Preprint
Article

This version is not peer-reviewed.

Spot Charter Rate Forecast for Liquefied Natural Gas Carriers

A peer-reviewed article of this preprint also exists.

Submitted:

22 July 2022

Posted:

26 July 2022

You are already at the latest version

Abstract
Recent maritime legislations demand the transformation of the sector to greener and more energy efficient transportation. Liquified Natural Gas (LNG) seems a promising alternative fuel solution that could replace the conventional fuel sources. Various studies have been focused on the prediction of LNG price, however, no previous work has been made on the forecast of spot charter rate of LNG carrier ships. An important knowledge for the maritime industries and companies when it comes to decision-making. Therefore, this study is focused on the development of a machine learning pipeline to address the aforementioned problem by: (i) forming a dataset with variables relevant to LNG; (ii) identifying the variables that impact on the freight price of LNG carrier; (iii) developing and evaluating regression models for short and mid-term forecast. The results showed that the General Regression Neural Network presented a stable overall performance for 2, 4 and 6 months forecast.
Keywords: 
;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated