This paper develops feasible control strategies and associated system responses to bring an autonomous front-axle bicycle robot from specified initial conditions to final conditions such that a specific performance index is minimized. To solve the problem, the following approach is used: The feasible controls derived from the normal equations of optimality are substituted into the state and the costate systems and form a combined control-free state-costate system which is vectorized to enable and ease the application of a numerical method. A computer program written in Matlab computer programming language, codes a fourth-order Runge-Kutta numerical method and then solve the combined state-costate system of ordinary differential equations. The obtained results are the feasible bicycle robot trajectory, the feasible state functions, the feasible costate functions and the feasible control functions. Associated Computational Simulations are designed and provided to persuade on the effectiveness and the reliability of the approach.