Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Looking at the Pathogenesis of the Rabies Lyssavirus Strain Pasteur Vaccins through a Prism of the Disorder-Based Bioinformatics

Version 1 : Received: 30 August 2022 / Approved: 31 August 2022 / Online: 31 August 2022 (03:47:31 CEST)

A peer-reviewed article of this Preprint also exists.

Dhulipala, S.; Uversky, V.N. Looking at the Pathogenesis of the Rabies Lyssavirus Strain Pasteur Vaccins through a Prism of the Disorder-Based Bioinformatics. Biomolecules 2022, 12, 1436. Dhulipala, S.; Uversky, V.N. Looking at the Pathogenesis of the Rabies Lyssavirus Strain Pasteur Vaccins through a Prism of the Disorder-Based Bioinformatics. Biomolecules 2022, 12, 1436.

Abstract

Rabies is a neurological disease that causes between 40,000 and 70,000 deaths every year. Once a rabies patient has become symptomatic, there is no effective treatment for the illness, and in unvaccinated individuals, the case-fatality rate of rabies is close to 100%. French scientists Louis Pasteur and Émile Roux developed the first vaccine for rabies in 1885. If administered before the virus reaches the brain, the modern rabies vaccine imparts long-lasting immunity to the virus and saves more than 250,000 people every year. However, the rabies virus can suppress the host’s immune response once it has entered the cells of the brain, making death likely. This study aims to make use of disorder-based proteomics and bioinformatics to determine the impact that intrinsically disordered protein regions (IDPRs) in the proteome of the rabies virus have on the infectivity and lethality of the disease. This study uses the proteome of Rabies Lyssavirus (RABV) strain Pasteur Vaccins (PV), one of the best understood strains due to its use in the first rabies vaccine, as a model. The study suggests that the high levels of intrinsic disorder in the phosphoprotein (P-protein) and nucleoprotein (N-protein) allow them to participate in creation of the Negri bodies and help this virus suppress the antiviral immune response in the host cells. Additionally, the study suggests that there is a link between disorder in the matrix (M) protein and the modulation of viral transcription. The disordered regions in the M protein have a possible role in initiating viral budding within the cell. Furthermore, we checked the prevalence of functional disorder in a set of 37 host proteins directly involved in the interaction with the RABV proteins. The hope is that these new insights will aid in the development of treatments for rabies that are effective after infection.

Keywords

Rabies; intrinsic disorder; intrinsically disordered protein; intrinsically disordered protein region; protein-protein interaction

Subject

Biology and Life Sciences, Virology

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.