Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Contribution of High-Resolution Digital Twins for the Definition of Rockfall Activity and Associated Hazard Modelling

Version 1 : Received: 7 December 2022 / Approved: 8 December 2022 / Online: 8 December 2022 (02:56:53 CET)

A peer-reviewed article of this Preprint also exists.

Robiati, C.; Mastrantoni, G.; Francioni, M.; Eyre, M.; Coggan, J.; Mazzanti, P. Contribution of High-Resolution Virtual Outcrop Models for the Definition of Rockfall Activity and Associated Hazard Modelling. Land 2023, 12, 191. Robiati, C.; Mastrantoni, G.; Francioni, M.; Eyre, M.; Coggan, J.; Mazzanti, P. Contribution of High-Resolution Virtual Outcrop Models for the Definition of Rockfall Activity and Associated Hazard Modelling. Land 2023, 12, 191.

Abstract

The increased accessibility of drone technology and the wide use of Structure from Motion 3D scene reconstruction have transformed the approach for mapping inaccessible slopes undergoing active rockfalls. The Poggio Baldi landslide offers the possibility for many of these techniques to be deployed and integrated with the aim of defining a suitable workflow for the analysis of hazards in mountainous regions. The generation of multitemporal digital slope twins (2016 – 2019), informed a rockfall trajectory analysis that was carried out with a physical-based GIS model. We tested the rockfall scenario reconstructed and calibrated on the analysis of the rock mass characteristics and the geometrical and physical constraints given by the multi-temporal analysis of the SfM point clouds. This time-independent rockfall hazard analysis is a critical component to any subsequent holistic risk analysis on this case study, and any potential similar mountainous setting.

Keywords

Rockfall Hazard; Remote Sensing; 3D Modelling.

Subject

Environmental and Earth Sciences, Geophysics and Geology

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.