1. Introduction
Major technological transitions are necessary to avoid the catastrophic consequences of climate change and other environmental damage (IPCC 2021). However, many of the technologies needed to achieve net zero greenhouse gas emissions by 2050 are still in the early stages of development (IEA 2021a). The implementation of these technologies is expected to occur once they are mature enough to enter the market. Some technologies will require significant capital and time to develop. Therefore, a good understanding of these technologies’ potential environmental impacts and guidance to minimize these impacts before such investments are made are crucial to meet environmental targets.
Prospective LCA (pLCA, similar terms are ex-ante and anticipatory LCA) assesses the potential environmental impacts of products and services of future technologies and guides their development (van der Giesen et al. 2020). Assessing the environmental impacts of future technologies often requires placing the temporal scope of the analysis in the mid- to long-term future, when the global economy, society, and environment will differ from today (Moss et al. 2010; Riahi et al. 2017; van Vuuren et al. 2011). It has been widely acknowledged that it is crucial to avoid a temporal mismatch between the foreground system (i.e., the technology under study) and the background system (i.e., the economic system the technology operates in) to support sustainable technology design and policymaking (Arvidsson et al. 2018; Buyle et al. 2019; Joyce and Björklund 2021; Knobloch et al. 2020; Thonemann et al. 2020; van der Giesen et al. 2020; Vandepaer et al. 2020).
Although LCA practitioners can typically obtain information on the development of the foreground system from technology developers, capturing systemic changes in the background is more complicated. Therefore, prospective life cycle inventory (pLCI) databases were developed: for example, within the NEEDS project (NEEDS 2009), the THEMIS model (Gibon et al. 2015; Hertwich et al. 2015), and more recently, in the work that led to the premise framework (Cox et al. 2020; Mendoza Beltran et al. 2018; Sacchi et al. 2022). These pLCI databases were derived from a combination of the ecoinvent database (Wernet et al. 2016) and exogenous scenario data to represent future technology and supply chains in specific sectors. Scenario data sources have included energy system models, input-output models, macro-economic models, and integrated assessment models (IAMs), as well as scientific literature and expert judgment, depending on the availability of data for different technologies, economic sectors, and world regions.
Despite the importance of considering future scenarios for key economic sectors in pLCAs, and despite a recent increase in the use of pLCI databases in the academic literature (see
Appendix A), the use of pLCI databases remains the exception rather than the rule in future-oriented LCAs. This situation involves several issues relating to how pLCI databases are being generated, shared, and used. For example, pLCI databases remain difficult to obtain and use in standard LCA software. Furthermore, guidance for practitioners regarding content and the appropriate usage of pLCI databases is scarce. Also, the technological, sectoral, regional, and environmental coverage remains limited. Finally, a broader discussion to reach a consensus on the models and data sources pLCI databases should be based on has not yet occurred. Recent literature has discussed some of these issues. For example, Adrianto et al. (2021) highlight the need to streamline the process of including future background scenarios in pLCA. Bisinella et al. (2021) also stress the need for improved guidance when using future scenarios. Therefore, these issues need to be addressed to foster the more widespread use of pLCI databases.
To support these efforts, we provide an overview of the generation, sharing, and use of pLCI databases in this paper. We then discuss the conditions for a broad application of pLCI databases with the ultimate aim of improving environmental guidance for future technologies. Finally, we prioritize the challenges to be addressed to enable the widespread use of pLCI databases within pLCA.
2. The generation, sharing, and use of pLCI databases
To understand what is needed to achieve a widespread use of pLCI databases, we structure the information chain leading up to the use of pLCI databases in pLCAs into three distinct stages: the generation, sharing, and use of pLCI databases (
Figure 1).
During the generation stage, scenario data that describe potential future developments for key technologies and supply chains are integrated into an existing LCI database to yield a set of pLCI databases that reflect different scenarios and reference years. The relevant stakeholders during this stage are scenario generators, who develop scenarios and implement them in models (e.g., IAMs), LCI data providers, and scenario integrators. Scenario integrators generate pLCI databases using dedicated integration software, such as premise (Sacchi et al. 2022), which is a python package that integrates IAM data into the ecoinvent database to generate pLCI databases.
During the sharing stage, pLCI databases are made available to LCA practitioners. Solutions for an improved sharing of pLCI databases are still evolving but may, in the future, include stakeholders, such as scenario generators, LCI database providers, and software providers.
During the use stage, LCA practitioners use pLCI databases as background data in pLCAs. This use requires LCA software solutions that facilitate the handling of pLCI databases, as well as guidance and documentation, to ensure practitioners can understand what pLCI databases represent and how they should be used.
3. Conditions
Although this information chain depicted in
Figure 1 already exists, it needs further development to enable the broad application of pLCI databases. We identified six conditions that will, in our opinion, determine to which degree pLCI databases will be adopted by LCA practitioners (see also
Figure 1):
Scientific integrity: pLCI databases need to be based on state-of-the-art scientific models and data, relying on consistent scenarios, narratives, and assumptions. The generation of pLCI databases needs to be transparent and reproducible.
Usefulness: pLCI databases need to cover relevant scenarios for socio-economic developments in sufficient technological, regional, temporal, and environmental detail.
Accessibility: pLCI databases need to be easy to obtain for LCA practitioners.
Usability: pLCI databases need to be easy to use in LCA software.
Interpretability: Sufficient guidance and documentation need to be available for LCA practitioners to understand scenarios and their implementation in pLCI databases, and to interpret corresponding LCA results.
Continuous improvement: The continuous improvement of all conditions requires coordination and stable institutions.
We now describe essential aspects for each condition, including the current state of development, challenges, and avenues for improvement.
3.1. Scientific integrity
The scientific integrity of pLCI databases and the surrounding information chain are paramount for the credibility and quality of the support for environmental decision-making. The relevant aspects of this condition are the following.
3.1.1. State-of-the-art models and data
Significant craftsmanship is involved when developing pLCI databases, and it is part of scientific integrity to ensure that the generation of pLCI databases relies on state-of-the-art scenario and LCI data. However, it should be acknowledged that the perfect data sources for scenario and LCI data do not exist. For example, in recent efforts to generate pLCI databases, IAMs play an important role as scenario data sources, but IAMs also suffer from certain limitations, e.g. incomplete coverage of sectors and lifecycle stages (Pauliuk et al. 2017). IAMs, just like LCI databases, also have their own release cycles, and may not always include the latest data. More coordination will, therefore, be necessary to ensure a well-synchronized and continuously improved information chain that delivers pLCI databases based on the best data sources in a landscape of dynamically developing models, data, and scenarios.
3.1.2. Consistency
pLCI databases should provide internally consistent data. However, this consistency may be difficult to achieve in practice for a complex modeling exercise such as the generation of pLCI databases.
Currently, neither scenario models nor LCI databases can provide 100% internally consistent data sources at a high technological, regional, and temporal resolution. For example, IAMs have detailed representations of sectors relevant to climate change, such as electricity production. Still, they fall short for other sectors (e.g., agriculture, chemical production, and material cycles (Pauliuk et al. 2017)). LCI databases have limited coverage of emerging technologies that may become relevant in the future, as their focus is to provide background data for current technology (Wernet et al. 2016). To close such data gaps, IAM-based pLCI databases have been complemented with LCI and scenario data from additional sources (Sacchi et al. 2022). Although this approach increases the representation of specific sectors, technologies, or regions, it may introduce inconsistencies (Mendoza Beltran et al. 2018; Sacchi et al. 2022). Eventually, an optimal compromise between data consistency, coherence, and coverage will have to be identified. We believe using additional data sources to improve pLCI databases is a practical solution in the short term. In the longer term, solutions should be identified to increase coverage and consistency of pLCI data, e.g., by extending IAMs to include more LCA-related data.
3.1.3. Transparency and reproducibility
To ensure scientific integrity, pLCI databases should be documented so the underlying data and the generation process are transparent (see detailed suggestions in 3.5.2 Documentation). The generation of pLCI databases should also be reproducible. To ensure this reproducibility, the FAIR principles (findable, accessible, interoperable, reusable; (Wilkinson et al. 2016)) should be followed, and software should be open-source. These conditions are, in principle, met by recent efforts to generate pLCI databases (e.g., Mendoza Beltran et al. 2018; Sacchi et al. 2022). Furthermore, the underlying software is open-source (i.e., premise; (Sacchi et al. 2022), which builds on wurst (Mutel 2020) to conduct systematic transformations of LCI databases, which builds on the brightway LCA framework (Mutel 2017). Transparency and reproducibility could also be further improved by introducing a clear versioning system to ensure a specific pLCI database can be reproduced from specific versions of the underlying data sources and integration software.
3.2. Usefulness
The usefulness of pLCI databases is strongly determined by their representation of scenarios, economic sectors, time, and geography, as well as the coverage of data for different environmental concerns.
3.2.1. Coverage of scenarios and models
For pLCI databases to serve as future background data in pLCA studies, they should represent well-accepted and commonly used scenarios based on a broad and comprehensive view of potential future socio-economic and technological developments. Important examples of such scenarios are the shared socio-economic pathways (SSPs; (O’Neill et al. 2014)) and their implementations in IAMs (e.g., Stehfest et al. 2014), or scenarios developed by the International Energy Agency (IEA 2021b).
Currently, efforts are being made to use IAMs (e.g., IMAGE and REMIND) to generate pLCI databases (e.g., Mendoza Beltran et al. 2018; Sacchi et al. 2022). Future work should focus on increasing the coverage of scenarios in pLCI databases, covering, for example, the core scenarios used by the Intergovernmental Panel on Climate Change (see, e.g., IPCC 2021) or International Energy Agency (IEA) scenarios (IEA 2021b). However, the number of existing scenarios and models is large, which has led to divergent results (IPCC 2021; Monier et al. 2018). Although variations reflect the range of possible future developments, a proliferation of pLCI databases complicates the comparison of pLCAs and is not ideal from a harmonization perspective. Therefore, coordination between scenario integrators and related stakeholders (
Figure 1) is necessary to discuss which scenarios, models, and data sources should ideally be used to generate pLCI databases. In this context, focusing efforts on a smaller set of well-developed and, ultimately, well-accepted pLCI databases might be the best option. This approach also requires a discussion of choices in the LCA methodology, which have led to, for example, different system models of LCI databases (e.g., attributional versus consequential).
3.2.2. Technological and sectoral coverage
The usefulness of pLCI databases to practitioners depends on the technological and sectoral coverage. pLCI databases should provide inventory data for environmentally relevant sectors expected to change in the future (e.g., energy and raw material supply, transportation, alternative fuels, cement, steel, and chemicals). It is also essential to consider the improvement of existing technology and the introduction of emerging technology.
Currently, IAMs have a good representation of climate-relevant technologies in key economic sectors. However, not all sectors are represented, or at least not at the level needed to inform the generation of pLCI databases. Other models, such as energy system models, cover only specific sectors, but in greater detail. The representation of future technologies in a pLCI database depends on the scenario data sources used. Scenario integrators face the challenge of finding data sources that are both comprehensive and detailed. Historically, most efforts to generate pLCI databases have focused on the electricity sector. More recently, efforts were made to close data gaps by complementing IAM-based pLCI databases with additional LCI and scenario data from other sources: for example, for fuels (Watanabe et al. 2022), transportation (Sacchi et al. 2021), steel, ammonia (Boyce et al. in preparation), cement (Müller et al. in preparation), cobalt (van der Meide et al. 2022), and other metals (Harpprecht et al. 2021). The main challenge will be to increase the usefulness of pLCI databases for pLCA while building a relatively consistent information chain that can be updated.
3.2.3. Regional coverage
There are substantial regional differences in how products are produced (e.g., using different technologies, raw materials, or energy sources), and therefore essential differences in the related environmental impacts of, for example, energy technologies or agricultural products (Mendoza Beltran et al. 2023).
Existing LCI databases, IAMs, and other data sources relevant for the generation of pLCI databases do capture regional differences, albeit with limitations. The ecoinvent database, for example, has a country-level resolution for certain products (e.g., electricity mixes), but a regional- or even global-level resolution for others. In IAMs, the regional coverage is the same for all products and sectors but is typically limited to certain world regions (e.g., 26 in IMAGE (Stehfest et al. 2014) and 13 in REMIND (Aboumahboub et al. 2020)). Therefore, IAMs can be used to disaggregate supply chains further with a low regional resolution in ecoinvent. However, this process is not reciprocal; country-specific supply chains in ecoinvent may also have to be aggregated to match IAM world regions, yielding, for example, regional- instead of country-specific electricity mixes. As with technological coverage, energy system models offer a higher geographical resolution than IAMs but are usually limited to a specific world region. Therefore, while accounting for region-specific differences in pLCI databases is crucial, important gaps remain for the regionalization of pLCI databases, which should be addressed in future work.
3.2.4. Temporal coverage and representation
pLCAs typically use time horizons between five and 30 years in the future, and even longer for long-lived products (e.g., in the building sector (Fnais et al. 2022; Su et al. 2019)). pLCI databases should, therefore, cover these time horizons to provide temporally consistent background data.
Scenarios developed by the IPCC, IEA, or IAMs often extend to the year 2100 or beyond to consider long-lived products, such as building materials, and climate change effects on vegetation and ocean currents. Therefore, from a temporal perspective, these data sources are suitable for generating pLCI databases. However, not all data sources extend so far into the future, limiting the inclusion of specific sectors from other models.
Additionally, time representation in LCA is typically static (Beloin-Saint-Pierre et al. 2014; Levasseur et al. 2010). In reality, however, the electricity used for the manufacturing, using, and disposing of an electric vehicle would depend on the evolution of the energy system over time (as reflected in dynamic models such as IAMs). LCI databases normally have no such temporal differentiation (i.e., processes across all lifecycle stages consume electricity from the same reference year). Since a core motivation for using pLCI databases is to reduce temporal inconsistencies in pLCA, further work should be conducted to improve the temporal representation. Approaches to explore include using several pLCI databases for different reference years simultaneously to represent the background system for the lifecycle stages of a product system for different points in time. Another approach could be the use of temporal average datasets that represent, for example, the electricity supply over a specific decade, as already available within premise (Sacchi et al. 2022). These approaches are made possible by the dynamic nature of scenario data sources, such as IAMs. Although solutions such as these are essentially workarounds to represent time in an otherwise static model and add complexity to LCI modeling and calculations, they may still be the way forward. A true switch to a dynamic representation of time in LCA is a major challenge that would require, among other factors, dynamic LCI data, possibly a different computational structure of LCA (see, e.g., Beloin-Saint-Pierre et al. 2017; Cardellini et al. 2018; Pinsonnault et al. 2014) and implementations in LCA software.
3.2.5. Environmental coverage
pLCA should be used to provide a holistic environmental perspective by considering a broad range of impact categories. Therefore, pLCI databases should include inventory data relevant to these impact categories.
In practice, the focus has been on generating pLCI databases with data relevant to climate change, and much less for other impact categories. This approach has mainly been due to the sources used for deriving pLCI databases (e.g., IAMs) focusing on climate change and excluding sectors and environmental interventions relevant to other impact categories, for example, the use of pesticides for the production of biofuels. Although some IAMs project a large increase in biofuel production, no information pertaining to the use, fate, or toxicity of pesticides is provided. Consequently, pLCI databases generated from such data sources disregard future developments for pesticides. Therefore, the scores for toxicity-related indicators (e.g., human-, terrestrial-, or ecosystem toxicity) should be regarded as highly uncertain (Sacchi et al. 2022).
Such data gaps should be filled to maintain the strength of LCA to identify burden shifts from one environmental indicator to another in the future. This point also applies to resource-related indicators. For example, energy transition policies often lead to an increased use of metals due to the large-scale development of renewables (Vandepaer et al. 2020) or the electrification of vehicle fleets (Dirnaichner et al. 2022). Increased recycling could counteract resource depletion and mitigate environmental impacts related to extractive activities. Representing stocks and flows of metals and other resources that can be recycled is a desirable feature for IAMs as it would facilitate the integration of future recycled content rates in pLCI databases.
3.3. Accessibility
pLCI databases should be easily accessible by LCA practitioners. Although this is currently not the case, inspiration can be drawn from existing sharing models for LCI databases.
3.3.1. Data sharing
At least four solutions for providing practitioners access to pLCI databases can be distinguished:
- 1)
Via LCA software providers: Most LCA practitioners obtain LCI databases through the LCA software they use.
- 2)
Via LCI database providers: LCI databases may also be available for download from LCI database providers, and can then be imported into LCA software.
- 3)
Via scenario integrators: Similar to 2), scenario integrators could make pLCI databases available online. However, this solution may not be possible if any of the underlying data are under restrictive license. Although a license check could be performed, there is no such system in place for pLCI databases.
- 4)
Via local generation: The local generation of pLCI databases on the practitioner’s computer can overcome the data license issue. Data and software under open license (e.g., scenario data and the integration software) are provided publicly to users. Data under license are not provided, but if the LCA practitioner has access to these data, pLCI databases can be generated locally (a system currently used by premise). This solution may be more sophisticated than the first three, depending on the implementation. On the other hand, this solution also opens up possibilities for practitioners to customize the pLCI generation process further (e.g., by adding specific scenario data for specific sectors).
3.3.2. Data format
Effective access to pLCI databases also requires data formats that can be used by standard LCA software. Premise can generate pLCI databases in several data formats (Brightway/Activity Browser, Simapro CSV, sparse matrices text files). In the future, pLCI databases should be provided in other standard data formats to cater to the needs of other LCA software.
3.4. Usability
The ease of use of pLCI databases in LCA software has a large influence on whether LCA practitioners will use them. A major challenge for usability is that, unlike in conventional LCA, in which, a single background LCI database is typically used, the practitioner may want to use multiple pLCI databases in pLCA to assess a product system in different scenarios and reference years. This approach means LCA software must provide efficient solutions for handling alternative background systems.
3.4.1. LCA software that facilitates working with pLCI databases
There are several ways LCA software could support the modeling with alternative background systems. One solution could be to offer users the option to specify alternative suppliers for process inputs, so products are sourced from different pLCI databases depending on the scenario and reference year. Another solution is the superstructure approach (Steubing and de Koning 2021), where a set of pLCI databases is “compressed” into a single superstructure LCI database and a corresponding scenario difference file. The latter approach can be used to transform the superstructure database into any of the original scenarios. This approach enables practitioners to use a single LCI database while calculating LCA results for different scenarios and reference years. The superstructure approach is currently only implemented in the Activity Browser (Steubing et al. 2020), but could be implemented in other LCA software. In addition, LCA software should also facilitate the analysis of scenario LCA results (e.g., providing graphs displaying the comparison across scenarios or reference years).
3.5. Interpretability
The “interpretability” of pLCI databases is crucial for their effective use by LCA practitioners. Key aspects of this condition include the following.
3.5.1. Guidance
pLCI databases are typically the result of comprehensive modeling exercises. A good understanding of what pLCI databases represent, how they should be used, and what their limitations are is crucial for a meaningful interpretation of pLCA results. Although the scientific literature already provides insights in this respect (e.g., Mendoza Beltran et al. 2018; Sacchi et al. 2022), more specific information should be provided to guide LCA practitioners in working with pLCI databases. For example, for a set of pLCI databases, there should be a clear description of the following:
The scenario that each pLCI database represents (e.g., socio-economic and climate projections following SSP 1 with RCP 1.9)
The scenario data sources (e.g., specific versions of IAMs and additional data sources)
The original LCI database version (e.g., ecoinvent version 3.9, cut-off system model)
The integration software and version used to generate the pLCI databases
An executive summary that describes the scenario narratives, the sectoral, technological, and environmental coverage of the scenario data, the most important changes to the original LCI database, key assumptions, limitations, and other information relevant for practitioners to understand and correctly interpret LCA results derived from the pLCI database
Practical guidance for the effective use of the pLCI database (e.g., naming and modeling conventions and how to document and cite the use of the pLCI databases)
Links to additional documentation and guidance
Such information could be provided as factsheets, manuals, or other media, including videos and in-software guidance. This information should ideally be complemented by guidance on how to work with pLCI databases in specific LCA software.
3.5.2. Documentation
In addition to such higher-level guidance, detailed documentation of the generation of pLCI databases is necessary to provide further information to LCA practitioners and to ensure transparency and reproducibility. In particular, (i) the inputs to the generation of a pLCI database (e.g., data, assumptions, and models); (ii) the integration process itself (e.g., the integration software code); and (iii) the output (e.g., the changes in the pLCI compared with the original LCI database) all need to be documented.
Various levels of documentation already exist for current pLCI databases. For example, the
premise framework provides technical documentation
1 of the generation process and data, as well as the source code
2 and associated log files. The scenario difference file used in the superstructure approach (Steubing and de Koning 2021) helps to document and understand the differences between the pLCI and the original LCI database. In addition, Futura software (Joyce and Björklund 2021) can record transformations of the original LCI database in a structured text file called a recipe. Nevertheless, guidance and documentation remain scattered and evolving. Further efforts are necessary to improve and consolidate this information and present it to users.
3.6. Continuous improvement
The previously discussed conditions and aspects relating to the generation, sharing, and use of pLCI databases could be improved, ultimately contributing to well-accepted and regularly updated pLCI databases with an adequate coverage that can be easily obtained, used, and interpreted by LCA practitioners. Achieving this aim will require a continuous improvement process that involves all relevant stakeholders.
3.6.1. Coordination and stable institutions
pLCI databases have been generated as part of research projects by individual research groups. However, the importance of future-oriented background data for LCA means the generation of pLCI databases merits a more concerted effort with stable funding sources and contributing institutions. This approach would enable these institutions to build and maintain the required expertise to deliver high-quality pLCI databases, to coordinate regarding important choices, to release regular updates, and to gain the trust of the wider LCA community. The coordination between stakeholders along the information chain (see
Figure 1), particularly scenario integrators, scenario generators, and LCI database and LCA software providers, should therefore be strengthened to create a continuous improvement process for the generation, sharing, and use of pLCI databases.
4. Priorities
We summarize in
Table 1 the current state of development for each condition and aspect, organized by scientific, technical, and organizational conditions. Substantial work remains to improve pLCI databases and make their use more widespread. In the following, we offer our opinions regarding the aspects that should be prioritized to achieve this goal (see also
Table 1).
Scientific conditions. The most pressing issues are the coverage and consistency of pLCI databases, as well as guidance and documentation to ensure scientific integrity and interpretability. The technological, environmental, and geographical coverage of pLCI databases should be extended to provide more useful background data for practitioners. These data should be, as much as possible, internally consistent. The right compromise between consistency of data sources and coverage of pLCI databases must be carefully evaluated. More guidance and documentation are needed to support LCA practitioners in correctly using pLCI databases, interpreting LCA results, and ensuring the high level of transparency and reproducibility that LCA demands.
Technical conditions. Significant work needs to be done to improve practical aspects, such as access to pLCI databases and their usability in LCA software.
Organizational conditions. A continuous improvement process should be initialized that involves all stakeholders in the information chain (
Figure 1) to systematically improve all the discussed conditions and coordinate on key issues. This process also requires stable funding sources to enable longer-term collaborations and ensure that scientific and technical expertise can be maintained and improved.
We strongly believe that making future-oriented background data available should be a priority for the LCA community to provide more meaningful environmental guidance in the ongoing and upcoming transitions of our economies. This priority requires addressing the generation, sharing, and use of pLCI databases more systematically from all viewpoints (scientific, technical, and organizational). We are convinced that LCA practitioners will readily use pLCI databases once some of the obstacles outlined in this article are addressed.
5. Discussion and conclusions
Developing pLCI databases is crucial for the LCA community to provide meaningful environmental decision support for future technologies. This article provided an overview of the information chain related to the generation, sharing, and use of pLCI databases. Based on that, we structured and discussed the conditions for the broad application of pLCI databases and highlighted future priorities. While the paper aimed to describe the information chain and conditions in general, there are more specific challenges when deriving pLCI databases from specific LCI databases and scenario data sources. Further efforts are also needed to identify how different stakeholders, such as companies and industry associations, could contribute to future-oriented LCI data and how to pLCI databases could be generated that fit their specific needs best. With this article, we hope to stimulate further coordination between all relevant stakeholders and encourage efforts in bringing pLCI databases and their surrounding ecosystem to the next level.
Funding
AMB would like to acknowledge the funding from the European Union’s Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant agreement No 842460 – PROTEAN project. RS would like to acknowledge the funding from the SFOE’s SWEET-SURE program.
Acknowledgments
We thank the following researchers for their insightful discussions on this topic: Carina Harpprecht, Marc van der Meide, Brenda Xicotencatl, Sander van Nielen, Christopher Mutel, Stefano Cucurachi, Jeroen Guinée, Carlos Blanco, and Anne van der Oever, among others. We are also thankful for the support provided by those developing IAMs, notably Alois Dirnaichner and Kais Siala from the Potsdam Institute for Climate Impact Research, as well as Vassilis Daioglou from the Netherlands Environmental Assessment Agency.
Competing interests
The author declares no competing interests.
Appendix A
A non-exhaustive list of recent publications that use prospective LCI databases (in addition to those listed in the references section).
Cox B, Mutel CL, Bauer C, Mendoza Beltran A, van Vuuren DP (2018) Uncertain Environmental Footprint of Current and Future Battery Electric Vehicles Environ Sci Technol 52:4989-4995
https://doi.org/10.1021/acs.est.8b00261
Li C, Mogollón JM, Tukker A, Dong J, von Terzi D, Zhang C, Steubing B (2022) Future material requirements for global sustainable offshore wind energy development Renewable Sustainable Energy Rev 164:112603
https://doi.org/10.1016/j.rser.2022.112603
Xu C, Steubing B, Hu M, Harpprecht C, van der Meide M, Tukker A (2022) Future greenhouse gas emissions of automotive lithium-ion battery cell production Resources, Conservation and Recycling 187:106606
https://doi.org/10.1016/j.resconrec.2022.106606
Zhong X, Hu M, Deetman S, Steubing B, Lin HX, Hernandez GA, Harpprecht C, Zhang C, Tukker A, Behrens P (2021) Global greenhouse gas emissions from residential and commercial building materials and mitigation strategies to 2060 Nature Communications 12:6126
https://doi.org/10.1038/s41467-021-26212-z
Yang X, Hu M, Tukker A, Zhang C, Huo T, Steubing B (2022) A bottom-up dynamic building stock model for residential energy transition: A case study for the Netherlands Applied Energy 306:118060
https://doi.org/10.1016/j.apenergy.2021.118060
Sacchi, R., Bauer, C., Cox, B. & Mutel, C. When, where and how can the electrification of passenger cars reduce greenhouse gas emissions? Renew. Sustain. Energy Rev. 162, 112475 (2022).
Ueckerdt, F. et al. Potential and risks of hydrogen-based e-fuels in climate change mitigation. Nat. Clim. Chang. 2021 115 11, 384–393 (2021).
Cavalett, O., Watanabe, M. D. B., Fleiger, K., Hoenig, V. & Cherubini, F. LCA and negative emission potential of retrofitted cement plants under oxyfuel conditions at high biogenic fuel shares. Sci. Reports 2022 121 12, 1–14 (2022).
Dávila, J., Sacchi, R. & Pizzol, M. Preconditions for CCUS to deliver climate neutrality in cement production. Appl. Energy.
Lamers, P., Ghosh, T., Upasani, S., Sacchi, R. & Daioglou, V. Linking life cycle and integrated assessment modeling to evaluate technologies in an evolving system context: a Power-to-Hydrogen case study for the United States. Environ. Sci. Technol.
Strathoff, P. et al. On the Design and Sustainability of Commuter Aircraft with Electrified Propulsion Systems. AIAA Aviat. 2022 Forum (2022)
https://doi.org/10.2514/6.2022-3738.
References
- Aboumahboub T et al. (2020) REMIND - REgional Model of INvestments and Development - Version 2.1.0. [CrossRef]
- Adrianto LR et al. (2021) How can LCA include prospective elements to assess emerging technologies and system transitions? The 76th LCA Discussion Forum on Life Cycle Assessment, 19 November 2020 Int J Life Cycle Assess 26:1541-1544. [CrossRef]
- Arvidsson R, Tillman A-M, Sandén BA, Janssen M, Nordelöf A, Kushnir D, Molander S (2018) Environmental Assessment of Emerging Technologies: Recommendations for Prospective LCA J Ind Ecol 22:1286-1294. [CrossRef]
- Beloin-Saint-Pierre D, Heijungs R, Blanc I (2014) The ESPA (Enhanced Structural Path Analysis) method: A solution to an implementation challenge for dynamic life cycle assessment studies Int J Life Cycle Assess 19:861-871. [CrossRef]
- Beloin-Saint-Pierre D, Levasseur A, Margni M, Blanc I (2017) Implementing a Dynamic Life Cycle Assessment Methodology with a Case Study on Domestic Hot Water Production J Ind Ecol 21:1128-1138. [CrossRef]
- Bisinella V, Christensen TH, Astrup TF (2021) Future scenarios and life cycle assessment: systematic review and recommendations Int J Life Cycle Assess. [CrossRef]
- Boyce J, Sacchi R, Goetheer E, Steubing B (in preparation) Prospective life cycle assessment of ammonia decarbonisation potential until 2050.
- Buyle M, Audenaert A, Billen P, Boonen K, Van Passel S (2019) The Future of Ex-Ante LCA? Lessons Learned and Practical Recommendations Sustainability 11:5456. [CrossRef]
- Cardellini G, Mutel CL, Vial E, Muys B (2018) Temporalis, a generic method and tool for dynamic Life Cycle Assessment Sci Total Environ 645:585-595. [CrossRef] [PubMed]
- Cox B, Bauer C, Mendoza Beltran A, van Vuuren DP, Mutel CL (2020) Life cycle environmental and cost comparison of current and future passenger cars under different energy scenarios Applied Energy 269:115021. [CrossRef]
- Dirnaichner A et al. (2022) Life-cycle impacts from different decarbonization pathways for the European car fleet Environ Res Lett 17:44009. [CrossRef]
- Fnais A, Rezgui Y, Petri I, Beach T, Yeung J, Ghoroghi A, Kubicki S (2022) The application of life cycle assessment in buildings: challenges, and directions for future research Int J Life Cycle Assess 27:627-654. [CrossRef]
- Gibon T, Wood R, Arvesen A, Bergesen JD, Suh S, Hertwich EG (2015) A Methodology for Integrated, Multiregional Life Cycle Assessment Scenarios under Large-Scale Technological Change Environ Sci Technol 49:11218-11226. [CrossRef] [PubMed]
- Harpprecht C, Oers L, Northey SA, Yang Y, Steubing B (2021) Environmental impacts of key metals’ supply and low‐carbon technologies are likely to decrease in the future J Ind Ecol 25:1543-1559. [CrossRef]
- Hertwich EG et al. (2015) Integrated life-cycle assessment of electricity-supply scenarios confirms global environmental benefit of low-carbon technologies PNAS 112:6277-6282. [CrossRef] [PubMed]
- IEA (2021a) Net Zero by 2050 A Roadmap for the global energy sector. International Energy Agency.
- IEA (2021b) World Energy Outlook 2021 International Energy Agency, Paris.
- IPCC (2021) Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change vol In Press. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. [CrossRef]
- Joyce PJ, Björklund A (2021) Futura: A new tool for transparent and shareable scenario analysis in prospective life cycle assessment J Ind Ecol n/a. [CrossRef]
- Knobloch F et al. (2020) Net emission reductions from electric cars and heat pumps in 59 world regions over time Nature Sustainability 3:437-447. [CrossRef]
- Levasseur A, Lesage P, Margni M, Deschěnes L, Samson R (2010) Considering time in LCA: Dynamic LCA and its application to global warming impact assessments Environ Sci Technol 44:3169-3174. [CrossRef]
- Mendoza Beltran A et al. (2018) When the Background Matters: Using Scenarios from Integrated Assessment Models in Prospective Life Cycle Assessment J Ind Ecol. [CrossRef]
- Mendoza Beltran A et al. (2023) Displaying geographic variability of peri-urban agriculture environmental impacts in the Metropolitan Area of Barcelona: A regionalized life cycle assessment Sci Total Environ 858:159519. [CrossRef] [PubMed]
- Monier E et al. (2018) Toward a consistent modeling framework to assess multi-sectoral climate impacts Nature Communications 9:660. [CrossRef] [PubMed]
- Moss RH et al. (2010) The next generation of scenarios for climate change research and assessment Nature 463:747-756. [CrossRef] [PubMed]
- Müller A, Sacchi R, Savija B, Steubing B (in preparation) Decarbonizing the cement industry: A prospective Life Cycle Assessment of the global future cement production using Integrated Scenarios.
- Mutel C (2017) Brightway: An open source framework for Life Cycle Assessment JOSS 2(12), 236. [CrossRef]
- Mutel C (2020) Wurst. GitHub. https://github.com/polca/wurst. Accessed 2020-12-07 2020.
- NEEDS (2009) New Energy Externalities Developments for Sustainability Project. The European reference life cycle inventory database of future electricity supply systems. http://www.needs-project.org/needswebdb/. Accessed December 2020.
- O’Neill BC et al. (2014) A new scenario framework for climate change research: The concept of shared socioeconomic pathways Clim Change 122:387-400. [CrossRef]
- Pauliuk S, Arvesen A, Stadler K, Hertwich EG (2017) Industrial ecology in integrated assessment models Nature Climate Change 7:13-20. [CrossRef]
- Pinsonnault A, Lesage P, Levasseur A, Samson R (2014) Temporal differentiation of background systems in LCA: relevance of adding temporal information in LCI databases Int J Life Cycle Assess 19:1843-1853. [CrossRef]
- Riahi K et al. (2017) The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: An overview Global Environ Change 42:153-168. [CrossRef]
- Sacchi R, Bauer C, Cox BL (2021) Does Size Matter? The Influence of Size, Load Factor, Range Autonomy, and Application Type on the Life Cycle Assessment of Current and Future Medium- and Heavy-Duty Vehicles Environ Sci Technol. [CrossRef]
- Sacchi R et al. (2022) PRospective EnvironMental Impact asSEment (premise): A streamlined approach to producing databases for prospective life cycle assessment using integrated assessment models Renewable Sustainable Energy Rev 160:112311. [CrossRef]
- Stehfest E et al. (2014) Integrated assessment of global environmental change with IMAGE 3.0: Model description and policy applications. The Hague.
- Steubing B, de Koning D (2021) Making the use of scenarios in LCA easier: the superstructure approach Int J Life Cycle Assess 26:2248-2262. [CrossRef]
- Steubing B, de Koning D, Haas A, Mutel CL (2020) The Activity Browser — An open source LCA software building on top of the brightway framework Software Impacts 3:100012. [CrossRef]
- Su S, Li X, Zhu Y (2019) Dynamic assessment elements and their prospective solutions in dynamic life cycle assessment of buildings Build Environ 158:248-259. [CrossRef]
- Thonemann N, Schulte A, Maga D (2020) How to Conduct Prospective Life Cycle Assessment for Emerging Technologies? A Systematic Review and Methodological Guidance Sustainability 12:1192. [CrossRef]
- van der Giesen C, Cucurachi S, Guinée J, Kramer GJ, Tukker A (2020) A critical view on the current application of LCA for new technologies and recommendations for improved practice J Cleaner Prod 259:120904. [CrossRef]
- van der Meide M, Harpprecht C, Northey S, Yang Y, Steubing B (2022) Effects of the energy transition on environmental impacts of cobalt supply: A prospective life cycle assessment study on future supply of cobalt J Ind Ecol 26:1631-1645. [CrossRef]
- van Vuuren DP et al. (2011) The representative concentration pathways: an overview Clim Change 109:5. [CrossRef]
- Vandepaer L, Panos E, Bauer C, Amor B (2020) Energy System Pathways with Low Environmental Impacts and Limited Costs: Minimizing Climate Change Impacts Produces Environmental Cobenefits and Challenges in Toxicity and Metal Depletion Categories Environ Sci Technol 54:5081-5092. [CrossRef] [PubMed]
- Watanabe MDB, Cherubini F, Tisserant A, Cavalett O (2022) Drop-in and hydrogen-based biofuels for maritime transport: Country-based assessment of climate change impacts in Europe up to 2050 Energy Convers Manage 273:116403. [CrossRef]
- Wernet G, Bauer C, Steubing B, Reinhard J, Moreno-Ruiz E, Weidema B (2016) The ecoinvent database version 3 (part I): overview and methodology Int J Life Cycle Assess 21:1218-1230. [CrossRef]
- Wilkinson MD et al. (2016) The FAIR Guiding Principles for scientific data management and stewardship Scientific Data 3:160018. [CrossRef] [PubMed]
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).