Submitted:
23 February 2023
Posted:
27 February 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Coupled Model Intercomparison Project Phase 6
2.2. Observed Data
2.3. Bias correction
2.4. SMAP hydrological model
2.5. Exponential Smoothing Model and Consumptive Demand Scenarios
2.6. Information System for Water Allocation Management
2.7. Evaluation of CMIP6 models
2.8. Hydrological Analysis
2.8.1. Percentual Anomaly
2.8.2. Reliability, Resilience, Vulnerability and Sustainability Indexes
3. Results
3.1. SMAP model Calibration and Validation
3.2. Perfomance dos modelos do CMIP6
3.3. Percentual Anomaly
3.4. Consumptive Demands Projections
3.5. Reliability, Resilience, Vulnerability and Sustainability Indexes
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IPCC Summary for Policymakers: Climate Change 2022_ Impacts, Adaptation and Vulnerability_Working Group II contribution to the Sixth Assessment Report of the Intergovernamental Panel on Climate Change; 2022; ISBN 9781009325844. 10.1017/9781009325844.Front.
- IPCC Summary for policymakers. Manag. Risks Extrem. Events Disasters to Adv. Clim. Chang. Adapt. Spec. Rep. Intergov. Panel Clim. Chang. 2014, 9781107025, 3–22.
- Jong, P.; Tanajura, C.A.S.; Sánchez, A.S.; Dargaville, R.; Kiperstok, A.; Torres, E.A. Hydroelectric production from Brazil’s São Francisco River could cease due to climate change and inter-annual variability. Sci. Total Environ. 2018, 634, 1540–1553. [Google Scholar] [CrossRef] [PubMed]
- Silveira, C. da S.; Filho, F. de A. de S.; Martins, E.S.P.R.; Oliveira, J.L.; Costa, A.C.; Nobrega, M.T.; de Souza, S.A.; Silva, R.F.V. Mudanças climáticas na bacia do rio São Francisco: Uma análise para precipitação e temperatura. Rev. Bras. Recur. Hidricos 2016, 21, 416–428. [Google Scholar]
- Silva, M.V.M.; Silveira, C. da S.; Costa, J.M.F. da; Martins, E.S.P.R.; Vasconcelos Júnior, F. das C. Projection of Climate Change and Consumptive Demands Projections Impacts on Hydropower Generation in the São Francisco River Basin, Brazil. Water 2021, 13, 332–10. [Google Scholar] [CrossRef]
- BRASIL Projeto de Integração do São Francisco. Available online: https://antigo.mdr.gov.br/images/stories/ProjetoRioSaoFrancisco/ArquivosPDF/documentostecnicos/RIMAJULHO2004.pdf (accessed on Mar 25, 2021).
- Asefa, T.; Clayton, J.; Adams, A.; Anderson, D. Performance evaluation of a water resources system under varying climatic conditions: Reliability, Resilience, Vulnerability and beyond. J. Hydrol. 2014, 508, 53–65. [Google Scholar] [CrossRef]
- Hashimoto, T.; Stedinger, J.R.; Loucks, D.P. Reliability, resiliency, and vulnerability criteria for water resource system performance evaluation. Water Resour. Res. 1982, 18, 14–20. [Google Scholar] [CrossRef]
- Zeng, P.; Sun, F.; Liu, Y.; Che, Y. Future river basin health assessment through reliability-resilience-vulnerability: Thresholds of multiple dryness conditions. Sci. Total Environ. 2020, 741, 140395–10. [Google Scholar] [CrossRef] [PubMed]
- Sung, J.H.; Chung, E.S.; Shahid, S. Reliability-Resiliency-Vulnerability approach for drought analysis in South Korea using 28 GCMs. Sustain. 2018, 10. [Google Scholar] [CrossRef]
- Bhere, S.; Reddy, M.J. Assessment of Reliability, Resilience, and Vulnerability (RRV) of terrestrial water storage using Gravity Recovery and Climate Experiment (GRACE) for Indian river basins. Remote Sens. Appl. Soc. Environ. 2022, 28, 100851–10. [Google Scholar] [CrossRef]
- Swart, N.C.; Cole, J.N.S.; Kharin, V. V.; Lazare, M.; Scinocca, J.F.; Gillett, N.P.; Anstey, J.; Arora, V.; Christian, J.R.; Hanna, S.; et al. The Canadian Earth System Model version 5 (CanESM5.0.3). Geosci. Model Dev. 2019, 12, 4823–4873. [Google Scholar] [CrossRef]
- Boucher, O.; Servonnat, J.; Albright, A.L.; Aumont, O.; Balkanski, Y.; Bastrikov, V.; Bekki, S.; Bonnet, R.; Bony, S.; Bopp, L.; et al. Presentation and Evaluation of the IPSL-CM6A-LR Climate Model. J. Adv. Model. Earth Syst. 2020, 12, 1–52. [Google Scholar] [CrossRef]
- Hirota, N.; Ogura, T.; Tatebe, H.; Shiogama, H.; Kimoto, M.; Watanabe, M. Roles of shallow convective moistening in the eastward propagation of the MJO in MIROC6. J. Clim. 2018, 31, 3033–3047. [Google Scholar] [CrossRef]
- Wu, T.; Lu, Y.; Fang, Y.; Xin, X.; Li, L.; Li, W.; Jie, W.; Zhang, J.; Liu, Y.; Zhang, L.; et al. The Beijing Climate Center Climate System Model (BCC-CSM): The main progress from CMIP5 to CMIP6. Geosci. Model Dev. 2019, 12, 1573–1600. [Google Scholar] [CrossRef]
- Yukimoto, S.; Kawai, H.; Koshiro, T.; Oshima, N.; Yoshida, K.; Urakawa, S.; Tsujino, H.; Deushi, M.; Tanaka, T.; Hosaka, M.; et al. The meteorological research institute Earth system model version 2.0, MRI-ESM2.0: Description and basic evaluation of the physical component. J. Meteorol. Soc. Japan 2019, 97, 931–965. [Google Scholar] [CrossRef]
- Gidden, M.J.; Riahi, K.; Smith, S.J.; Fujimori, S.; Luderer, G.; Kriegler, E.; Van Vuuren, D.P.; Van Den Berg, M.; Feng, L.; Klein, D.; et al. Global emissions pathways under different socioeconomic scenarios for use in CMIP6: A dataset of harmonized emissions trajectories through the end of the century. Geosci. Model Dev. 2019, 12, 1443–1475. [Google Scholar] [CrossRef]
- ONS Plano de Operação Energética 2019-2023. Available online: http://www.ons.org.br/AcervoDigitalDocumentosEPublicacoes/PEN_Executivo_2019-2023.pdf.
- Hargreaves, G.H.; Samani, Z.A. Reference Crop Evapotranspiration from Temperature. Appl. Eng. Agric. 1985, 1, 96–99. [Google Scholar] [CrossRef]
- Harris, I.; Osborn, T.J.; Jones, P.; Lister, D. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci. Data 2020, 7, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Silveira, C. da S.; de Souza Filho, F. de A.; Vasconcelos Júnior, F. das C. Streamflow projections for the Brazilian hydropower sector from RCP scenarios. J. Water Clim. Chang. 2017, 8, 114–126. [Google Scholar] [CrossRef]
- Lopes, J.E.G.; Braga, B.P.F.; Conejo, J.G.L. SMAP - A Simplifi ed Hydrological Model, Applied Modelling in Catchment Hydrology. Water Resourses Publ. 1982. [Google Scholar]
- Nash, J.E.; Sutcliffe, J. V. River flow forecasting through conceptual models part I - A discussion of principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Gupta, H.V.; Sorooshian, S.; Yapo, P.O. Status of Automatic Calibration for Hydrologic Models: Comparison with Multilevel Expert Calibration. J. Hydrol. Eng. 1999, 4, 135–143. [Google Scholar] [CrossRef]
- Hyndman, R.J.; Koehler, A.B.; Snyder, R.D.; Grose, S. A state space framework for automatic forecasting using. Int. J. Forecast. 2002, 18, 439–454. [Google Scholar] [CrossRef]
- Hyndman, R.J.; Akram, M.; Archibald, B.C. The admissible parameter space for exponential smoothing models. Ann. Inst. Stat. Math. 2008, 60, 407–426. [Google Scholar] [CrossRef]
- ONS Submódulo 23.5: Critérios para estudos hidrológicos; 2011. 2011.
- Sugawara, E.; Nikaido, H. Properties of AdeABC and AdeIJK efflux systems of Acinetobacter baumannii compared with those of the AcrAB-TolC system of Escherichia coli. Antimicrob. Agents Chemother. 2014, 58, 7250–7257. [Google Scholar] [CrossRef]
- Taylor, K.E. Summarizing multiple aspects of model perfomance in a single diagram. J. Geophys. Res. Atmos. 2001, 106, 7183–7192. [Google Scholar] [CrossRef]
- Almeida, R.A.; Pereira, S.B.; Pinto, D.B.F. Calibration and validation of the SWAT hydrological model for the Mucuri river basin. Eng. Agric. 2018, 38, 55–63. [Google Scholar] [CrossRef]
- Ferreira da Costa, J.M.; Silveira, C.S.; Vasconcelos Júnior, F. das C.; Marcos Junior, A.D.; da Silva, M.V.M.; Ramos, S.F.C.; Porto, V.C.; Souza Filho, F. de A.; Martins, E.S.P.R. The water, climate and energy nexus in the São Francisco River Basin, Brazil: an analysis of decadal climate variability. Hydrol. Sci. J. 2022, 67, 1–20. [Google Scholar] [CrossRef]
- Hounsou-Gbo, G.A.; Araujo, M.; Bourlès, B.; Veleda, D.; Servain, J. Tropical Atlantic contributions to strong rainfall variability along the northeast Brazilian coast. Adv. Meteorol. 2015, 2015. [Google Scholar] [CrossRef]
- Fetter, R.; de Oliveira, C.H.; Steinke, E.T. Proposition of an index for the study of the variability of space-temporal rainfall in Brazil. Rev. Bras. Meteorol. 2018, 33, 225–237. [Google Scholar] [CrossRef]
- Paulo, V.D.E.; Da, R.; Ricardo, E.; Pereira, R.; Silveira, R.; Almeida, R. ESTUDO DA VARIABILIDADE ANUAL E INTRA-ANUAL DA PRECIPITAÇÃO NA REGIÃO NORDESTE DO BRASIL Universidade Federal de Campina Grande, Unidade Acadêmica Ciências Atmosféricas, Campina Grande, Universidade Estadual da Paraíba, Campina Grande, PB, Brasil Re. 2012, 163–172.
- Dias, C.G.; Reboita, M.S. Assessment of CMIP6 Simulations over Tropical South America. Rev. Bras. Geogr. Física 2021, 03, 1282–1295. [Google Scholar] [CrossRef]
- de Oliveira, D.M.; Ribeiro, J.G.M.; de Faria, L.F.; Reboita, M.S. Performance of CMIP6 climate models in simulating precipitation in subdomains of South America in the historical period. Rev. Bras. Geogr. Fis. 2023, 16, 116–133. [Google Scholar]
- Silveira, C. da S.; Filho, F. de A. de S.; Costa, A.A.; Cabral, S.L. Performance assessment of CMIP5 models concerning the representation of precipitation variation patterns in the twentieth century on the northeast of Brazil, Amazon and Prata Basin and analysis of projections for the scenery RCP8.5. Perform. Assess. C. Model. Concern. Represent. Precip. Var. patterns Twent. century Northeast Brazil, Amaz. Prata Basin Anal. Proj. scenery RCP8.5 2013, 28, 317–330. [Google Scholar]
- Fachinelli Ferrarini, A. dos S.; de Souza Ferreira Filho, J.B.; Cuadra, S.V.; de Castro Victoria, D. Water demand prospects for irrigation in the são francisco river: Brazilian public policy. Water Policy 2020, 22, 449–467. [Google Scholar] [CrossRef]
- Lima, C.E.S.; da Silva, M.V.M.; Rocha, S.M.G.; Silveira, C. da S. Anthropic Changes in Land Use and Land Cover and Their Impacts on the Hydrological Variables of the São Francisco River Basin, Brazil. Sustain. 2022, 14. [Google Scholar] [CrossRef]












| Modelos | Instituição ou Organização (Países) | Citações |
|---|---|---|
| CanESM5 | Canadian Earth System Model 5th generation (Canadá) | [12] |
| IPSL-CMSA-MR | Institut Pierre-Simon Laplace (França) | [13] |
| MIROC6 | Atmosphere and Ocean Research Institute, National Institute for Environmental Studies, and Japan Agency for Marine-Earth Science and Technology (Japão) | [14] |
| BCC-CSM2-MR | Beijing Climate Center climate system model version 2 (China) | [15] |
| MRI-ESM2-0 | Meteorological Research Institute Earth System Model version 2 (Japão) | [16] |
| Basin | Área (km²) | Calibration Period | TUin | EBin | SAT | Pes | CREC | K |
| Retiro Baixo | 12,187 | 01/1996 a 12/2006 | 68.66 | 54.74 | 3,240.12 | 8.34 | 1.89 | 0.09 |
| Três Marias | 50,732 | - | 86.36 | 212.83 | 1,769.15 | 8.05 | 2.6 | 0.02 |
| Sobradinho | 467,000 | - | 60.7 | 751.65 | 1,500.14 | 5.75 | 4.10 | 0.01 |
| Itaparica | 93,188 | - | 97 | 322 | 5,000 | 5.6 | 0.69 | 13.25 |
| Reservoir | Minimum Streamflow (m3/s) | Maximum Streamflow (m3/s) |
|---|---|---|
| Três Marias | 100 | 2500 |
| Sobradinho | 700 | 8000 |
| Itaparica | 700 | 8000 |
| Demand | Priority |
|---|---|
| Human Supply (HS) | 1 |
| Transposition (TRA) | 2 |
| Irrigation (IRR) | 3 |
| Industry (IND) | 4 |
| Reservoir | Demands | Mean annual growth rate (%) | |||
| Historical (1961-2017) | D2 | D3 | D4 | ||
| Itaparica | Irrigation | 6.80 | 0.81 | 1.35 | 1.73 |
| Human Supply | 1.88 | 0.54 | 0.95 | 1.25 | |
| Industry | 2.87 | 3.73 | 0.66 | 2.46 | |
| Sobradinho | Irrigation | 7.42 | 1.41 | 2.93 | 3.80 |
| Human Supply | 3,03 | 0.97 | 1.18 | 1.36 | |
| Industry | 2,53 | 0.70 | 1.07 | 1.99 | |
| Três Marias | Irrigation | 10,99 | 1.80 | 3.70 | 4.62 |
| Human Supply | 1,84 | 1.02 | 0.02 | 0.77 | |
| Industry | 3,53 | 0.08 | 1.19 | 1.93 | |
| Retiro Baixo | Irrigation | 9,29 | 1.10 | 1.27 | 1.37 |
| Human Supply | 2,99 | 0.97 | 1.16 | 1.34 | |
| Industry | 2,15 | 1.53 | 0.99 | 2.06 | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
