein and antiviral host factor. Journal of virology 2014, 88, 9038–9048. [Google Scholar] [CrossRef]
- Engel, D.A. The influenza virus NS1 protein as a therapeutic target. Antiviral research 2013, 99, 409–416. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.Y.; Shih, M.C.; Chang, H.C.; Lin, K.J.; Chen, L.F.; Huang, S.W.; Yang, M.L.; Ma, S.K.; Shiau, A.L.; Wang, J.R.; Chen, K.R.; Ling, P. Influenza a virus NS1 resembles a TRAF3-interacting motif to target the RNA sensing-TRAF3-type I IFN axis and impair antiviral innate immunity. Journal of biomedical science 2021, 28, 66. [Google Scholar] [CrossRef]
- Wang, T.; Wei, F.; Jiang, Z.; Song, J.; Li, C.; Liu, J. Influenza virus NS1 interacts with 14-3-3ε to antagonize the production of RIG-I-mediated type I interferons. Virology 2022, 574, 47–56. [Google Scholar] [CrossRef]
- Tam, E.H.; Liu, Y.C.; Woung, C.H.; Liu, H.M.; Wu, G.H.; Wu, C.C.; Kuo, R.L. Role of the Chaperone Protein 14-3-3ε in the Regulation of Influenza A Virus-Activated Beta Interferon. Journal of virology 2021, 95, e0023121. [Google Scholar] [CrossRef] [PubMed]
- Gabriel, G.; Czudai-Matwich, V.; Klenk, H.D. Adaptive mutations in the H5N1 polymerase complex. Virus research 2013, 178, 53–62. [Google Scholar] [CrossRef] [PubMed]
- Steel, J.; Lowen, A.C.; Pena, L.; Angel, M.; Solórzano, A.; Albrecht, R.; Perez, D.R.; García-Sastre, A.; Palese, P. Live attenuated influenza viruses containing NS1 truncations as vaccine candidates against H5N1 highly pathogenic avian influenza. Journal of virology 2009, 83, 1742–1753. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.X.; Fish, E.N. Interactions Between NS1 of Influenza A Viruses and Interferon-α/β: Determinants for Vaccine Development. Journal of interferon & cytokine research : the official journal of the International Society for Interferon and Cytokine Research 2017, 37, 331–341. [Google Scholar] [CrossRef]
- Brambati, A.; Barry, R.M.; Sfeir, A. DNA polymerase theta (Polθ) - an error-prone polymerase necessary for genome stability. Current opinion in genetics & development 2020, 60, 119–126. [Google Scholar] [CrossRef]
- Chen, X.S.; Pomerantz, R.T. DNA Polymerase θ: A Cancer Drug Target with Reverse Transcriptase Activity. Genes 2021, 12, 1146. [Google Scholar] [CrossRef] [PubMed]
- Chandramouly, G.; Zhao, J.; McDevitt, S.; Rusanov, T.; Hoang, T.; Borisonnik, N.; Treddinick, T.; Lopezcolorado, F.W.; Kent, T.; Siddique, L.A.; Mallon, J.; Huhn, J.; Shoda, Z.; Kashkina, E.; Brambati, A.; Stark, J.M.; Chen, X.S.; Pomerantz, R.T. Polθ reverse transcribes RNA and promotes RNA-templated DNA repair. Science advances 2021, 7, eabf1771. [Google Scholar] [CrossRef]
- Reuther, P.; Giese, S.; Götz, V.; Kilb, N.; Mänz, B.; Brunotte, L.; Schwemmle, M. Adaptive mutations in the nuclear export protein of human-derived H5N1 strains facilitate a polymerase activity-enhancing conformation. Journal of virology 2014, 88, 263–271. [Google Scholar] [CrossRef]
- Perrone, L.A.; Plowden, J.K.; García-Sastre, A.; Katz, J.M.; Tumpey, T.M. H5N1 and 1918 pandemic influenza virus infection results in early and excessive infiltration of macrophages and neutrophils in the lungs of mice. PLoS pathogens 2008, 4, e1000115. [Google Scholar] [CrossRef]
- Karo-Karo, D.; Bodewes, R.; Restuadi, R.; Bossers, A.; Agustiningsih, A.; Stegeman, J.A.; Koch, G.; Muljono, D.H. Phylodynamics of Highly Pathogenic Avian Influenza A(H5N1) Virus Circulating in Indonesian Poultry. Viruses 2022, 14, 2216. [Google Scholar] [CrossRef]
- Smith, G.J.; Naipospos, T.S.; Nguyen, T.D.; de Jong, M.D.; Vijaykrishna, D.; Usman, T.B.; Hassan, S.S.; Nguyen, T.V.; Dao, T.V.; Bui, N.A.; Leung, Y.H.; Cheung, C.L.; Rayner, J.M.; Zhang, J.X.; Zhang, L.J.; Poon, L.L.; Li, K.S.; Nguyen, V.C.; Hien, T.T.; Farrar, J.; … Guan, Y. Evolution and adaptation of H5N1 influenza virus in avian and human hosts in Indonesia and Vietnam. Virology 2006, 350, 258–268. [Google Scholar] [CrossRef]
- Aleith, J.; Brendel, M.; Weipert, E.; Müller, M.; Schultz, D.; Ko-Infekt Study Group, Müller-Hilke, B. Influenza A Virus Exacerbates Group A Streptococcus Infection and Thwarts Anti-Bacterial Inflammatory Responses in Murine Macrophages. Pathogens 2022, 11, 1320. [Google Scholar] [CrossRef] [PubMed]
- Lahariya, C.; Sharma, A.K.; Pradhan, S.K. Avian flu and possible human pandemic. Indian pediatrics 2006, 43, 317–325. [Google Scholar]
- Kuchipudi, S.V.; Nelli, R.K.; Gontu, A.; Satyakumar, R.; Surendran Nair, M.; Subbiah, M. Sialic Acid Receptors: The Key to Solving the Enigma of Zoonotic Virus Spillover. Viruses 2021, 13, 262. [Google Scholar] [CrossRef] [PubMed]
- Lange, C.M.; Gouttenoire, J.; Duong, F.H.; Morikawa, K.; Heim, M.H.; Moradpour, D. Vitamin D receptor and Jak-STAT signaling crosstalk results in calcitriol-mediated increase of hepatocellular response to IFN-α. Journal of immunology (Baltimore, Md.: 1950) 2014, 192, 6037–6044. [Google Scholar] [CrossRef] [PubMed]
- Gal-Tanamy, M.; Bachmetov, L.; Ravid, A.; Koren, R.; Erman, A.; Tur-Kaspa, R.; Zemel, R. Vitamin D: an innate antiviral agent suppressing hepatitis C virus in human hepatocytes. Hepatology (Baltimore, Md.) 2011, 54, 1570–1579. [Google Scholar] [CrossRef]
- Kondo, Y.; Kato, T.; Kimura, O.; Iwata, T.; Ninomiya, M.; Kakazu, E.; Miura, M.; Akahane, T.; Miyazaki, Y.; Kobayashi, T.; Ishii, M.; Kisara, N.; Sasaki, K.; Nakayama, H.; Igarashi, T.; Obara, N.; Ueno, Y.; Morosawa, T.; Shimosegawa, T. 1(OH) vitamin D3 supplementation improves the sensitivity of the immune-response during Peg-IFN/RBV therapy in chronic hepatitis C patients-case controlled trial. PloS one 2013, 8, e63672. [Google Scholar] [CrossRef]
- Iqtadar, S.; Khan, A.; Mumtaz, S.U.; Livingstone, S.; Chaudhry, M.N.A.; Raza, N.; Zahra, M.; Abaidullah, S. Vitamin D Deficiency (VDD) and Susceptibility towards Severe Dengue Fever-A Prospective Cross-Sectional Study of Hospitalized Dengue Fever Patients from Lahore, Pakistan. Tropical medicine and infectious disease 2023, 8, 43. [Google Scholar] [CrossRef]
- Huang, F.; Zhang, C.; Liu, Q.; Zhao, Y.; Zhang, Y.; Qin, Y.; Li, X.; Li, C.; Zhou, C.; Jin, N.; Jiang, C. Identification of amitriptyline HCl, flavin adenine dinucleotide, azacitidine and calcitriol as repurposing drugs for influenza A H5N1 virus-induced lung injury. PLoS pathogens 2020, 16, e1008341. [Google Scholar] [CrossRef]
- Martineau, A.R.; Jolliffe, D.A.; Greenberg, L.; Aloia, J.F.; Bergman, P.; Dubnov-Raz, G.; Esposito, S.; Ganmaa, D.; Ginde, A.A.; Goodall, E.C.; Grant, C.C.; Janssens, W.; Jensen, M.E.; Kerley, C.P.; Laaksi, I.; Manaseki-Holland, S.; Mauger, D.; Murdoch, D.R.; Neale, R.; Rees, J.R.; … Hooper, R.L. Vitamin D supplementation to prevent acute respiratory infections: individual participant data meta-analysis. Health technology assessment (Winchester, England) 2019, 23, 1–44. [Google Scholar] [CrossRef]
- Grant, W.B.; Lahore, H.; McDonnell, S.L.; Baggerly, C.A.; French, C.B.; Aliano, J.L.; Bhattoa, H.P. Evidence that Vitamin D Supplementation Could Reduce Risk of Influenza and COVID-19 Infections and Deaths. Nutrients 2020, 12, 988. [Google Scholar] [CrossRef] [PubMed]
- Enioutina, E.Y.; Bareyan, D.; Daynes, R.A. TLR-induced local metabolism of vitamin D3 plays an important role in the diversification of adaptive immune responses. Journal of immunology (Baltimore, Md. : 1950) 2019, 182, 4296–4305. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Yu, B.; Mao, X.; He, J.; Huang, Z.; Zheng, P.; Yu, J.; Han, G.; Liang, X.; Chen, D. Dietary vitamin D supplementation attenuates immune responses of pigs challenged with rotavirus potentially through the retinoic acid-inducible gene I signalling pathway. The British journal of nutrition 2014, 112, 381–389. [Google Scholar] [CrossRef] [PubMed]
- Gayan-Ramirez, G.; Janssens, W. Vitamin D Actions: The Lung Is a Major Target for Vitamin D, FGF23, and Klotho. JBMR plus 2021, 5, e10569. [Google Scholar] [CrossRef]
- Teles, R.M.; Graeber, T.G.; Krutzik, S.R.; Montoya, D.; Schenk, M.; Lee, D.J.; Komisopoulou, E.; Kelly-Scumpia, K.; Chun, R.; Iyer, S.S.; Sarno, E.N.; Rea, T.H.; Hewison, M.; Adams, J.S.; Popper, S.J.; Relman, D.A.; Stenger, S.; Bloom, B.R.; Cheng, G.; Modlin, R.L. Type I interferon suppresses type II interferon-triggered human anti-mycobacterial responses. Science (New York, N.Y.) 2013, 339, 1448–1453. [Google Scholar] [CrossRef] [PubMed]
- Matthaei, M.; Budt, M.; Wolff, T. Highly pathogenic H5N1 influenza A virus strains provoke heterogeneous IFN-α/β responses that distinctively affect viral propagation in human cells. PloS one 2013, 8, e56659. [Google Scholar] [CrossRef] [PubMed]
- Shin, H.; Kim, S.; Jo, A.; Won, J.; Gil, C.H.; Yoon, S.Y.; Cha, H.; Kim, H.J. Intranasal inoculation of IFN-λ resolves SARS-CoV-2 lung infection via the rapid reduction of viral burden and improvement of tissue damage. Frontiers in immunology 2022, 13, 1009424. [Google Scholar] [CrossRef]
- Jeon, Y.J.; Lim, J.H.; An, S.; Jo, A.; Han, D.H.; Won, T.B.; Kim, D.Y.; Rhee, C.S.; Kim, H.J. Type III interferons are critical host factors that determine susceptibility to Influenza A viral infection in allergic nasal mucosa. Clinical and experimental allergy : journal of the British Society for Allergy and Clinical Immunology 2018, 48, 253–265. [Google Scholar] [CrossRef]
- Kim, S.; Kim, M.J.; Kim, C.H.; Kang, J.W.; Shin, H.K.; Kim, D.Y.; Won, T.B.; Han, D.H.; Rhee, C.S.; Yoon, J.H.; Kim, H.J. The Superiority of IFN-λ as a Therapeutic Candidate to Control Acute Influenza Viral Lung Infection. American journal of respiratory cell and molecular biology 2017, 56, 202–212. [Google Scholar] [CrossRef]
- An, S.; Jeon, Y.J.; Jo, A.; Lim, H.J.; Han, Y.E.; Cho, S.W.; Kim, H.Y.; Kim, H.J. Initial Influenza Virus Replication Can Be Limited in Allergic Asthma Through Rapid Induction of Type III Interferons in Respiratory Epithelium. Frontiers in immunology 2018, 9, 986. [Google Scholar] [CrossRef]
- Isomura, S.; Ichikawa, T.; Miyazu, M.; Naruse, H.; Shibata, M.; Imanishi, J.; Matsuo, A.; Kishida, T.; Karaki, T. The preventive effect of human interferon-alpha on influenza infection; modification of clinical manifestations of influenza in children in a closed community. Biken journal 1982, 25, 131–137. [Google Scholar]
- Saito, H.; Takenaka, H.; Yoshida, S.; Tsubokawa, T.; Ogata, A.; Imanishi, F.; Imanishi, J. Prevention from naturally acquired viral respiratory infection by interferon nasal spray. Rhinology 1985, 23, 291–295. [Google Scholar]
- Hayden, F.G.; Winther, B.; Donowitz, G.R.; Mills, S.E.; Innes, D.J. Human nasal mucosal responses to topically applied recombinant leukocyte A interferon. The Journal of infectious diseases 1987, 156, 64–72. [Google Scholar] [CrossRef]
- Beilharz, M.W.; Cummins, M.J.; Bennett, A.L.; Cummins, J.M. Oromucosal Administration of Interferon to Humans. Pharmaceuticals 2010, 3, 323–344. [Google Scholar] [CrossRef]
- Tovey, M.G.; Maury, C. Oromucosal interferon therapy: marked antiviral and antitumor activity. Journal of interferon & cytokine research : the official journal of the International Society for Interferon and Cytokine Research 1999, 19, 145–155. [Google Scholar] [CrossRef]
- Dec, M.; Puchalski, A. Use of oromucosally administered interferon-alpha in the prevention and treatment of animal diseases. Polish journal of veterinary sciences 2008, 11, 175–186. [Google Scholar]
- Fraiman, J.; Erviti, J.; Jones, M.; Greenland, S.; Whelan, P.; Kaplan, R.M.; Doshi, P. Serious adverse events of special interest following mRNA COVID-19 vaccination in randomized trials in adults. Vaccine 2022, 40, 5798–5805. [Google Scholar] [CrossRef]
- Whitaker, M. Calcium at fertilization and in early development. Physiological reviews 2006, 86, 25–88. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
