Article
Version 8
Preserved in Portico This version is not peer-reviewed
The Imaginary Universe
Version 1
: Received: 2 December 2022 / Approved: 2 December 2022 / Online: 2 December 2022 (09:58:36 CET)
Version 2 : Received: 7 December 2022 / Approved: 8 December 2022 / Online: 8 December 2022 (07:43:33 CET)
Version 3 : Received: 11 December 2022 / Approved: 12 December 2022 / Online: 12 December 2022 (03:39:27 CET)
Version 4 : Received: 18 December 2022 / Approved: 19 December 2022 / Online: 19 December 2022 (10:52:31 CET)
Version 5 : Received: 24 December 2022 / Approved: 26 December 2022 / Online: 26 December 2022 (11:07:39 CET)
Version 6 : Received: 20 January 2023 / Approved: 23 January 2023 / Online: 23 January 2023 (09:31:48 CET)
Version 7 : Received: 10 March 2023 / Approved: 13 March 2023 / Online: 13 March 2023 (09:45:17 CET)
Version 8 : Received: 17 March 2023 / Approved: 20 March 2023 / Online: 20 March 2023 (09:55:20 CET)
Version 9 : Received: 24 March 2023 / Approved: 27 March 2023 / Online: 27 March 2023 (15:46:32 CEST)
Version 10 : Received: 2 April 2023 / Approved: 3 April 2023 / Online: 3 April 2023 (11:08:11 CEST)
Version 11 : Received: 6 April 2023 / Approved: 10 April 2023 / Online: 10 April 2023 (05:17:51 CEST)
Version 12 : Received: 14 April 2023 / Approved: 17 April 2023 / Online: 17 April 2023 (03:09:25 CEST)
Version 13 : Received: 5 May 2023 / Approved: 8 May 2023 / Online: 8 May 2023 (10:45:18 CEST)
Version 14 : Received: 29 May 2023 / Approved: 2 June 2023 / Online: 2 June 2023 (08:15:16 CEST)
Version 15 : Received: 18 August 2023 / Approved: 21 August 2023 / Online: 21 August 2023 (11:39:16 CEST)
Version 16 : Received: 1 October 2023 / Approved: 2 October 2023 / Online: 3 October 2023 (11:53:49 CEST)
Version 17 : Received: 19 October 2023 / Approved: 20 October 2023 / Online: 20 October 2023 (04:33:33 CEST)
Version 18 : Received: 29 May 2024 / Approved: 30 May 2024 / Online: 30 May 2024 (08:14:20 CEST)
Version 19 : Received: 21 August 2024 / Approved: 22 August 2024 / Online: 22 August 2024 (08:25:59 CEST)
Version 20 : Received: 27 August 2024 / Approved: 27 August 2024 / Online: 28 August 2024 (13:00:37 CEST)
Version 2 : Received: 7 December 2022 / Approved: 8 December 2022 / Online: 8 December 2022 (07:43:33 CET)
Version 3 : Received: 11 December 2022 / Approved: 12 December 2022 / Online: 12 December 2022 (03:39:27 CET)
Version 4 : Received: 18 December 2022 / Approved: 19 December 2022 / Online: 19 December 2022 (10:52:31 CET)
Version 5 : Received: 24 December 2022 / Approved: 26 December 2022 / Online: 26 December 2022 (11:07:39 CET)
Version 6 : Received: 20 January 2023 / Approved: 23 January 2023 / Online: 23 January 2023 (09:31:48 CET)
Version 7 : Received: 10 March 2023 / Approved: 13 March 2023 / Online: 13 March 2023 (09:45:17 CET)
Version 8 : Received: 17 March 2023 / Approved: 20 March 2023 / Online: 20 March 2023 (09:55:20 CET)
Version 9 : Received: 24 March 2023 / Approved: 27 March 2023 / Online: 27 March 2023 (15:46:32 CEST)
Version 10 : Received: 2 April 2023 / Approved: 3 April 2023 / Online: 3 April 2023 (11:08:11 CEST)
Version 11 : Received: 6 April 2023 / Approved: 10 April 2023 / Online: 10 April 2023 (05:17:51 CEST)
Version 12 : Received: 14 April 2023 / Approved: 17 April 2023 / Online: 17 April 2023 (03:09:25 CEST)
Version 13 : Received: 5 May 2023 / Approved: 8 May 2023 / Online: 8 May 2023 (10:45:18 CEST)
Version 14 : Received: 29 May 2023 / Approved: 2 June 2023 / Online: 2 June 2023 (08:15:16 CEST)
Version 15 : Received: 18 August 2023 / Approved: 21 August 2023 / Online: 21 August 2023 (11:39:16 CEST)
Version 16 : Received: 1 October 2023 / Approved: 2 October 2023 / Online: 3 October 2023 (11:53:49 CEST)
Version 17 : Received: 19 October 2023 / Approved: 20 October 2023 / Online: 20 October 2023 (04:33:33 CEST)
Version 18 : Received: 29 May 2024 / Approved: 30 May 2024 / Online: 30 May 2024 (08:14:20 CEST)
Version 19 : Received: 21 August 2024 / Approved: 22 August 2024 / Online: 22 August 2024 (08:25:59 CEST)
Version 20 : Received: 27 August 2024 / Approved: 27 August 2024 / Online: 28 August 2024 (13:00:37 CEST)
How to cite: Łukaszyk, S. The Imaginary Universe. Preprints 2022, 2022120045. https://doi.org/10.20944/preprints202212.0045.v8 Łukaszyk, S. The Imaginary Universe. Preprints 2022, 2022120045. https://doi.org/10.20944/preprints202212.0045.v8
Abstract
Imaginary dimensions in physics require an imaginary set of base Planck units and some negative parameter cn corresponding to the speed of light in vacuum c. Fresnel coefficients for the normal incidence of electromagnetic radiation on monolayer graphene introduce the second, negative fine-structure constant α2−1≈−140.178 as a fundamental constant of nature and this constant introduces these imaginary base Planck units along with this negative parameter cn≈−3.06×108 [m/s]. Neutron stars and white dwarfs, considered as objects emitting perfect black-body radiation, are conjectured to possess energy exceeding their mass-energy equivalence ratios, wherein the imaginary parts of two complex energies inaccessible for direct observation make storing excess of these energies possible. With this assumption, black holes are fundamentally uncharged; charged micro neutron stars and white dwarfs with masses lower than 5.7275×10−10 [kg] cannot be observed; and the radii of white dwarfs' cores are limited to RWD<6.7933 GMWD/c2. A black-body object is in the equilibrium of complex energies of mass, charge, and electromagnetic radiation if its radius Req≈2.7665 GMBBO/c2.
Keywords
emergent dimensionality; imaginary dimensions; Planck units; fine-structure constant; black holes; neutron stars; white dwarfs; complex energy; complex force; Buchdahl's theorem; photon sphere; holographic principle; mathematical physics
Subject
Biology and Life Sciences, Endocrinology and Metabolism
Copyright: This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Comments (1)
We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.
Leave a public commentSend a private comment to the author(s)
* All users must log in before leaving a comment
Commenter: Szymon Łukaszyk
Commenter's Conflict of Interests: Author
2. Black-body object in equilibrium for k~2.7665.
3. Complex forces simplification.