Preprint
Article

Early Prediction of Ventilator-Associated Pneumonia in ICU Patients Using An Interpretable Machine Learning Algorithm

Submitted:

10 June 2022

Posted:

10 June 2022

You are already at the latest version

Abstract
(1) Background: Ventilator-associated pneumonia (VAP) causes high mortality among patients with respiratory disease and imposes major burdens on healthcare infrastructure. Models that use electronic health record data to predict the onset of VAP may spur earlier treatment and improve patient outcomes. We developed and studied the performance of interpretable machine learning (ML) models that predict the onset of VAP from electronic health records (EHRs); (2) Methods: We trained Logistic Regression (LR), full feature Explainable Boosting Machine (fEBM), and eXtreme Gradient Boosting (XGBoost) ML models on data from the MIMIC- III (v1.3) database. Model performance was measured by area under the receiver operating characteristic curves (AUCs). We trained a minimal-feature EBM model (mEBM) with features derived from white blood cell (WBC) counts, duration of ventilation, and Glasgow Coma Scale (GCS). Finally, model robustness was evaluated on randomly sparsified EHR datasets; (3) Results: The fEBM model outperformed the XGBoost and LR models at 24 hours post-intubation. The mEBM model maintained an AUC of 0.893. The fEBM model performance remained robust on sparsified datasets; (4) Conclusions: Our novel interpretable ML algorithm reliably predicts the onset of VAP in intubated patients. Integration of this EBM-based model into clinical practice may enable clinicians to better anticipate and prevent VAP.
Keywords: 
;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.

Downloads

423

Views

379

Comments

0

Subscription

Notify me about updates to this article or when a peer-reviewed version is published.

Email

Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2025 MDPI (Basel, Switzerland) unless otherwise stated