Preprint
Article

Analysis of Fast Fluorescence Kinetics of a Single Cyanobacterium Trapped in an Optical Microcavity

Altmetrics

Downloads

180

Views

62

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

09 November 2022

Posted:

10 November 2022

You are already at the latest version

Alerts
Abstract
Photosynthesis is one the most important biological processes on earth, producing life-giving oxygen and is the basis for a large variety of plant products. Measurable properties of photosynthesis provide information about its biophysical state and, in turn, the physiological conditions of a photoautotrophic organism. For instance, chlorophyll fluorescence of an intact photosystem is not linear as in the case of a single fluorescent dye in solution, but shows temporal changes related to the quantum yield of the photosystem. Commercial photosystem analyzers already use the fluorescence kinetics characteristics of photosystems to infer the viability of organisms under investigation. Here, we provide a novel approach based on an optical Fabry-Pérot microcavity or that enables the readout of photosynthetic properties and activity for an individual cyanobacterium. This approach offers a completely new dimension of information, which would normally be lost due to averaging in ensemble measurements obtained from a large population of bacteria.
Keywords: 
Subject: Biology and Life Sciences  -   Plant Sciences
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated