Submitted:
23 January 2023
Posted:
24 January 2023
You are already at the latest version
Abstract
Keywords:
Introduction
Method
Known ALS Pathophysiology
Insulin Is Impaired in ALS
Why Insulin Impairment Is Not Detected
Why Insulin Is Impaired in ALS
Insulin Protection in ALS
- Insulin should be protective in ALS. Insulin promotes glucose uptake and protein synthesis [99]. As part of these role, it streamlines cellular energy production and health in a variety of ways. It opposes oxidative stress by promoting GSH synthesis [152,153], opposes with GSH the apoptosis-promoting effects of H2O2 [154], acts as an anti-inflammatory agent in the immune system [155], promotes mitochondria health, oxidative phosphorylation, ATP production, and protein synthesis [156,157], promotes synaptic plasticity [158], and opposes calcium overload and toxicity [159,160,161,162,163,164,165,166]. Insulin promotes the production of N-Acetylglucosamine (GlcNAc) [167], whose use in O-GlcNAcylation decreases intracellular Ca2+ load [168], H2O2 production, and permeability pore opening [169]. The insulin-induced GSH inhibits stress-induced formation of stress granules [170], which are strongly associated with TDP-43 accumulation [33]. Conversely, chronic intracellular calcium [171,172] and mitochondria impairment [173,174] induce insulin resistance. Beta cell stress and IR are associated with unfolded proteins [175,176,177,178,179,180], permeability pore opening [181], and calcium toxicity [171,172,179,182,183,184]. In other words, insulin is an essential component of the stress compensatory mode, and its impairment may lead to decompensation.
- Insulin-based DB drugs are indeed protective in ALS. No clinical trials have been done using insulin therapy for ALS. However, several large studies (including all Medicare and a large Swedish population) have found that usage of DB drugs is specifically associated with decreased risk of developing ALS [185,186,187]. In an all-Taiwan study, moderate insulin use for DB was associated with decreased risk specifically for patients taking non-oral DB drugs [87].
- Why DB2 is associated with decreased risk. DB2 involves reduced insulin function, so it could be expected to increase ALS risk. However, it is associated with reduced risk (see references above). There are three possible explanations to this apparent paradox.
Insulin Trajectories, DB1, and BMI in ALS
- Normal secretion with late impairment. In the first scenario, insulin secretion capacity is not affected by the disease until it is normally reduced with aging. Since both insulin and IIGU promote glucose uptake, and since ALS involves excessive IIGU, overall pre-onset glucose uptake in this scenario should be higher, and glucose levels should be on the lower side. Indeed, in a large study in Sweden, ALS was associated with lower blood glucose from 20 years pre-onset to onset [192].
- Increased secretion with late impairment. In a second scenario, insulin secretion is chronically higher than normal most life. This can be ALS-independent, or driven by ALS processes (e.g., chronically high beta cell calcium). As explained above, this scenario eventually leads to both IR and impaired secretion, each of which can trigger the disease symptoms.
- Early impairment (early DB, DB1). In a fourth scenario, insulin secretion is reduced at an early age, due to ALS processes or independently. In this case, the protection that insulin provides is not present, resulting in increased ALS risk. This explains increased ALS risk with early DB (cited above), which is usually insulin-dependent (DB1).
- No impairment. Finally, it is still possible for insulin secretion and signaling to be intact throughout life, including during disease appearance and initial progression. In this scenario, the disease is completely driven by its core causes and aging. For example, steroids also decline with aging, and are generally protective by reversing the aging-related increase in brain calcium currents [200]. However, since chronic intracellular calcium induces IR [171,172,179,201,202], this scenario is less likely than the other ones.
Tests and Treatment
- Therapy. There are several lines of ALS treatment implied by the analysis here, the main one being insulin-based DB drugs. Since insulin opposes the main ALS processes and its impairment is directly associated with the appearance of symptoms, insulin-based drugs might slow down disease progression. In MTNs whose axons have only started degenerating, treatment may even reverse the process.
- Tests. Using insulin-based therapy for all ALS patients would require clinical trials and an approval process. However, such a therapy is already justified in patients with demonstrated insulin dysfunction. As part of ALS diagnosis, patients should undergo DB classification tests focusing on insulin function.
- Other treatment. Insulin-based therapy can be combined with other drugs. Calcium channel blockers, which reduce calcium load, are associated with reduced ALS risk [186,187]. Clinical trials using nimodipine alone did not help in ALS [208,209], but daily oral use of verapamil, with insulin treatment, improved beta cell function in adult recent onset DB1 in a human phase II clinical trial [210]. Anti-oxidative stress agents such as the drugs currently approved for ALS might also help, but it is not clear that using them would be cost-effective.
Discussion
- Insulin opposes all of the salient pathophysiological phenomena identified in ALS, and these in turn oppose insulin signaling.
- Insulin secretion and/or signaling have been found to be impaired in non-DB ALS in almost all of the studies that have explicitly tested for them.
- Insulin impairment is usually not diagnosed, most likely because it is masked by excessive insulin-independent glucose uptake.
- Different insulin impairment trajectories can explain why early/late DB are associated with increased/decreased risk of ALS, respectively, and the BMI data in ALS.
- DB drugs including insulin-based therapy have been found to be protective in ALS in several large retrospective studies.
Acknowledgments
Conflicts of Interest
Abbreviations
| ALS | amyotrophic lateral sclerosis. |
| AMPK | AMP-activated protein kinase. |
| ATP | adenosine triphosphate. |
| BMI | body mass index. |
| CRR | counter-regulatory response. |
| CSF | cerebrospinal fluid. |
| DB | diabetes mellitus. |
| DB1, DB2 | type 1, type 2 diabetes mellitus. |
| ER | endoplasmic reticulum. |
| fALS | familial ALS. |
| FDA | food and drug administration. |
| FTD | frontotemporal dementia. |
| GLP-1 | glucagon-like peptide 1. |
| Glut4 | glucose transporter type 4. |
| GSH | glutathione. |
| H2O2 | hydrogen peroxide. |
| HCD | hypercaloric carb diet. |
| IIGU | insulin-independent glucose uptake. |
| IR | insulin resistance. |
| MTN | motor neuron. |
| OGTT | oral glucose tolerance test. |
| sALS | sporadic ALS. |
| SOD | superoxide dismutase. |
| TDP-43 | TAR DNA-binding protein 43. |
References
- Leigh N, Sreedharan J, Wijesekera L. Motor neuron disease: Amyotrophic lateral sclerosis. In: Neuroscience in the 21st Century: From Basic to Clinical, Second Edition. Springer New York; 2016. p. 3799–3841.
- Hardiman O, Al-Chalabi A, Chio A, Corr EM, Logroscino G, Robberecht W, et al. Amyotrophic lateral sclerosis. Nature Reviews Disease Primers. 2017;3(1):1–19.
- Woollacott IO, Rohrer JD. The clinical spectrum of sporadic and familial forms of frontotemporal dementia. Journal of neurochemistry. 2016;138:6–31. [CrossRef]
- Arrant A, Roberson E. Frontotemporal Dementia. In: The Cerebral Cortex in Neurodegenerative and Neuropsychiatric Disorders. Elsevier; 2017. p. 141–175.
- Turnbull, J. Is edaravone harmful? (A placebo is not a control). Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration. 2018;19(7-8):477–482.
- Jaiswal, M.K. Riluzole and edaravone: A tale of two amyotrophic lateral sclerosis drugs. Medicinal Research Reviews. 2019;39(2):733–748. [CrossRef]
- Paganoni S, Hendrix S, Dickson SP, Knowlton N, Macklin EA, Berry JD, et al. Long-term survival of participants in the CENTAUR trial of sodium phenylbutyrate-taurursodiol in amyotrophic lateral sclerosis. Muscle & nerve. 2021;63(1):31–39. [CrossRef]
- Ito Y, Yamada M, Tanaka H, Aida K, Tsuruma K, Shimazawa M, et al. Involvement of CHOP, an ER-stress apoptotic mediator, in both human sporadic ALS and ALS model mice. Neurobiology of disease. 2009;36(3):470–476. [CrossRef]
- Ilieva EV, Ayala V, Jové M, Dalfó E, Cacabelos D, Povedano M, et al. Oxidative and endoplasmic reticulum stress interplay in sporadic amyotrophic lateral sclerosis. Brain. 2007;130(12):3111–3123. [CrossRef]
- Balendra R, Isaacs AM. C9orf72-mediated ALS and FTD: multiple pathways to disease. Nat Revs Neurol. 2018;14(9):544–558. [CrossRef]
- Hall CE, Yao Z, Choi M, Tyzack GE, Serio A, Luisier R, et al. Progressive motor neuron pathology and the role of astrocytes in a human stem cell model of VCP-related ALS. Cell reports. 2017;19(9):1739–1749. [CrossRef]
- Prause J, Goswami A, Katona I, Roos A, Schnizler M, Bushuven E, et al. Altered localization, abnormal modification and loss of function of Sigma receptor-1 in amyotrophic lateral sclerosis. Human molecular genetics. 2013;22(8):1581–1600. [CrossRef]
- Woehlbier U, Colombo A, Saaranen MJ, Pérez V, Ojeda J, Bustos FJ, et al. ALS-linked protein disulfide isomerase variants cause motor dysfunction. The EMBO journal. 2016;35(8):845–865. [CrossRef]
- Yang Q, Guo Zb. Polymorphisms in protein disulfide isomerase are associated with sporadic amyotrophic lateral sclerosis in the Chinese Han population. International Journal of Neuroscience. 2016;126(7):607–611. [CrossRef]
- Kwok CT, Morris AG, Frampton J, Smith B, Shaw CE, de Belleroche J. Association studies indicate that protein disulfide isomerase is a risk factor in amyotrophic lateral sclerosis. Free Radical Biology and Medicine. 2013;58:81–86. [CrossRef]
- Gonzalez-Perez P, Woehlbier U, Chian RJ, Sapp P, Rouleau GA, Leblond CS, et al. Identification of rare protein disulfide isomerase gene variants in amyotrophic lateral sclerosis patients. Gene. 2015;566(2):158–165. [CrossRef]
- Sasaki, S. Endoplasmic reticulum stress in motor neurons of the spinal cord in sporadic amyotrophic lateral sclerosis. Journal of Neuropathology & Experimental Neurology. 2010;69(4):346–355. [CrossRef]
- Dodge JC, Treleaven CM, Fidler JA, Tamsett TJ, Bao C, Searles M, et al. Metabolic signatures of amyotrophic lateral sclerosis reveal insights into disease pathogenesis. Proceedings of the National Academy of Sciences. 2013;110(26):10812–10817. [CrossRef]
- Nardo G, Pozzi S, Pignataro M, Lauranzano E, Spano G, Garbelli S, et al. Amyotrophic lateral sclerosis multiprotein biomarkers in peripheral blood mononuclear cells. PloS one. 2011;6(10):e25545. [CrossRef]
- Sarlette A, Krampfl K, Grothe C, Neuhoff Nv, Dengler R, Petri S. Nuclear erythroid 2-related factor 2-antioxidative response element signaling pathway in motor cortex and spinal cord in amyotrophic lateral sclerosis. Journal of Neuropathology & Experimental Neurology. 2008;67(11):1055–1062. [CrossRef]
- Ikawa M, Okazawa H, Tsujikawa T, Matsunaga A, Yamamura O, Mori T, et al. Increased oxidative stress is related to disease severity in the ALS motor cortex: a PET study. Neurology. 2015;84(20):2033–2039. [CrossRef]
- Blasco H, Garcon G, Patin F, Veyrat-Durebex C, Boyer J, Devos D, et al. Panel of oxidative stress and inflammatory biomarkers in ALS: a pilot study. Canadian Journal of Neurological Sciences. 2017;44(1):90–95. [CrossRef]
- Weiduschat N, Mao X, Hupf J, Armstrong N, Kang G, Lange D, et al. Motor cortex glutathione deficit in ALS measured in vivo with the J-editing technique. Neuroscience letters. 2014;570:102–107. [CrossRef]
- Ferrante RJ, Browne SE, Shinobu LA, Bowling AC, Baik MJ, MacGarvey U, et al. Evidence of increased oxidative damage in both sporadic and familial amyotrophic lateral sclerosis. Journal of neurochemistry. 1997;69(5):2064–2074. [CrossRef]
- Smith RG, Henry YK, Mattson MP, Appel SH. Presence of 4-hydroxynonenal in cerebrospinal fluid of patients with sporadic amyotrophic lateral sclerosis. Annals of Neurology: Official Journal of the American Neurological Association and the Child Neurology Society. 1998;44(4):696–699. [CrossRef]
- Pedersen WA, Fu W, Keller JN, Markesbery WR, Appel S, Smith RG, et al. Protein modification by the lipid peroxidation product 4-hydroxynonenal in the spinal cords of amyotrophic lateral sclerosis patients. Annals of neurology. 1998;44(5):819–824. [CrossRef]
- Mitsumoto H, Santella RM, Liu X, Bogdanov M, Zipprich J, Wu HC, et al. Oxidative stress biomarkers in sporadic ALS. Amyotrophic Lateral Sclerosis. 2008;9(3):177–183. [CrossRef]
- Blasco H, Veyrat-Durebex C, Bocca C, Patin F, Vourc’h P, Kouassi Nzoughet J, et al. Lipidomics reveals cerebrospinal-fluid signatures of ALS. Scientific reports. 2017;7(1):1–10.
- Simpson E, Henry Y, Henkel J, Smith R, Appel SH. Increased lipid peroxidation in sera of ALS patients: a potential biomarker of disease burden. Neurology. 2004;62(10):1758–1765. [CrossRef]
- Shaw PJ, Ince PG, Falkous G, Mantle D. Oxidative damage to protein in sporadic motor neuron disease spinal cord. Annals Neurol. 1995;38(4):691–695. [CrossRef]
- Béland LC, Markovinovic A, Jakovac H, De Marchi F, Bilic E, Mazzini L, et al. Immunity in amyotrophic lateral sclerosis: Blurred lines between excessive inflammation and inefficient immune responses. Brain Communications. 2020;2(2):fcaa124. [CrossRef]
- Beers DR, Appel SH. Immune dysregulation in amyotrophic lateral sclerosis: mechanisms and emerging therapies. The Lancet Neurology. 2019;18(2):211–220. [CrossRef]
- Prasad A, Bharathi V, Sivalingam V, Girdhar A, Patel BK. Molecular mechanisms of TDP-43 misfolding and pathology in amyotrophic lateral sclerosis. Frontiers in molecular neuroscience. 2019;12:25. [CrossRef]
- Siklós L, Engelhardt J, Harati Y, Smith RG, Joó F, Appel SH. Ultrastructural evidence for altered calcium in motor nerve terminals in amyotrophc lateral sclerosis. Annals of neurology. 1996;39(2):203–216. [CrossRef]
- Appel SH, Beers D, Siklos L, Engelhardt JI, Mosier DR. Calcium: the darth vader of ALS. Amyotrophic Lateral Sclerosis and Other Motor Neuron Disorders. 2001;2(1):47–54.
- Patai R, Nógrádi B, Engelhardt JI, Siklós L. Calcium in the pathomechanism of amyotrophic lateral sclerosis–Taking center stage? Biochemical and biophysical research communications. 2017;483(4):1031–1039.
- Van Den Bosch, L. Amyotrophic lateral sclerosis: mechanisms and therapeutic strategies. In: Disease-Modifying Targets in Neurodegenerative Disorders. Elsevier; 2017. p. 277–296.
- Larrodé P, Calvo AC, Moreno-Martínez L, de la Torre M, Moreno-García L, Molina N, et al. DREAM-dependent activation of astrocytes in amyotrophic lateral sclerosis. Molecular Neurobiology. 2018;55(1):1–12. [CrossRef]
- Patel AN, Mathew D. A study of gene expression changes in human spinal and oculomotor neurons; identifying potential links to sporadic ALS. Genes. 2020;11(4):448. [CrossRef]
- King AE, Woodhouse A, Kirkcaldie MT, Vickers JC. Excitotoxicity in ALS: Overstimulation, or overreaction? Experimental neurology. 2016;275:162–171. [CrossRef]
- Wiedemann FR, Manfredi G, Mawrin C, Beal MF, Schon EA. Mitochondrial DNA and respiratory chain function in spinal cords of ALS patients. Journal of neurochemistry. 2002;80(4):616–625. [CrossRef]
- Raman R, Allen SP, Goodall EF, Kramer S, Ponger LL, Heath PR, et al. Gene expression signatures in motor neurone disease fibroblasts reveal dysregulation of metabolism, hypoxia-response and RNA processing functions. Neuropathology and applied neurobiology. 2015;41(2):201–226. [CrossRef]
- Singh T, Jiao Y, Ferrando LM, Yablonska S, Li F, Horoszko EC, et al. Neuronal mitochondrial dysfunction in sporadic amyotrophic lateral sclerosis is developmentally regulated. Scientific reports. 2021;11(1):1–16. [CrossRef]
- Hor JH, Santosa MM, Lim VJW, Ho BX, Taylor A, Khong ZJ, et al. ALS motor neurons exhibit hallmark metabolic defects that are rescued by SIRT3 activation. Cell Death & Differentiation. 2021;28(4):1379–1397. [CrossRef]
- Yamashita T, Hatakeyama T, Sato K, Fukui Y, Hishikawa N, Takemoto M, et al. Hypoxic stress visualized in the cervical spinal cord of ALS patients. Neurological Research. 2021;43(6):429–433. [CrossRef]
- Yu CH, Davidson S, Harapas CR, Hilton JB, Mlodzianoski MJ, Laohamonthonkul P, et al. TDP-43 triggers mitochondrial DNA release via mPTP to activate cGAS/STING in ALS. Cell. 2020;183(3):636–649.
- Wobst HJ, Mack KL, Brown DG, Brandon NJ, Shorter J. The clinical trial landscape in amyotrophic lateral sclerosis—Past, present, and future. Medicinal research reviews. 2020;40(4):1352–1384. [CrossRef]
- Steinke J, Tyler HR. The association of amyotrophic lateral sclerosis (motor neuron disease) and carbohydrate intolerance, a clinical study. Metabolism. 1964;13(11):1376–1381. [CrossRef]
- Gotoh F, Kitamura A, Koto A, Kataoka K, Atsuji H. Abnormal insulin secretion in amyotrophic lateral sclerosis. Journal of the neurological sciences. 1972;16(2):201–207. [CrossRef]
- Saffer D, Morley J, Bill P. Carbohydrate metabolism in motor neurone disease. Journal of Neurology, Neurosurgery & Psychiatry. 1977;40(6):533–537. [CrossRef]
- Shimizu T, Honda M, Ohashi T, Tsujino M, Nagaoka U, Kawata A, et al. Hyperosmolar hyperglycemic state in advanced amyotrophic lateral sclerosis. Amyotrophic Lateral Sclerosis. 2011;12(5):379–381.
- Ngo S, Steyn F, Huang L, Mantovani S, Pfluger C, Woodruff T, et al. Altered expression of metabolic proteins and adipokines in patients with amyotrophic lateral sclerosis. Journal of the neurological sciences. 2015;357(1-2):22–27. [CrossRef]
- Araki K, Araki A, Honda D, Izumoto T, Hashizume A, Hijikata Y, et al. TDP-43 regulates early-phase insulin secretion via CaV1.2-mediated exocytosis in islets. The Journal of clinical investigation. 2019;129(9):3578–3593. [CrossRef]
- Collis W, Engel W. Glucose metabolism in five neuromuscular disorders. Neurology. 1968;18(9):915–915. [CrossRef]
- Ionaşescu V, Luca N. Studies on carbohydrate metabolism in amyotrophic lateral sclerosis and hereditary proximal spinal muscular atrophy. Acta Neurologica Scandinavica. 1964;40(1):47–57.
- Utterback RA, Cummins AJ, Cape CA, Goldenberg J. Pancreatic function in amyotrophic lateral sclerosis. Journal of Neurology, Neurosurgery & Psychiatry. 1970;33(4):544–547. [CrossRef]
- Shahani B, Davies-Jones G, Russell WR. Motor neurone disease: Further evidence for an abnormality of nerve metabolism. Journal of Neurology, Neurosurgery & Psychiatry. 1971;34(2):185–191. [CrossRef]
- Moore W, Festoff B. INSULIN-RECEPTORS (IR) AND INSULIN SENSITIVITY (IS) IN AMYOTROPHIC LATERAL SCLEROSIS (ALS). In: Neurology. vol. 32. LIPPINCOTT-RAVEN PUBL 227 EAST WASHINGTON SQ, PHILADELPHIA, PA 19106; 1982. p. A105–A105.
- Moxley RT, Griggs RC, Forbes GB, Goldblatt D, Donohoe K. Influence of muscle wasting on oral glucose tolerance testing. Clinical Science. 1983;64(6):601–609. [CrossRef]
- Murai A, MIYAHARA T, TANAKA T, KANEKO T, SAKO Y, KAMEYAMA M. Abnormalities of lipoprotein and carbohydrate metabolism in degenerative diseases of the nervous system-motor neuron disease and spinocerebellar degeneration. The Tohoku Journal of Experimental Medicine. 1983;139(4):365–376.
- Reyes ET, Perurena OH, Festoff BW, Jorgensen R, Moore WV. Insulin resistance in amyotrophic lateral sclerosis. Journal of the neurological sciences. 1984;63(3):317–324. [CrossRef]
- Harno K, Rissanen A, Palo J. Glucose tolerance in amyotrophic lateral sclerosis. Acta neurologica scandinavica. 1984;70(6):451–455. [CrossRef]
- Pradat PF, Bruneteau G, Gordon PH, Dupuis L, Bonnefont-Rousselot D, Simon D, et al. Impaired glucose tolerance in patients with amyotrophic lateral sclerosis. Amyotrophic Lateral Sclerosis. 2010;11(1-2):166–171.
- Nygren I, Fagius J. High resting level and weak response of baroreflex-governed sympathetic outflow in amyotrophic lateral sclerosis. Muscle & nerve. 2011;43(3):432–440. [CrossRef]
- Li JY, Cui LY, Sun XH, Shen Dc, Yang XZ, Liu Q, et al. Alterations in metabolic biomarkers and their potential role in amyotrophic lateral sclerosis. Annals of Clinical and Translational Neurology. 2022;9(7):1027–1038. [CrossRef]
- Harris MD, Davidson MB, Rosenberg CS. Insulin antagonism is not a primary abnormality of amyotrophic lateral sclerois but is related to disease severity. The Journal of Clinical Endocrinology & Metabolism. 1986;63(1):41–46. [CrossRef]
- Astin K, Wilde C, Davies-Jones G. Glucose metabolism and insulin response in the plasma and CSF in motor neurone disease. Journal of the neurological Sciences. 1975;25(2):205–210. [CrossRef]
- Cumings, J. Biochemical aspects. Proceedings of the Royal Society of Medicine. 1962;55:1023–1024.
- Wuolikainen A, Jonsson P, Ahnlund M, Antti H, Marklund SL, Moritz T, et al. Multi-platform mass spectrometry analysis of the CSF and plasma metabolomes of rigorously matched amyotrophic lateral sclerosis, Parkinson’s disease and control subjects. Molecular BioSystems. 2016;12(4):1287–1298.
- Ahmed RM, MacMillan M, Bartley L, Halliday GM, Kiernan MC, Hodges JR, et al. Systemic metabolism in frontotemporal dementia. Neurology. 2014;83(20):1812–1818. [CrossRef]
- Turner MR, Goldacre R, Ramagopalan S, Talbot K, Goldacre MJ. Autoimmune disease preceding amyotrophic lateral sclerosis: an epidemiologic study. Neurology. 2013;81(14):1222–1225. [CrossRef]
- Mariosa D, Kamel F, Bellocco R, Ye W, Fang F. Association between diabetes and amyotrophic lateral sclerosis in Sweden. European journal of neurology. 2015;22(11):1436–1442. [CrossRef]
- Sun Y, Lu CJ, Chen RC, Hou WH, Li CY. Risk of amyotrophic lateral sclerosis in patients with diabetes: a nationwide population-based cohort study. Journal of Epidemiology. 2015;p. JE20140176.
- Kioumourtzoglou MA, Rotem RS, Seals RM, Gredal O, Hansen J, Weisskopf MG. Diabetes mellitus, obesity, and diagnosis of amyotrophic lateral sclerosis: a population-based study. JAMA neurology. 2015;72(8):905–911.
- Ferri L, Ajdinaj P, Rispoli MG, Carrarini C, Barbone F, D’Ardes D, et al. Diabetes mellitus and amyotrophic lateral sclerosis: a systematic review. Biomolecules. 2021;11(6):867. [CrossRef]
- Wei QQ, Chen Y, Cao B, Ou RW, Zhang L, Hou Y, et al. Blood hemoglobin A1c levels and amyotrophic lateral sclerosis survival. Molecular neurodegeneration. 2017;12(1):1–7. [CrossRef]
- Scarmeas N, Shih T, Stern Y, Ottman R, Rowland LP. Premorbid weight, body mass, and varsity athletics in ALS. Neurology. 2002;59(5):773–775. [CrossRef]
- O’Reilly ÉJ, Wang H, Weisskopf MG, Fitzgerald KC, Falcone G, McCullough ML, et al. Premorbid body mass index and risk of amyotrophic lateral sclerosis. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration. 2013;14(3):205–211. [CrossRef]
- Gallo V, Wark PA, Jenab M, Pearce N, Brayne C, Vermeulen R, et al. Prediagnostic body fat and risk of death from amyotrophic lateral sclerosis: the EPIC cohort. Neurology. 2013;80(9):829–838. [CrossRef]
- Huisman MH, Seelen M, van Doormaal PT, de Jong SW, de Vries JH, van der Kooi AJ, et al. Effect of presymptomatic body mass index and consumption of fat and alcohol on amyotrophic lateral sclerosis. JAMA neurology. 2015;72(10):1155–1162.
- Mariosa D, Beard JD, Umbach DM, Bellocco R, Keller J, Peters TL, et al. Body mass index and amyotrophic lateral sclerosis: a study of US military veterans. American journal of epidemiology. 2017;185(5):362–371. [CrossRef]
- Lian L, Liu M, Cui L, Guan Y, Liu T, Cui B, et al. Environmental risk factors and amyotrophic lateral sclerosis (ALS): a case-control study of ALS in China. Journal of Clinical Neuroscience. 2019;66:12–18. [CrossRef]
- Nakken O, Meyer HE, Stigum H, Holmøy T. High BMI is associated with low ALS risk: a population-based study. Neurology. 2019;93(5):e424–e432. [CrossRef]
- Diekmann K, Kuzma-Kozakiewicz M, Piotrkiewicz M, Gromicho M, Grosskreutz J, Andersen PM, et al. Impact of comorbidities and co-medication on disease onset and progression in a large German ALS patient group. Journal of Neurology. 2020;267(7):2130–2141. [CrossRef]
- Schumacher J, Peter R, Nagel G, Rothenbacher D, Rosenbohm A, Ludolph A, et al. Statins, diabetes mellitus and prognosis of amyotrophic lateral sclerosis: data from 501 patients of a population-based registry in southwest Germany. European journal of neurology. 2020;27(8):1405–1414.
- D’Ovidio F, d’Errico A, Carnà P, Calvo A, Costa G, Chiò A. The role of pre-morbid diabetes on developing amyotrophic lateral sclerosis. European journal of neurology. 2018;25(1):164–170. [CrossRef]
- Tsai CP, Lee JKW, Lee CTC. Type II diabetes mellitus and the incidence of amyotrophic lateral sclerosis. Journal of Neurology. 2019;266(9):2233–2243. [CrossRef]
- Tsai CP, Hu C, Lee CTC. Finding diseases associated with amyotrophic lateral sclerosis: A total population-based case–control study. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration. 2019;20(1-2):82–89. [CrossRef]
- Mitchell CS, Hollinger SK, Goswami SD, Polak MA, Lee RH, Glass JD. Antecedent disease is less prevalent in amyotrophic lateral sclerosis. Neurodegenerative Diseases. 2015;15(2):109–113. [CrossRef]
- Seelen M, van Doormaal PT, Visser AE, Huisman MH, Roozekrans MH, de Jong SW, et al. Prior medical conditions and the risk of amyotrophic lateral sclerosis. Journal of neurology. 2014;261(10):1949–1956. [CrossRef]
- Körner S, Kollewe K, Ilsemann J, Müller-Heine A, Dengler R, Krampfl K, et al. Prevalence and prognostic impact of comorbidities in amyotrophic lateral sclerosis. European journal of neurology. 2013;20(4):647–654.
- Jawaid A, Salamone A, Strutt A, Murthy S, Wheaton M, McDowell E, et al. ALS disease onset may occur later in patients with pre-morbid diabetes mellitus. European Journal of Neurology. 2010;17(5):733–739. [CrossRef]
- Zhang L, Chen L, Fan D. The protective role of pre-morbid type 2 diabetes in patients with amyotrophic lateral sclerosis: a center-based survey in China. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration. 2020;21(3-4):209–215. [CrossRef]
- Chen L, Xu L, Tang L, Xia K, Tian D, Zhang G, et al. Trends in the clinical features of amyotrophic lateral sclerosis: A 14-year Chinese cohort study. European Journal of Neurology. 2021;28(9):2893–2900. [CrossRef]
- Brown RH, Al-Chalabi A. Amyotrophic lateral sclerosis. New England Journal of Medicine. 2017;377(2):162–172.
- Feldman EL, Goutman SA, Petri S, Mazzini L, Savelieff MG, Shaw PJ, et al. Amyotrophic lateral sclerosis. The Lancet. 2022;400:1363–1380. [CrossRef]
- D’Amico E, Grosso G, Nieves JW, Zanghì A, Factor-Litvak P, Mitsumoto H. Metabolic abnormalities, dietary risk factors and nutritional management in amyotrophic lateral sclerosis. Nutrients. 2021;13(7):2273. [CrossRef]
- Guillot SJ, Bolborea M, Dupuis L. Dysregulation of energy homeostasis in amyotrophic lateral sclerosis. Current Opinion in Neurology. 2021;34(5):773–780. [CrossRef]
- Petersen MC, Shulman GI. Mechanisms of insulin action and insulin resistance. Physiological reviews. 2018;98(4):2133–2223. [CrossRef]
- Osler ME, Zierath JR. Minireview: adenosine 5’-monophosphate-activated protein kinase regulation of fatty acid oxidation in skeletal muscle. Endocrinology. 2008;149(3):935–941. [CrossRef]
- Sato M, Dehvari N, Öberg AI, Dallner OS, Sandström AL, Olsen JM, et al. Improving type 2 diabetes through a distinct adrenergic signaling pathway involving mTORC2 that mediates glucose uptake in skeletal muscle. Diabetes. 2014;63(12):4115–4129.
- Shiuchi T, Toda C, Okamoto S, Coutinho EA, Saito K, Miura S, et al. Induction of glucose uptake in skeletal muscle by central leptin is mediated by muscle β2-adrenergic receptor but not by AMPK. Scientific reports. 2017;7(1):1–11. [CrossRef]
- Jessen N, Goodyear LJ. Contraction signaling to glucose transport in skeletal muscle. Journal of Applied Physiology. 2005;99(1):330–337. [CrossRef]
- Wright DC, Hucker KA, Holloszy JO, Han DH. Ca2+ and AMPK both mediate stimulation of glucose transport by muscle contractions. Diabetes. 2004;53(2):330–335. [CrossRef]
- Best JD, Kahn SE, Ader M, Watanabe RM, Ni TC, Bergman RN. Role of glucose effectiveness in the determination of glucose tolerance. Diabetes care. 1996;19(9):1018–1030. [CrossRef]
- Youn J, Gulve E, Holloszy J. Calcium stimulates glucose transport in skeletal muscle by a pathway independent of contraction. American Journal of Physiology-Cell Physiology. 1991;260(3):C555–C561. [CrossRef]
- El Messari S, Aït-Ikhlef A, Ambroise DH, Penicaud L, Arluison M. Expression of insulin-responsive glucose transporter GLUT4 mRNA in the rat brain and spinal cord: an in situ hybridization study. Journal of chemical neuroanatomy. 2002;24(4):225–242. [CrossRef]
- Choeiri C, Staines W, Messier C. Immunohistochemical localization and quantification of glucose transporters in the mouse brain. Neuroscience. 2002;111(1):19–34. [CrossRef]
- Smith IC, Bombardier E, Vigna C, Tupling AR. ATP consumption by sarcoplasmic reticulum Ca2+ pumps accounts for 40-50% of resting metabolic rate in mouse fast and slow twitch skeletal muscle. PloS one. 2013;8(7):e68924. [CrossRef]
- Cistaro A, Valentini MC, Chiò A, Nobili F, Calvo A, Moglia C, et al. Brain hypermetabolism in amyotrophic lateral sclerosis: a FDG PET study in ALS of spinal and bulbar onset. European journal of nuclear medicine and molecular imaging. 2012;39(2):251–259. [CrossRef]
- Canosa A, Pagani M, Cistaro A, Montuschi A, Iazzolino B, Fania P, et al. 18F-FDG-PET correlates of cognitive impairment in ALS. Neurology. 2016;86(1):44–49.
- Pagani M, Chiò A, Valentini MC, Öberg J, Nobili F, Calvo A, et al. Functional pattern of brain FDG-PET in amyotrophic lateral sclerosis. Neurology. 2014;83(12):1067–1074. [CrossRef]
- Van Laere K, Vanhee A, Verschueren J, De Coster L, Driesen A, Dupont P, et al. Value of 18fluorodeoxyglucose–positron-emission tomography in amyotrophic lateral sclerosis: a prospective study. JAMA neurology. 2014;71(5):553–561.
- Sala A, Iaccarino L, Fania P, Vanoli EG, Fallanca F, Pagnini C, et al. Testing the diagnostic accuracy of [18F] FDG-PET in discriminating spinal-and bulbar-onset amyotrophic lateral sclerosis. European Journal of Nuclear Medicine and Molecular Imaging. 2019;46(5):1117–1131. [CrossRef]
- Zanovello M, Sorarù G, Campi C, Anglani M, Spimpolo A, Berti S, et al. Brainstem glucose hypermetabolism in ALS/FTD and shorten survival: a 18F-FDG PET/MR study. Journal of Nuclear Medicine. 2021.
- Vaisman N, Lusaus M, Nefussy B, Niv E, Comaneshter D, Hallack R, et al. Do patients with amyotrophic lateral sclerosis (ALS) have increased energy needs? Journal of the neurological sciences. 2009;279(1-2):26–29.
- Cattaneo M, Jesus P, Lizio A, Fayemendy P, Guanziroli N, Corradi E, et al. The hypometabolic state: a good predictor of a better prognosis in amyotrophic lateral sclerosis. Journal of Neurology, Neurosurgery & Psychiatry. 2022;93(1):41–47. [CrossRef]
- Steyn FJ, Ioannides ZA, Van Eijk RP, Heggie S, Thorpe KA, Ceslis A, et al. Hypermetabolism in ALS is associated with greater functional decline and shorter survival. Journal of Neurology, Neurosurgery & Psychiatry. 2018;89(10):1016–1023. [CrossRef]
- He J, Fu J, Zhao W, Ren C, Liu P, Chen L, et al. Hypermetabolism associated with worse prognosis of amyotrophic lateral sclerosis. Journal of Neurology. 2022;269(3):1447–1455. [CrossRef]
- Jésus P, Fayemendy P, Nicol M, Lautrette G, Sourisseau H, Preux PM, et al. Hypermetabolism is a deleterious prognostic factor in patients with amyotrophic lateral sclerosis. European Journal of Neurology. 2018;25(1):97–104. [CrossRef]
- Desport JC, Preux PM, Magy L, Boirie Y, Vallat JM, Beaufrère B, et al. Factors correlated with hypermetabolism in patients with amyotrophic lateral sclerosis. The American journal of clinical nutrition. 2001;74(3):328–334.
- Desport JC, Torny F, Lacoste M, Preux PM, Couratier P. Hypermetabolism in ALS: correlations with clinical and paraclinical parameters. Neurodegenerative Diseases. 2005;2(3-4):202–207. [CrossRef]
- Bouteloup C, Desport JC, Clavelou P, Guy N, Derumeaux-Burel H, Ferrier A, et al. Hypermetabolism in ALS patients: an early and persistent phenomenon. Journal of neurology. 2009;256(8):1236–1242.
- Hinault T, Segobin S, Benbrika S, Carluer L, Doidy F, Eustache F, et al. Longitudinal grey matter and metabolic contributions to cognitive changes in amyotrophic lateral sclerosis. Brain Communications. 2022;4(5):fcac228. [CrossRef]
- Buhour MS, Doidy F, Mondou A, Pélerin A, Carluer L, Eustache F, et al. Voxel-based mapping of grey matter volume and glucose metabolism profiles in amyotrophic lateral sclerosis. EJNMMI research. 2017;7(1):1–11. [CrossRef]
- Canosa A, Calvo A, Moglia C, Manera U, Vasta R, Di Pede F, et al. Brain metabolic changes across King’s stages in amyotrophic lateral sclerosis: a 18F-2-fluoro-2-deoxy-d-glucose-positron emission tomography study. European journal of nuclear medicine and molecular imaging. 2021;48(4):1124–1133. [CrossRef]
- Diehl-Schmid J, Grimmer T, Drzezga A, Bornschein S, Riemenschneider M, Förstl H, et al. Decline of cerebral glucose metabolism in frontotemporal dementia: a longitudinal 18F-FDG-PET-study. Neurobiology of aging. 2007;28(1):42–50.
- Fukai M, Hirosawa T, Kikuchi M, Hino S, Kitamura T, Ouchi Y, et al. Different patterns of glucose hypometabolism underlie functional decline in frontotemporal dementia and Alzheimer’s disease: FDG-PET study. Neuropsychiatry. 2018;8(2):441–447. [CrossRef]
- Bejanin A, Tammewar G, Marx G, Cobigo Y, Iaccarino L, Kornak J, et al. Longitudinal structural and metabolic changes in frontotemporal dementia. Neurology. 2020;95(2):e140–e154.
- Schroeter ML, Vogt B, Frisch S, Becker G, Seese A, Barthel H, et al. Dissociating behavioral disorders in early dementia-an FDG-PET study. Psychiatry Research: Neuroimaging. 2011;194(3):235–244. [CrossRef]
- Morbelli S, Ferrara M, Fiz F, Dessi B, Arnaldi D, Picco A, et al. Mapping brain morphological and functional conversion patterns in predementia late-onset bvFTD. European journal of nuclear medicine and molecular imaging. 2016;43(7):1337–1347. [CrossRef]
- Liu YJ, Ju TC, Chen HM, Jang YS, Lee LM, Lai HL, et al. Activation of AMP-activated protein kinase α1 mediates mislocalization of TDP-43 in amyotrophic lateral sclerosis. Human molecular genetics. 2015;24(3):787–801. [CrossRef]
- Liu YJ, Lee LM, Lai HL, Chern Y. Aberrant activation of AMP-activated protein kinase contributes to the abnormal distribution of HuR in amyotrophic lateral sclerosis. FEBS letters. 2015;589(4):432–439.
- Chida K, Sakamaki S, Takasu T. Alteration in autonomic function and cardiovascular regulation in amyotrophic lateral sclerosis. Journal of neurology. 1989;236(3):127–130. [CrossRef]
- Shindo K, Tsunoda S, Shiozawa Z. Microneurographic analysis of muscle sympathetic nerve activity in amyotrophic lateral sclerosis. Clinical Autonomic Research. 1993;3(2):131–135. [CrossRef]
- Tanaka Y, Yamada M, Koumura A, Sakurai T, Hayashi Y, Kimura A, et al. Cardiac sympathetic function in the patients with amyotrophic lateral sclerosis: analysis using cardiac [123I] MIBG scintigraphy. Journal of neurology. 2013;260(9):2380–2386. [CrossRef]
- Merico A, Cavinato M. Autonomic dysfunction in the early stage of ALS with bulbar involvement. Amyotrophic Lateral Sclerosis. 2011;12(5):363–367. [CrossRef]
- Pavlovic S, Stevic Z, Milovanovic B, Milicic B, Rakocevic-Stojanovic V, Lavrnic D, et al. Impairment of cardiac autonomic control in patients with amyotrophic lateral sclerosis. Amyotrophic Lateral Sclerosis. 2010;11(3):272–276.
- Takuma H, Kwak S, Yoshizawa T, Kanazawa I. Reduction of GluR2 RNA editing, a molecular change that increases calcium influx through AMPA receptors, selective in the spinal ventral gray of patients with amyotrophic lateral sclerosis. Annals of neurology. 1999;46(6):806–815. [CrossRef]
- Shindo K, Tsunoda Si, Shiozawa Z. Increased sympathetic outflow to muscles in patients with amyotrophic lateral sclerosis: a comparison with other neuromuscular patients. Journal of the neurological sciences. 1995;134(1-2):57–60. [CrossRef]
- Shindo K, Miwa M, Kobayashi F, Nagasaka T, Takiyama Y. Muscle sympathetic nerve activity in frontotemporal lobar degeneration is similar to amyotrophic lateral sclerosis. Clinical Autonomic Research. 2016;26(1):1–5. [CrossRef]
- Kasarskis EJ, Berryman S, Vanderleest JG, Schneider AR, McClain CJ. Nutritional status of patients with amyotrophic lateral sclerosis: relation to the proximity of death. The American journal of clinical nutrition. 1996;63(1):130–137.
- van Mantgem MRJ, van Eijk RP, van der Burgh HK, Tan HH, Westeneng HJ, van Es MA, et al. Prognostic value of weight loss in patients with amyotrophic lateral sclerosis: A population-based study. Journal of Neurology, Neurosurgery & Psychiatry. 2020;91(8):867–875.
- Moglia C, Calvo A, Grassano M, Canosa A, Manera U, D’Ovidio F, et al. Early weight loss in amyotrophic lateral sclerosis: outcome relevance and clinical correlates in a population-based cohort. Journal of Neurology, Neurosurgery & Psychiatry. 2019;90(6):666–673. [CrossRef]
- Saccà F, Quarantelli M, Rinaldi C, Tucci T, Piro R, Perrotta G, et al. A randomized controlled clinical trial of growth hormone in amyotrophic lateral sclerosis: clinical, neuroimaging, and hormonal results. Journal of neurology. 2012;259(1):132–138.
- Hubbard R, Will A, Peterson G, Sanchez A, Gillan W, Tan S. Elevated plasma glucagon in amyotrophic lateral sclerosis. Neurology. 1992;42(8):1532–1532. [CrossRef]
- Patacchioli FR, Monnazzi P, Scontrini A, Tremante E, Caridi I, Brunetti E, et al. Adrenal dysregulation in amyotrophic lateral sclerosis. Journal of endocrinological investigation. 2003;26(12):RC23–RC25. [CrossRef]
- Gargiulo Monachelli G, Meyer M, Rodríguez G, Garay L, Sica R, De Nicola A, et al. Endogenous progesterone is associated to amyotrophic lateral sclerosis prognostic factors. Acta neurologica scandinavica. 2011;123(1):60–67.
- Spataro R, Volanti P, Vitale F, Meli F, Colletti T, Di Natale A, et al. Plasma cortisol level in amyotrophic lateral sclerosis. Journal of the neurological sciences. 2015;358(1-2):282–286. [CrossRef]
- Fang F, Hållmarker U, James S, Ingre C, Michaëlsson K, Ahlbom A, et al. Amyotrophic lateral sclerosis among cross-country skiers in Sweden. European journal of epidemiology. 2016;31(3):247–253.
- Daneshvar DH, Mez J, Alosco ML, Baucom ZH, Mahar I, Baugh CM, et al. Incidence of and mortality from amyotrophic lateral sclerosis in National Football League athletes. JAMA network open. 2021;4(12):e2138801.
- Okouchi M, Okayama N, Steven Alexander J, Yee Aw T. NRF2-dependent glutamate-L-cysteine ligase catalytic subunit expression mediates insulin protection against hyperglycemia-induced brain endothelial cell apoptosis. Current neurovascular research. 2006;3(4):249–261. [CrossRef]
- Duarte AI, Santos MS, Oliveira CR, Rego AC. Insulin neuroprotection against oxidative stress in cortical neurons–involvement of uric acid and glutathione antioxidant defenses. Free Radical Biology and Medicine. 2005;39(7):876–889. [CrossRef]
- Bayunova L, Zorina I, Zakharova I, Avrova N. Insulin increases viability of neurons in rat cerebral cortex and normalizes Bax/Bcl-2 ratio under conditions of oxidative stress. Bulletin of Experimental Biology and Medicine. 2018;165(1):14–17. [CrossRef]
- van Niekerk G, Christowitz C, Conradie D, Engelbrecht AM. Insulin as an immunomodulatory hormone. Cytokine & Growth Factor Reviews. 2020;52:34–44. [CrossRef]
- Brunetta HS, Holloway GP. A theoretical argument to support the biological benefits for insulin stimulating mitochondrial oxidative phosphorylation. Current Opinion in Physiology. 2022;p. 100491. [CrossRef]
- Stump CS, Short KR, Bigelow ML, Schimke JM, Nair KS. Effect of insulin on human skeletal muscle mitochondrial ATP production, protein synthesis, and mRNA transcripts. Proceedings of the National Academy of Sciences. 2003;100(13):7996–8001. [CrossRef]
- Ferrario CR, Reagan LP. Insulin-mediated synaptic plasticity in the CNS: Anatomical, functional and temporal contexts. Neuropharmacology. 2018;136:182–191. [CrossRef]
- Zemel, M.B. Nutritional and endocrine modulation of intracellular calcium: implications in obesity, insulin resistance and hypertension. Molecular and Cellular Effects of Nutrition on Disease Processes. 1998;p. 129–136. [CrossRef]
- Fredersdorf S, Thumann C, Zimmermann WH, Vetter R, Graf T, Luchner A, et al. Increased myocardial SERCA expression in early type 2 diabetes mellitus is insulin dependent: In vivo and in vitro data. Cardiovascular diabetology. 2012;11(1):1–11.
- Kahn AM, Allen JC, Seidel CL, Song T. Protein kinase C mediates insulin-inhibited Ca2+ transport and contraction of vascular smooth muscle. American journal of hypertension. 2000;13(4):383–388. [CrossRef]
- O’Malley D, Harvey J. MAPK-dependent actin cytoskeletal reorganization underlies BK channel activation by insulin. European J Neurosci. 2007;25(3):673–682. [CrossRef]
- Kahn AM, Seidel CL, Allen JC, O’Neil RG, Shelat H, Song T. Insulin reduces contraction and intracellular calcium concentration in vascular smooth muscle. Hypertension. 1993;22(5):735–742. [CrossRef]
- Maimaiti S, Frazier HN, Anderson KL, Ghoweri AO, Brewer LD, Porter NM, et al. Novel calcium-related targets of insulin in hippocampal neurons. Neuroscience. 2017;364:130. [CrossRef]
- Mankad P, James A, Siriwardena AK, Elliott AC, Bruce JI. Insulin protects pancreatic acinar cells from cytosolic calcium overload and inhibition of plasma membrane calcium pump. Journal of Biological Chemistry. 2012;287(3):1823–1836.
- Huang TJ, Price SA, Chilton L, Calcutt NA, Tomlinson DR, Verkhratsky A, et al. Insulin prevents depolarization of the mitochondrial inner membrane in sensory neurons of type 1 diabetic rats in the presence of sustained hyperglycemia. Diabetes. 2003;52(8):2129–2136. [CrossRef]
- Whelan SA, Lane MD, Hart GW. Regulation of the O-linked β-N-acetylglucosamine transferase by insulin signaling. Journal of Biological Chemistry. 2008;283(31):21411–21417.
- Nagy T, Champattanachai V, Marchase RB, Chatham JC. Glucosamine inhibits angiotensin II-induced cytoplasmic Ca2+ elevation in neonatal cardiomyocytes via protein-associated O-linked N-acetylglucosamine. American Journal of Physiology-Cell Physiology. 2006;290(1):C57–C65. [CrossRef]
- Ngoh GA, Watson LJ, Facundo HT, Jones SP. Augmented O-GlcNAc signaling attenuates oxidative stress and calcium overload in cardiomyocytes. Amino acids. 2011;40(3):895–911.
- Candé C, Vahsen N, Métivier D, Tourrière H, Chebli K, Garrido C, et al. Regulation of cytoplasmic stress granules by apoptosis-inducing factor. Journal of cell science. 2004;117(19):4461–4468. [CrossRef]
- Pomytkin I, Krasil’nikova I, Bakaeva Z, Surin A, Pinelis V. Excitotoxic glutamate causes neuronal insulin resistance by inhibiting insulin receptor/Akt/mTOR pathway. Molecular brain. 2019;12(1):1–4. [CrossRef]
- McCarty, MF. PKC-mediated modulation of L-type calcium channels may contribute to fat-induced insulin resistance. Medical hypotheses. 2006;66(4):824–831. [CrossRef]
- Hoehn KL, Salmon AB, Hohnen-Behrens C, Turner N, Hoy AJ, Maghzal GJ, et al. Insulin resistance is a cellular antioxidant defense mechanism. Proceedings of the National Academy of Sciences. 2009;106(42):17787–17792. [CrossRef]
- Fazakerley DJ, Chaudhuri R, Yang P, Maghzal GJ, Thomas KC, Krycer JR, et al. Mitochondrial CoQ deficiency is a common driver of mitochondrial oxidants and insulin resistance. Elife. 2018;7:e32111. [CrossRef]
- Riahi Y, Israeli T, Cerasi E, Leibowitz G. Effects of proinsulin misfolding on β-cell dynamics, differentiation and function in diabetes. Diabetes, Obesity and Metabolism. 2018;20:95–103. [CrossRef]
- Harding HP, Zeng H, Zhang Y, Jungries R, Chung P, Plesken H, et al. Diabetes mellitus and exocrine pancreatic dysfunction in perk-/- mice reveals a role for translational control in secretory cell survival. Molecular cell. 2001;7(6):1153–1163. [CrossRef]
- Lipson KL, Fonseca SG, Ishigaki S, Nguyen LX, Foss E, Bortell R, et al. Regulation of insulin biosynthesis in pancreatic beta cells by an endoplasmic reticulum-resident protein kinase IRE1. Cell metabolism. 2006;4(3):245–254. [CrossRef]
- Pomytkin I, Pinelis V. Brain insulin resistance: Focus on insulin receptor-mitochondria interactions. Life. 2021;11(3):262. [CrossRef]
- Wang CH, Wei YH. Role of mitochondrial dysfunction and dysregulation of Ca2+ homeostasis in the pathophysiology of insulin resistance and type 2 diabetes. Journal of Biomedical Science. 2017;24(1):1–11. [CrossRef]
- James DE, Stöckli J, Birnbaum MJ. The aetiology and molecular landscape of insulin resistance. Nature Reviews Molecular Cell Biology. 2021;22(11):751–771. [CrossRef]
- Taddeo E, Laker R, Breen D, Akhtar Y, Kenwood B, Liao J, et al. Opening of the mitochondrial permeability transition pore links mitochondrial dysfunction to insulin resistance in skeletal muscle. Molecular metabolism. 2014;3(2):124–134.
- Zarain-Herzberg A, García-Rivas G, Estrada-Avilés R. Regulation of SERCA pumps expression in diabetes. Cell Calcium. 2014;56(5):302–310. [CrossRef]
- Uryash A, Mijares A, Lopez CE, Adams JA, Lopez JR. Chronic Elevation of Skeletal Muscle Ca2+i Impairs Glucose Uptake. An in Vivo and in Vitro Study. Frontiers in Physiology. 2022;p. 775.
- Yu J, Shi Y, Zhao K, Yang G, Yu L, Li Y, et al. Enhanced expression of β cell CaV3. 1 channels impairs insulin release and glucose homeostasis. Proceedings of the National Academy of Sciences. 2020;117(1):448–453. [CrossRef]
- Mariosa D, Kamel F, Bellocco R, Ronnevi LO, Almqvist C, Larsson H, et al. Antidiabetics, statins and the risk of amyotrophic lateral sclerosis. European journal of neurology. 2020;27(6):1010–1016. [CrossRef]
- Hu N, Ji H. Medications on hypertension, hyperlipidemia, diabetes, and risk of amyotrophic lateral sclerosis: a systematic review and meta-analysis. Neurological Sciences. 2022;p. 1–11.
- Pfeiffer RM, Mayer B, Kuncl RW, Check DP, Cahoon EK, Rivera DR, et al. Identifying potential targets for prevention and treatment of amyotrophic lateral sclerosis based on a screen of medicare prescription drugs. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration. 2020;21(3-4):235–245. [CrossRef]
- Dupuis L, Dengler R, Heneka MT, Meyer T, Zierz S, Kassubek J, et al. A randomized, double blind, placebo-controlled trial of pioglitazone in combination with riluzole in amyotrophic lateral sclerosis. PloS one. 2012;7(6):e37885. [CrossRef]
- Ibrahim, M.M. Subcutaneous and visceral adipose tissue: structural and functional differences. Obesity reviews. 2010;11(1):11–18. [CrossRef]
- De Tata, V. Age-related impairment of pancreatic beta-cell function: pathophysiological and cellular mechanisms. Frontiers in Endocrinology. 2014;5:138.
- Frazier HN, Ghoweri AO, Anderson KL, Lin RL, Porter NM, Thibault O. Broadening the definition of brain insulin resistance in aging and Alzheimer’s disease. Experimental neurol. 2019;313:79–87. [CrossRef]
- Mariosa D, Hammar N, Malmström H, Ingre C, Jungner I, Ye W, et al. Blood biomarkers of carbohydrate, lipid, and apolipoprotein metabolisms and risk of amyotrophic lateral sclerosis: a more than 20-year follow-up of the Swedish AMORIS cohort. Annals of neurology. 2017;81(5):718–728. [CrossRef]
- Dardiotis E, Siokas V, Sokratous M, Tsouris Z, Aloizou AM, Florou D, et al. Body mass index and survival from amyotrophic lateral sclerosis: a meta-analysis. Neurology: Clinical Practice. 2018;8(5):437–444. [CrossRef]
- Peter RS, Rosenbohm A, Dupuis L, Brehme T, Kassubek J, Rothenbacher D, et al. Life course body mass index and risk and prognosis of amyotrophic lateral sclerosis: results from the ALS registry Swabia. European journal of epidemiology. 2017;32(10):901–908. [CrossRef]
- Goutman SA, Boss J, Iyer G, Habra H, Savelieff MG, Karnovsky A, et al. Body mass index associates with amyotrophic lateral sclerosis survival and metabolomic profiles. Muscle & Nerve. 2022.
- Lindauer E, Dupuis L, Müller HP, Neumann H, Ludolph AC, Kassubek J. Adipose tissue distribution predicts survival in amyotrophic lateral sclerosis. PloS one. 2013;8(6):e67783. [CrossRef]
- Nau KL, Bromberg MB, Forshew DA, Katch VL. Individuals with amyotrophic lateral sclerosis are in caloric balance despite losses in mass. Journal of the neurological sciences. 1995;129:47–49. [CrossRef]
- Marin B, Desport JC, Kajeu P, Jésus P, Nicolaud B, Nicol M, et al. Alteration of nutritional status at diagnosis is a prognostic factor for survival of amyotrophic lateral sclerosis patients. Journal of Neurology, Neurosurgery & Psychiatry. 2011;82(6):628–634. [CrossRef]
- de la Rubia Ortí JE, Armero JLP, Sanchis-Sanchis CE, Sancho-Castillo S, Salazar A, Caplliure-Llopis J, et al. Muscle Function Differences between Patients with Bulbar and Spinal Onset Amyotrophic Lateral Sclerosis. Does It Depend on Peripheral Glucose? Journal of Clinical Medicine. 2021;10(8):1582. [CrossRef]
- Brewer LD, Dowling AL, Curran-Rauhut MA, Landfield PW, Porter NM, Blalock EM. Estradiol reverses a calcium-related biomarker of brain aging in female rats. Journal of Neuroscience. 2009;29(19):6058–6067. [CrossRef]
- Wold LE, Dutta K, Mason MM, Ren J, Cala SE, Schwanke ML, et al. Impaired SERCA function contributes to cardiomyocyte dysfunction in insulin resistant rats. Journal of molecular and cellular cardiology. 2005;39(2):297–307. [CrossRef]
- Ozcan L, De Souza JC, Harari AA, Backs J, Olson EN, Tabas I. Activation of calcium/calmodulin-dependent protein kinase II in obesity mediates suppression of hepatic insulin signaling. Cell metabolism. 2013;18(6):803–815. [CrossRef]
- American Diabetes Association Professional Practice Committee. Pharmacologic approaches to glycemic treatment: Standards of Medical Care in Diabetes – 2022. Diabetes Care. 2022;45(Supplement_1):S125–S143. [CrossRef]
- Wills AM, Hubbard J, Macklin EA, Glass J, Tandan R, Simpson EP, et al. Hypercaloric enteral nutrition in patients with amyotrophic lateral sclerosis: a randomised, double-blind, placebo-controlled phase 2 trial. The Lancet. 2014;383(9934):2065–2072. [CrossRef]
- Zhou G, Myers R, Li Y, Chen Y, Shen X, Fenyk-Melody J, et al. Role of AMP-activated protein kinase in mechanism of metformin action. The Journal of clinical investigation. 2001;108(8):1167–1174.
- Kaneb HM, Sharp PS, Rahmani-Kondori N, Wells DJ. Metformin treatment has no beneficial effect in a dose-response survival study in the SOD1G93A mouse model of ALS and is harmful in female mice. PloS one. 2011;6(10360):e24189. [CrossRef]
- Cui C, Sun J, McKay KA, Ingre C, Fang F. Medication use and risk of amyotrophic lateral sclerosis-a systematic review. BMC medicine. 2022;20(1):1–23. [CrossRef]
- Ziv I, Achiron A, Djaldetti R, Abraham M, Melamed E. Can nimodipine affect progression of motor neuron disease? A double-blind pilot study. Clinical neuropharmacology. 1994;17(5):423–428.
- Miller RG, Shepherd R, Dao H, Khramstov A, Mendoza M, Graves J, et al. Controlled trial of nimodipine in amyotrophic lateral sclerosis. Neuromuscular Disorders. 1996;6(2):101–104. [CrossRef]
- Ovalle F, Grimes T, Xu G, Patel AJ, Grayson TB, Thielen LA, et al. Verapamil and beta cell function in adults with recent-onset type 1 diabetes. Nature medicine. 2018;24(8):1108–1112.
- Secnik J, Cermakova P, Fereshtehnejad SM, Dannberg P, Johnell K, Fastbom J, et al. Diabetes in a large dementia cohort: clinical characteristics and treatment from the Swedish dementia registry. Diabetes care. 2017;40(9):1159–1166. [CrossRef]
- Arnold SE, Arvanitakis Z, Macauley-Rambach SL, Koenig AM, Wang HY, Ahima RS, et al. Brain insulin resistance in type 2 diabetes and Alzheimer disease: concepts and conundrums. Nat Rev Neurol. 2018;14(3):168–181.
- de la Monte SM, Tong M, Wands JR. The 20-year voyage aboard the journal of Alzheimer’s disease: docking at ‘Type 3 Diabetes’, environmental/exposure factors, pathogenic mechanisms, and potential treatments. Journal of Alzheimer’s Disease. 2018;62(3):1381–1390. [CrossRef]
- Golimstok A, Cámpora N, Rojas JI, Fernandez MC, Elizondo C, Soriano E, et al. Cardiovascular risk factors and frontotemporal dementia: a case–control study. Translational neurodegeneration. 2014;3(1):1–6. [CrossRef]
| 1 | A theory of ALS presented in a companion paper points to a specific calcium channel protein as the core cause of ALS, and this protein is indeed expressed in beta cells. |
| 2 | See below why this argument is less valid for DB1. |
| 3 | Metformin was also harmful to females in the SOD1 mouse ALS model [206]. |
| 4 | Although it is possible that the early OGTT results had included some fALS patients. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).