Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Enhanced Efficiency at Maximum Power in a Fock-Darwin Model Quantum Dot Engine

Version 1 : Received: 21 February 2023 / Approved: 28 February 2023 / Online: 28 February 2023 (02:32:00 CET)

A peer-reviewed article of this Preprint also exists.

Peña, F.J.; Myers, N.M.; Órdenes, D.; Albarrán-Arriagada, F.; Vargas, P. Enhanced Efficiency at Maximum Power in a Fock–Darwin Model Quantum Dot Engine. Entropy 2023, 25, 518. Peña, F.J.; Myers, N.M.; Órdenes, D.; Albarrán-Arriagada, F.; Vargas, P. Enhanced Efficiency at Maximum Power in a Fock–Darwin Model Quantum Dot Engine. Entropy 2023, 25, 518.

Abstract

We study the performance of an endoreversible magnetic Otto cycle with a working substance composed of a single quantum dot described using the well-known Fock-Darwin model. We find that tuning the intensity of the parabolic trap (geometrical confinement) impacts the proposed cycle’s performance, quantified by the power, work, efficiency, and parameter region where the cycle operates as an engine. We demonstrate that a parameter region exists where the efficiency at maximum output power exceeds the Curzon-Ahlborn efficiency, the efficiency at maximum power achieved by a classical working substance.

Keywords

Magnetic cycle; Quantum otto cycle; Quantum thermodynamics

Subject

Physical Sciences, Condensed Matter Physics

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.