Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

What do the Transcriptome and Proteome of Menstrual Blood-derived Mesenchymal Stem Cells Tell us about Endometriosis?

Version 1 : Received: 9 September 2022 / Approved: 13 September 2022 / Online: 13 September 2022 (12:32:56 CEST)

A peer-reviewed article of this Preprint also exists.

Penariol, L.B.C.; Thomé, C.H.; Tozetti, P.A.; Paier, C.R.K.; Buono, F.O.; Peronni, K.C.; Orellana, M.D.; Covas, D.T.; Moraes, M.E.A.; Silva, W.A., Jr.; Rosa-e-Silva, J.C.; Ferriani, R.A.; Faça, V.M.; Poli-Neto, O.B.; Tiezzi, D.G.; Meola, J. What do the Transcriptome and Proteome of Menstrual Blood-Derived Mesenchymal Stem Cells Tell Us about Endometriosis? Int. J. Mol. Sci. 2022, 23, 11515. Penariol, L.B.C.; Thomé, C.H.; Tozetti, P.A.; Paier, C.R.K.; Buono, F.O.; Peronni, K.C.; Orellana, M.D.; Covas, D.T.; Moraes, M.E.A.; Silva, W.A., Jr.; Rosa-e-Silva, J.C.; Ferriani, R.A.; Faça, V.M.; Poli-Neto, O.B.; Tiezzi, D.G.; Meola, J. What do the Transcriptome and Proteome of Menstrual Blood-Derived Mesenchymal Stem Cells Tell Us about Endometriosis? Int. J. Mol. Sci. 2022, 23, 11515.

Abstract

Given the importance of menstrual blood in the pathogenesis of endometriosis and the multifunctional roles of menstrual mesenchymal stem cells (MenSCs) in regenerative medicine, this issue has gained prominence in the scientific community. Moreover, recent reviews highlight how robust the integrated assessment of omics data is for endometriosis. To our knowledge, no study has applied the multi-omics approaches to endometriosis MenSCs. It is a case-control study at a university-affiliated hospital. MenSCs transcriptome and proteome data were obtained by RNA-seq and UHPLC-MS/MS detection. Among the differentially expressed proteins and genes, we emphasize ATF3, ID1, ID3, FOSB, SNAI1, NR4A1, EGR1, LAMC3, and ZFP36 genes and MT2A, TYMP, COL1A1, COL6A2, and NID2 proteins that were already reported in the endometriosis. Our functional enrichment analysis reveals integrated modulating signaling pathways such as epithelial-mesenchymal transition (↑) and PI3K signaling via AKT to mTORC1 (↓in proteome), mTORC1 signaling, TGF beta signaling, TNFA signaling via NFkB, and response to hypoxia via HIF1A targets (↑in transcriptome). Our findings highlight primary changes in the endometriosis MenSCs, suggesting that the chronic inflammatory endometrial microenvironment can modulate these cells, providing opportunities for endometriosis etiopathogenesis. Moreover, they identify challenges for future research leveraging knowledge for regenerative and precision medicine in endometriosis.

Keywords

endometriosis; multi-omics; expression profile; menstrual blood; MenSCs

Subject

Biology and Life Sciences, Endocrinology and Metabolism

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.