Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

The Direct Effect of Enriching the Gaseous Combustible with 23% Hydrogen in Condensing Boilers’ Operation

Version 1 : Received: 21 November 2022 / Approved: 24 November 2022 / Online: 24 November 2022 (06:17:11 CET)

A peer-reviewed article of this Preprint also exists.

Calotă, R.; Antonescu, N.N.; Stănescu, D.-P.; Năstase, I. The Direct Effect of Enriching the Gaseous Combustible with 23% Hydrogen in Condensing Boilers’ Operation. Energies 2022, 15, 9373. Calotă, R.; Antonescu, N.N.; Stănescu, D.-P.; Năstase, I. The Direct Effect of Enriching the Gaseous Combustible with 23% Hydrogen in Condensing Boilers’ Operation. Energies 2022, 15, 9373.

Abstract

Following the international trend of using hydrogen as combustible in many industry branches, this paper investigates the impact of mixing methane gas with 23% hydrogen (G222) on condensing boilers’ operation. After modeling and testing several boilers with heat exchange surface different designs, the authors gathered enough information to introduce a new concept, namely High-Performance Condensing Boiler (HPCB). All the boilers that fit into this approach have the same operational parameters at nominal heat load, including the CO2 concentrations in flue gases. After testing a flattened pipes condensing boiler, a CO2 emission reduction coefficient of 1.1 was determined, when converting from methane gas to G222 as combustible. Thus, by inserting into the national grid a G222 mixture, an important reduction in greenhouse gases can be achieved. For a 28 kW condensing boiler the annual reduction in CO2 emissions averages 1.26 tons, value which was experimentally obtained and is consistent with the theoretical evaluation.

Keywords

CO2 emissions; hydrogen (H2) combustible; energy efficiency; decarbonization

Subject

Engineering, Energy and Fuel Technology

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.