Submitted:
19 January 2023
Posted:
23 January 2023
Read the latest preprint version here
Abstract
Keywords:
1. Introduction
2. Current Activities
2.1. Horticulture
2.2. Livestock
2.3. Harvesting, storage, and processing
2.4. Aquaculture and irrigation
3. Future trends
3.1. Conversion to biogas
3.2. Growth stimulation
3.3. Suggestions for future work
4. Conclusions
Funding
References
- IRENA. Renewable Power Generation Costs in 2019; International Renewable Energy Agency: Abu Dhabi, 2020.
- Scognamiglio, A. ‘Photovoltaic landscapes’: Design and assessment. A critical review for a new transdisciplinary design vision. Renewable and Sustainable Energy Reviews 2016, 55, 629-661. [CrossRef]
- Asanov, I. M.; Loktionov, E. Y. Possible benefits from PV modules integration in railroad linear structures. Renewable Energy Focus 2018, 25, 1-3. [CrossRef]
- IPCC. Climate Change and Land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems; The Intergovernmental Panel on Climate Change: Geneva, 2019.
- Bogdanski, A.; Dubois, O.; Jamieson, C.; Krell, R. Making integrated food-energy systems work for people and climate: an overview. Food and Agriculture Organization of the United Nations (FAO): Rome, 2011; p v + 107 pp.
- Ballif, C.; Perret-Aebi, L.-E.; Lufkin, S.; Rey, E. Integrated thinking for photovoltaics in buildings. Nature Energy 2018, 3 (6), 438-442. [CrossRef]
- Agostini, A.; Colauzzi, M.; Amaducci, S. Innovative agrivoltaic systems to produce sustainable energy: An economic and environmental assessment. Applied Energy 2021, 281, 116102. [CrossRef]
- Goetzberger, A.; Zastrow, A. Kartoffeln unter dem Kollektor. Sonnenenergie 1981, 3/81, 19-22.
- Agrivoltaics: Opportunities for Agriculture and the Energy Transition. A guideline for Germany. In Fraunhofer ISE: 2022.
- Agricolar Best Practices Guidelines. In Solar Power Europe: 2021.
- Schindele, S.; Trommsdorff, M.; Schlaak, A.; Obergfell, T.; Bopp, G.; Reise, C.; Braun, C.; Weselek, A.; Bauerle, A.; Högy, P.; Goetzberger, A.; Weber, E. Implementation of agrophotovoltaics: Techno-economic analysis of the price-performance ratio and its policy implications. Applied Energy 2020, 265, 114737. [CrossRef]
- Xue, J. Photovoltaic agriculture - New opportunity for photovoltaic applications in China. Renewable and Sustainable Energy Reviews 2017, 73, 1-9. [CrossRef]
- Irie, N.; Kawahara, N.; Esteves, A. M. Sector-wide social impact scoping of agrivoltaic systems: A case study in Japan. Renewable Energy 2019, 139, 1463-1476. [CrossRef]
- Barron-Gafford, G. A.; Pavao-Zuckerman, M. A.; Minor, R. L.; Sutter, L. F.; Barnett-Moreno, I.; Blackett, D. T.; Thompson, M.; Dimond, K.; Gerlak, A. K.; Nabhan, G. P.; Macknick, J. E. Agrivoltaics provide mutual benefits across the food–energy–water nexus in drylands. Nature Sustainability 2019, 2 (9), 848-855. [CrossRef]
- Sekiyama, T.; Nagashima, A. Solar Sharing for Both Food and Clean Energy Production: Performance of Agrivoltaic Systems for Corn, A Typical Shade-Intolerant Crop. Environments 2019, 6 (6), 65. [CrossRef]
- Proctor, K. W.; Murthy, G. S.; Higgins, C. W. Agrivoltaics Align with Green New Deal Goals While Supporting Investment in the US’ Rural Economy. Sustainability 2021, 13 (1), 137. [CrossRef]
- Majumdar, D.; Pasqualetti, M. J. Dual use of agricultural land: Introducing ‘agrivoltaics’ in Phoenix Metropolitan Statistical Area, USA. Landscape and Urban Planning 2018, 170, 150-168. [CrossRef]
- Leon, A.; Ishihara, K. N. Assessment of new functional units for agrivoltaic systems. Journal of Environmental Management 2018, 226, 493-498. [CrossRef]
- Marrou, H.; Guilioni, L.; Dufour, L.; Dupraz, C.; Wery, J. Microclimate under agrivoltaic systems: Is crop growth rate affected in the partial shade of solar panels? Agricultural and Forest Meteorology 2013, 177, 117-132. [CrossRef]
- Marrou, H.; Dufour, L.; Wery, J. How does a shelter of solar panels influence water flows in a soil–crop system? European Journal of Agronomy 2013, 50, 38-51. [CrossRef]
- Cossu, M.; Murgia, L.; Ledda, L.; Deligios, P. A.; Sirigu, A.; Chessa, F.; Pazzona, A. Solar radiation distribution inside a greenhouse with south-oriented photovoltaic roofs and effects on crop productivity. Applied Energy 2014, 133, 89-100. [CrossRef]
- Marrou, H.; Wery, J.; Dufour, L.; Dupraz, C. Productivity and radiation use efficiency of lettuces grown in the partial shade of photovoltaic panels. European Journal of Agronomy 2013, 44, 54-66. [CrossRef]
- Elamri, Y.; Cheviron, B.; Mange, A.; Dejean, C.; Liron, F.; Belaud, G. Rain concentration and sheltering effect of solar panels on cultivated plots. Hydrol. Earth Syst. Sci. Discuss. 2017, 1-37. [CrossRef]
- Elamri, Y.; Cheviron, B.; Lopez, J. M.; Dejean, C.; Belaud, G. Water budget and crop modelling for agrivoltaic systems: Application to irrigated lettuces. Agricultural Water Management 2018, 208, 440-453. [CrossRef]
- Valle, B.; Simonneau, T.; Sourd, F.; Pechier, P.; Hamard, P.; Frisson, T.; Ryckewaert, M.; Christophe, A. Increasing the total productivity of a land by combining mobile photovoltaic panels and food crops. Applied Energy 2017, 206, 1495-1507. [CrossRef]
- Dupraz, C.; Marrou, H.; Talbot, G.; Dufour, L.; Nogier, A.; Ferard, Y. Combining solar photovoltaic panels and food crops for optimising land use: Towards new agrivoltaic schemes. Renewable Energy 2011, 36 (10), 2725-2732. [CrossRef]
- Amaducci, S.; Yin, X.; Colauzzi, M. Agrivoltaic systems to optimise land use for electric energy production. Applied Energy 2018, 220, 545-561. [CrossRef]
- Willockx, B.; Herteleer, B.; Cappelle, J. Combining photovoltaic modules and food crops: First agrovoltaic prototype in Belgium. Renewable Energy and Power Quality Journal 2020, 18, 266-271.
- Ravi, S.; Macknick, J.; Lobell, D.; Field, C.; Ganesan, K.; Jain, R.; Elchinger, M.; Stoltenberg, B. Colocation opportunities for large solar infrastructures and agriculture in drylands. Applied Energy 2016, 165, 383-392. [CrossRef]
- Campana, P. E.; Li, H.; Zhang, J.; Zhang, R.; Liu, J.; Yan, J. Economic optimization of photovoltaic water pumping systems for irrigation. Energy Conversion and Management 2015, 95, 32-41. [CrossRef]
- Jones, M. A.; Odeh, I.; Haddad, M.; Mohammad, A. H.; Quinn, J. C. Economic analysis of photovoltaic (PV) powered water pumping and desalination without energy storage for agriculture. Desalination 2016, 387, 35-45. [CrossRef]
- Cho, J.; Park, S. M.; Park, A. R.; Lee, O. C.; Nam, G.; Ra, I.-H. Application of Photovoltaic Systems for Agriculture: A Study on the Relationship between Power Generation and Farming for the Improvement of Photovoltaic Applications in Agriculture. Energies 2020, 13 (18), 4815. [CrossRef]
- Weselek, A.; Ehmann, A.; Zikeli, S.; Lewandowski, I.; Schindele, S.; Högy, P. Agrophotovoltaic systems: applications, challenges, and opportunities. A review. Agronomy for Sustainable Development 2019, 39 (4), 35. [CrossRef]
- Santhana Krishnan, R.; Lakshmi Narayanan, K.; Golden Julie, E.; Boopesh Prashad, V. A.; Marimuthu, K.; Sundararajan, S. Solar Powered Mobile Controlled Agrobot. In 2022 Second International Conference on Artificial Intelligence and Smart Energy (ICAIS), IEEE: Coimbatore, India, 23-25 February 2022, 2022; p 9742856. [CrossRef]
- Kharchenko, V.; Panchenko, V.; Tikhonov, P. V.; Vasant, P. Cogenerative PV Thermal Modules of Different Design for Autonomous Heat and Electricity Supply. In Handbook of Research on Renewable Energy and Electric Resources for Sustainable Rural Development, Valeriy, K.; Pandian, V., Eds. IGI Global: Hershey, PA, USA, 2018; pp 86-119. [CrossRef]
- Mikheeva, E. R.; Katraeva, I. V.; Kovalev, A. A.; Kovalev, D. A.; Nozhevnikova, A. N.; Panchenko, V.; Fiore, U.; Litti, Y. V. The Start-Up of Continuous Biohydrogen Production from Cheese Whey: Comparison of Inoculum Pretreatment Methods and Reactors with Moving and Fixed Polyurethane Carriers. Applied Sciences 2021, 11 (2), 510. [CrossRef]
- Heikkilä, M.; Suomalainen, J.; Saukko, O.; Kippola, T.; Lähetkangas, K.; Koskela, P.; Kalliovaara, J.; Haapala, H.; Pirttiniemi, J.; Yastrebova, A.; Posti, H. Unmanned Agricultural Tractors in Private Mobile Networks. Network 2022, 2 (1), 1-20. [CrossRef]
- Jang, R.; Kasimov, F.; Zhang, D.; Kaliyeva, K. Design and Implementation of Unmanned Agricultural Machinery. IOP Conference Series: Materials Science and Engineering 2020, 799 (1), 012032. [CrossRef]
- Wang, L.; Huang, X.; Li, W.; Yan, K.; Han, Y.; Zhang, Y.; Pawlowski, L.; Lan, Y. Progress in Agricultural Unmanned Aerial Vehicles (UAVs) Applied in China and Prospects for Poland. Agriculture 2022, 12 (3), 397. [CrossRef]
- . [CrossRef]
- Renewable energy for agriculture: Insights from Southeast Asia. In IRENA: 2022.
- McKuin, B.; Zumkehr, A.; Ta, J.; Bales, R.; Viers, J. H.; Pathak, T.; Campbell, J. E. Energy and water co-benefits from covering canals with solar panels. Nature Sustainability 2021, 4 (7), 609-617. [CrossRef]
- Kumar, N. M.; JayannaKanchikere, P. M. Floatovoltaics: Towards improved energy efficiency, land and water management. International Journal of Civil Engineering and Technology 2018, 9 (7), 1089-1096.
- Zhang, Y.; Tan, S. C. Best practices for solar water production technologies. Nature Sustainability 2022, 5 (7), 554-556. [CrossRef]
- Chandel, S. S.; Nagaraju Naik, M.; Chandel, R. Review of solar photovoltaic water pumping system technology for irrigation and community drinking water supplies. Renewable and Sustainable Energy Reviews 2015, 49, 1084-1099. [CrossRef]
- Shao, S.; Zhang, Q.; Guo, S.; Sun, L. Intelligent Farm Meets Edge Computing: Energy-Efficient Solar Insecticidal Lamp Management. IEEE Systems Journal 2022, 16 (3), 3668-3678. [CrossRef]
- Lee, S.; Oh, M.-M. Electric stimulation promotes growth, mineral uptake, and antioxidant accumulation in kale (Brassica oleracea var. acephala). Bioelectrochemistry 2021, 138, 107727. [CrossRef]
- van Zanten, M.; Ai, H.; Quint, M. Plant thermotropism: an underexplored thermal engagement and avoidance strategy. Journal of Experimental Botany 2021, 72 (21), 7414-7420. [CrossRef]
- Chen, Z.; Galli, M.; Galavotti, A. Mechanisms of temperature-regulated growth and thermotolerance in crop species. Current Opinion in Plant Biology 2022, 65, 102134. [CrossRef]
- Sarraf, M.; Kataria, S.; Taimourya, H.; Santos, L. O.; Menegatti, R. D.; Jain, M.; Ihtisham, M.; Liu, S. Magnetic Field (MF) Applications in Plants: An Overview. Plants 2020, 9, 1139. [CrossRef]
- Radhakrishnan, R. Magnetic field regulates plant functions, growth and enhances tolerance against environmental stresses. Physiology and Molecular Biology of Plants 2019, 25 (5), 1107-1119. [CrossRef]
- Maffei, M. E. Magnetic field effects on plant growth, development, and evolution. Frontiers in Plant Science 2014, 5. [CrossRef]
- Boernke, F.; Rocksch, T. Thigmomorphogenesis – Control of plant growth by mechanical stimulation. Scientia Horticulturae 2018, 234, 344-353. [CrossRef]
- Hassanien, R. H. E.; HOU, T.-z.; Li, Y.-f.; Li, B.-m. Advances in Effects of Sound Waves on Plants. Journal of Integrative Agriculture 2014, 13 (2), 335-348. [CrossRef]
- Granata, G.; Altimari, P.; Pagnanelli, F.; De Greef, J. Recycling of solar photovoltaic panels: Techno-economic assessment in waste management perspective. Journal of Cleaner Production 2022, 363, 132384. [CrossRef]
- Daljit Singh, J. K.; Molinari, G.; Bui, J.; Soltani, B.; Rajarathnam, G. P.; Abbas, A. Life Cycle Assessment of Disposed and Recycled End-of-Life Photovoltaic Panels in Australia. Sustainability 2021, 13 (19), 11025. [CrossRef]
- Jordan, D. C.; Silverman, T. J.; Wohlgemuth, J. H.; Kurtz, S. R.; VanSant, K. T. Photovoltaic failure and degradation modes. Progress in Photovoltaics: Research and Applications 2017, 25 (4), 318-326. [CrossRef]
- Annigoni, E.; Virtuani, A.; Caccivio, M.; Friesen, G.; Chianese, D.; Ballif, C. 35 years of photovoltaics: Analysis of the TISO-10-kW solar plant, lessons learnt in safety and performance—Part 2. Progress in Photovoltaics: Research and Applications 2019, 27 (9), 760-778. [CrossRef]
- Virtuani, A.; Caccivio, M.; Annigoni, E.; Friesen, G.; Chianese, D.; Ballif, C.; Sample, T. 35 years of photovoltaics: Analysis of the TISO-10-kW solar plant, lessons learnt in safety and performance—Part 1. Progress in Photovoltaics: Research and Applications 2019, 27 (4), 328-339. [CrossRef]
- Poulek, V.; Strebkov, D. S.; Persic, I. S.; Libra, M. Towards 50 years lifetime of PV panels laminated with silicone gel technology. Solar Energy 2012, 86 (10), 3103-3108. [CrossRef]
- Ketzer, D.; Weinberger, N.; Rösch, C.; Seitz, S. B. Land use conflicts between biomass and power production – citizens’ participation in the technology development of Agrophotovoltaics. Journal of Responsible Innovation 2020, 7 (2), 193-216. [CrossRef]
- Mizanur Rahman, M.; Mahmodul Hasan, M.; Paatero, J.; Lahdelma, R. Hybrid application of biogas and solar resources to fulfill household energy needs: A potentially viable option in rural areas of developing countries. Renewable Energy 2014, 68, 35-45. [CrossRef]
- Yeamin Ali, M.; Hasan, M.; Atiqur Rahman, M.; Kafy, A.-A.; Ara, I.; Javed, A.; Redwanur Rahman, M. Life cycle energy and cost analysis of small scale biogas plant and solar PV system in rural areas of Bangladesh. Energy Procedia 2019, 160, 277-284. [CrossRef]
- Tamoor, M.; Suleman Tahir, M.; Sagir, M.; Bilal Tahir, M.; Iqbal, S.; Nawaz, T. Design of 3 kW integrated power generation system from solar and biogas. International Journal of Hydrogen Energy 2020, 45 (23), 12711-12720. [CrossRef]
- Gazda, W.; Stanek, W. Energy and environmental assessment of integrated biogas trigeneration and photovoltaic plant as more sustainable industrial system. Applied Energy 2016, 169, 138-149. [CrossRef]
- Kovalev, A. A.; Kovalev, D. A.; Zhuravleva, E. A.; Katraeva, I. V.; Panchenko, V.; Fiore, U.; Litti, Y. V. Two-stage anaerobic digestion with direct electric stimulation of methanogenesis: The effect of a physical barrier to retain biomass on the surface of a carbon cloth-based biocathode. Renewable Energy 2022, 181, 966-977. [CrossRef]
- Axaopoulos, P.; Panagakis, P.; Tsavdaris, A.; Georgakakis, D. Simulation and experimental performance of a solar-heated anaerobic digester. Solar Energy 2001, 70 (2), 155-164. [CrossRef]
- El-Mashad, H. M.; van Loon, W. K. P.; Zeeman, G.; Bot, G. P. A.; Lettinga, G. Design of A Solar Thermophilic Anaerobic Reactor for Small Farms. Biosystems Engineering 2004, 87 (3), 345-353. [CrossRef]
- Ouhammou, B.; Mohammed, A.; Sliman, S.; Jamil, A.; Mohammed, B.; Karouach, F.; Bari, H. E.; Kousksou, T. Experimental conception and thermo-energetic analysis of a solar biogas production system. Case Studies in Thermal Engineering 2022, 30, 101740. [CrossRef]
- Feng, R.; Li, J.; Dong, T.; Li, X. Performance of a novel household solar heating thermostatic biogas system. Applied Thermal Engineering 2016, 96, 519-526. [CrossRef]
- Li, J.; Jin, S.; Wan, D.; Li, H.; Gong, S.; Novakovic, V. Feasibility of annual dry anaerobic digestion temperature-controlled by solar energy in cold and arid areas. Journal of Environmental Management 2022, 318, 115626. [CrossRef]
- Zhong, Y.; Roman, M. B.; Zhong, Y.; Archer, S.; Chen, R.; Deitz, L.; Hochhalter, D.; Balaze, K.; Sperry, M.; Werner, E.; Kirk, D.; Liao, W. Using anaerobic digestion of organic wastes to biochemically store solar thermal energy. Energy 2015, 83, 638-646. [CrossRef]
- Gaballah, E. S.; Abdelkader, T. K.; Luo, S.; Yuan, Q.; Abomohra, A. E.-F. Enhancement of biogas production by integrated solar heating system: A pilot study using tubular digester. Energy 2020, 193, 116758. [CrossRef]
- Amo-Aidoo, A.; Hensel, O.; Korese, J. K.; Neba, F. A.; Sturm, B. A framework for optimization of energy efficiency and integration of hybridized-solar energy in agro-industrial plants: Bioethanol production from cassava in Ghana. Energy Reports 2021, 7, 1501-1519. [CrossRef]
- Panchenko, V. A. Solar Roof Panels for Electric and Thermal Generation. Applied Solar Energy 2018, 54 (5), 350-353. [CrossRef]
- Cope, K. R.; Snowden, M. C.; Bugbee, B. Photobiological Interactions of Blue Light and Photosynthetic Photon Flux: Effects of Monochromatic and Broad-Spectrum Light Sources. Photochemistry and Photobiology 2014, 90 (3), 574-584. [CrossRef]
- Loktionov, E. Y.; Sharaborova, E. S.; Shepitko, T. V. A Sustainable Concept for Permafrost Thermal Stabilization. Sustainable Energy Technologies and Assessments 2022, 52 (12), 102003. [CrossRef]
- Sharaborova, E. S.; Shepitko, T. V.; Loktionov, E. Y. Experimental proof of a solar-powered heat pump system for permafrost thermal stabilization. Energies 2021, 15 (6), 2118. [CrossRef]
- Campana, P. E.; Li, H.; Yan, J. Techno-economic feasibility of the irrigation system for the grassland and farmland conservation in China: Photovoltaic vs. wind power water pumping. Energy Conversion and Management 2015, 103, 311-320. [CrossRef]
- Roccaforte, G. Eclipse: A new photovoltaic panel designed for greenhouses and croplands. AIP Conference Proceedings 2021, 2361 (1), 070002. [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
