Preprint Review Version 1 Preserved in Portico This version is not peer-reviewed

Metal Coordination Effects on the Photophysics of Dipyrrinato Photosensitizers

Version 1 : Received: 21 September 2022 / Approved: 23 September 2022 / Online: 23 September 2022 (09:14:36 CEST)

How to cite: Teeuwen, P.C.P.; Melissari, Z.; Senge, M.O.; Williams, R.M. Metal Coordination Effects on the Photophysics of Dipyrrinato Photosensitizers. Preprints 2022, 2022090363 (doi: 10.20944/preprints202209.0363.v1). Teeuwen, P.C.P.; Melissari, Z.; Senge, M.O.; Williams, R.M. Metal Coordination Effects on the Photophysics of Dipyrrinato Photosensitizers. Preprints 2022, 2022090363 (doi: 10.20944/preprints202209.0363.v1).

Abstract

Within this work we review the metal coordination effect on the photophysics of metal dipyrrinato complexes. Dipyrrinato complexes are promising candidates in the search for alternative transition metal photosensitizers for application in photodynamic therapy (PDT). These complexes can be activated by irradiation with light of a specific wavelength, after which cytotoxic reactive oxygen species (ROS) are generated. The metal coordination allows for the use of the heavy atom effect, which can enhance the triplet generation necessary for generation of ROS. Additionally, the flexibility of these complexes for metal ions, substitutions and ligands allows the possibility to tune their photophysical properties. A general overview of the mechanism of photodynamic therapy and the properties of the triplet photosensitizers is given, followed by further details of dipyrrinato complexes described in the literature that show relevance as photosensitizers for PDT. In particular, the photophysical properties of Re(I), Ru(II), Ir(III), Ni(II), Cu(II), Pd(II), Pt(II), Zn(II), Ga(III), In(III), Al(III), Sn(II), and P dipyrrinato complexes are discussed. The potential for future development in the field of (dipyrrinato)metal complexes is addressed and several new research topics are suggested throughout this work. We propose that significant advances could be made for heteroleptic bis(dipyrrinato)zinc(II) and homoleptic bis(dipyrrinato)palladium(II) complexes and their application as photosensitizers for PDT.

Keywords

Photochemistry; Photophysics; Coordination Chemistry; Metal atom effect; Photodynamic Therapy; Triplet Photosensitizer; Dipyrrinato Complexes; Singlet Oxygen Generation; Triplet-triplet Annihilation; Heavy atom effect.

Subject

CHEMISTRY, Inorganic & Nuclear Chemistry

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our diversity statement.

Leave a public comment
Send a private comment to the author(s)
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.

We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.