Supplementary Material

Table S1. Feature inputs for models. Clinical variables which were processed into inputs for model

training.
Vitals and labs Counts Boolean Indicators Demographic

Info

e Systolic BP Numbers of MV hours, Indicators of cirrhosis, Age

e Dias BP sputum tests, blood congestive heart failure, Weight

e HR cultures, urine output fever, bacteremia, Total urine

e Respiratory Rate measurements, and intracranial output

e Temperature antibiotic input events hemorrhage, renal

e Hematocrit failure, respiratory

e SpO. distress, respiratory

e GCS failure, sepsis,

e Platelet Count subarachnoid

e Sputum hemorrhage, shortness

e Blood culture of breath, and acute

e WBC respiratory distress

e Creatinine syndrome

Table S2. Demographic information of patients included in time windows of £ = 12, 24, 36 hours.
Abbreviations: VAP - Ventilator-associated pneumonia

k=12 k=24 k=36
VAP + VAP - VAP + VAP - VAP + VAP -
Characteristic n=470 n=20594 n=470 n=20017 n=470 n = 19447
<30 26 (5.5%) |899 (4.4%) (26 (5.5%) |848 (4.2%) |26 (5.5%) |776 (4%)
30-49 78 (16.6%) {3024 (14.7%)|78 (16.6%) {2921 (14.6%)|78 (16.6%) 2811 (14.5%)
50-59 98 (20.9%) |3725 (18.1%) |98 (20.9%) (3653 (18.2%)|98 (20.9%) {3569 (18.4%)
60-69 99 (21.1%) {4734 (23%) |99 (21.1%) [4631 (23.1%)|99 (21.1%) |4541 (23.4%)
70-79 95 (20.2%) |4641 (22.5%)|95 (20.2%) (4527 (22.6%)|95 (20.2%) [4431 (22.8%)
Age |80+ 74 (15.7%) 13571 (17.3) |74 (15.7%) 3427 (17.2%)|74 (15.7%) {3319 (17.1%)
12303 11969 11641
Male 282 (60%) [(59.7%) 282 (60%) |(59.8%) 282 (60%) (59.9%)
Gender |Female 188 (40%) |8291 (40.3%)|188 (40%) [8048 (40.2%)|188 (40%) |7806 (40.1%)
314 14634 314 14259 314 13865
White (66.8%) (71.1%) (66.8%) (71.2%) (66.8%) (71.3%)
Black/African-
American 43 (9.1%) (1500 (7.3%) |43 (9.1%) [1449 (7.2%) |43 (9.1%) |1402 (7.2%)
Asian 18 (3.8%) |446 (2.2%) |18 (3.8%) (434 (2.2%) |18 (3.8%) |418 (2.1%)
Hispanic/
Latino 12 (2.6%) |666 (3.2%) |12 (2.6%) (644 (3.2%) |12 (2.6%) |619 (3.2%)
Ethnicit |Unknown/
y Other 83 (17.7%) {3348 (16.2%) |83 (17.7%) {3231 (16.1%)|83 (17.7%) (3143 (16.1%)

1.0

0.8

0.6

Precision

0.4

0.2

0.0

1.0

08

0.6

Precision

0.4

0.2

0.0

PR curves for 12h window

= Logistic Regression (AUPRC=0.05)
—— XGBoost (AUPRC=0.092)

—— EBM(AUPRC=0.089)

= = Random

Recall

PR curves for 36h window

= Logistic Regression (AUPRC=0.075)
— XGBoOSY (AUPRC=0.179)

= EBM(AUPRC=0.158)

== = Random

0.0 0.2 0.4 0.6 0.8 1.0

Recall

Precision

Precision

1.0

08

0.6

0.4

0.2

0.0

1.0

08

06

0.4

0.2

0.0

PR curves for 24h window

—— Lagistic Regression [AUPRC=0.06)
= XGBoost (AUPRC=0.102)

—— EBMIAUPRC=0.122)

= = Random

Recall

PR curves for 48h window

== Logistic Regression (AUPRC=0.086)
— XGBOOSt (AUPRC=0.179)

= EBM(AUPRC=0.163)

== = Random

0.0 0.2 0.4 0.6 0.8 1.0

Recall

Figure S1. Precision recall (PR) curves for LR, fEBM, and XGB models at £ = 12, 24, 36, 48 hours.
Abbreviations: LR — Logistic Regression; fEBM — full feature Explainable Boosting Machine; XGB —

XGBoost; AUPRC — Area Under the Precision Recall Curve

EBM, k=36

A EBM, k=12 B
wee max MV hours (value) | ——
wec min [wac it | —
wac first [wac min [IEEE——
wac median [NN aes jast [INEG————
———————————— s medan
wac last [wec median [IEGEG—
ocs ot I wac o
o meen W meon
T, s mean
MV hours (value) x Wec last [NRNRREEGGG wac last I
—-————— Gos m
MV hours (value) x wac max [IENERGEGINGNGG Temp last [
MV hours (value) x WBC mean [ENREGINGNGG MV hours (value) x WBC last |G
ccs median NGNS RespRate first [NG
ces mean [N hours (value) x weC median [NN
MV hours (value) x Wi first [NN MV hours (value) x waC min | RN
MV hours (value) x WBC median [NNRNEGNGNGGG Spo2 'ffs{ 3
respRate min [NN Temp median [NN
v hours (value) x wec mean [N RNRREEN
s first [NG
0 1 2 3 4 5

Temp min [
RespRate first |
4 5
Feature importance (% of absolute total score)

0 1 2 3
Feature importance (% of absolute total score)

EBM, k=48

C
wisc first | —
wiec mean |
wac min [IE——
wec max I——
wec median [IIEG——
e]
v hours (value) [EEE—
6es median [IEEEGEG—
Ges last [
ccs mean [
aes max R
MV hours (value) x WeC median [I EGITG
urine (count) |G
MV hours (value) x WBC max _
Temp mean I
MV hours (value) x WBC mean [NRNRNRERDDN
MV hours (value) x WBC last _
resprate mean [NG

sysanp first I
Hr max [
4 5

1 2 3

0
Feature importance (% of absolute total score)

Figure S2. Feature importance plots for the fEBM model at k£ = 12, 36, 48 h. Abbreviations:
WBC - white blood cell; MV - mechanical ventilator; GCS - Glasgow coma scale; HR - heart

rate; fEBM — full feature Explainable Boosting Machine.

MV hours (value)

0.5

oore
(=
=
a
|
|

LT
-0.5
0 0.2 0.4 0.6 0.8 1
=
= &
: - = =
o) T : T
G.p %05 % Oup Y2 B¢ 95 95 99 g %5 Csc 95 9 9 Ox Y5 O 99 s
a,. s . = s W, g, Sy e o by, 0,
Oy Ny 9p g 93 Ty g Vv U5 T8 Gg Cep 9n S Oy Tep 99 8

WBC First

Score
[=]

0.8

Density
B

GCS last

0.5 4

Scare
[=

0.6 0.8

1] 0.2 0.4

Density

Figure S3. Contribution of the top features to fEBM scores. There are three panels
corresponding to the top features of fEBM—MYV hours, WBC first , and GCS last. Each
panel consists of two subplots, the top plot shows the contribution to the fEBM risk score
versus standardized feature value; the bottom plot indicates how common it is to observe a
range of feature values. A higher score reflects greater risk of VAP. The score fEBM

produces is a sum of scores resulting from each feature. Abbreviations: MV- mechanical
ventilation; WBC - white blood cell count; and GCS - Glasgow Coma Scale; fEBM — full
feature Explainable Boosting Machine.

Code S1. Source code for data processing and model training

HUHBHBHHHRBHBHHBHBABHAHHH BRI HH
_1 Processing
HARHHBRBRBHAHA AR H AR B R R HA R

In this part we extract the dataset from raw CSV files. It is then saved
as a PatientCollection (PC) as raw_mimic_full.dat

After various filtering operations, the PC is saved as
filtered_mimic_full.dat. After labeling and processing, the PC is saved as
processed_mimic_full.dat

These 3 files are only intermediate and are never used Llater again.

Imports

+

import sys

import collections
import os

import numpy as np

import pandas as pd

import logging

logging.basicConfig(level = logging.INFO)

import utils

import config

import import csv_all, save to file, load from file, process raw_data all
from tqdm import tqdm, trange

import time

import matplotlib.pyplot as plt

Zmatplotlib inline

-

1 - Extract the CSV files into a PatientCollection

start = time.time()

Load all CSV files from your source directory
mimic = import_csv_all()

print((time.time() - start)/60, 'minutes.')

Save the raw PatientCollection
save_to file(mimic, '~/MIMIC-III/raw_mimic_full.dat') #saves the raw
patient collection

2 - Filter the data
2.1 - Basic filtering (age and existence of data)

#In case one wants to load the dataset from just above
mimic = load_from_file('~/MIMIC-III/raw_mimic_full.dat")
print(len(mimic))

mimic['200033"']["Info']

mimic['200033']['RawData’].keys()

Filter patients without data
utils.raw_data_filter(mimic)

Filter patients under 18

utils.age filter(mimic)

2.2 - VAP-related filtering (no CAP, intubation)
Hardcode some 1info about MV

+
Hardcode some information in the 'Info' section of each patient
To make the filtering easier afterwards

icustay = pd.read_csv('~/MIMIC-III/ICUSTAYS.csv")
for i in range(len(icustay)):

ID = str(icustay['ICUSTAY_ID'][i])

if ID in mimic:

assert mimic[ID]['Info']['admission_time'] ==
np.datetime64(icustay["INTIME']J[i])

mimic[ID]['Info']['discharge_time'] =
np.datetime64(icustay["OUTTIME"'][i])

+
mv = pd.read_csv('~/MIMIC-III/ventilation_duration.csv') #already ordered
mv =
mv.loc[np.logical not(np.isnan(mv['icustay_id']))].reset_index(drop=True)

for key in mimic:
mimic[key]['Info']['mvstarts']=[]
mimic[key]['Info']['mvends’']=[]

for i in range(len(mv)):
ID = str(int(mv['icustay_id'][i]))
if ID in mimic:

mimic[ID]["Info']['mvstarts'].append(np.datetime6d(mv['starttime’'][i]))
mimic[ID]["Info']['mvends’'].append(np.datetime64(mv['endtime’'][i]))

+
Check there 1is no problem in MV times ordering
def is_ordered(l):
for i in range(len(l)-1):
if 1[i+1]<1[i]:
return False
return True

for icustay in mimic:
if len(mimic[icustay]['Info"']['mvstarts'])==0:
assert len(mimic[icustay]['Info']['mvends'])==0
else:
assert
len(mimic[icustay]['Info']['mvstarts’'])==len(mimic[icustay]['Info"']['mvends
‘1
j =11
for pair in zip(mimic[icustay]['Info']['mvstarts'],
mimic[icustay]['Info']['mvends']):
j.extend(pair)
assert is_ordered(j)
-

Filter patients who were never intubated

+
print(len(mimic), ‘'encounters prior to MV filtering:')

for key in list(mimic.keys()):
if len(mimic[key]['Info']["‘mvstarts'])==0:
mimic.pop(key)

print(len(mimic), ‘'encounters remaining after MV filtering')
-

Filter patients diagnosed with CAP (community acquired pneumonia) at
their admission

icustay = pd.read_csv('~/MIMIC-III/ICUSTAYS.csv")

admissions = pd.read _csv('~/MIMIC-III/ADMISSIONS.csv').merge(icustay.loc|[:,
["HADM_ID', 'ICUSTAY_ID']], on='HADM_ID',)

print(admissions.head())

+
cap_ids = []
for i in range(len(admissions)):
if 'pneumonia’ in str(admissions['DIAGNOSIS'][i]).lower():
cap_ids += [admissions['ICUSTAY_ID'][i]]
valid_cap_ids = [str(ID) for ID in cap_ids if str(ID) in
list(mimic.keys())]

print(len(mimic), 'encounters prior to CAP filtering')
for key in valid_cap_ids:
mimic.pop(key)
print(len(mimic), 'encounters remaining after CAP filtering')
print(len(valid_cap_ids), 'encounters removed')
-

Save the filtered patient collection
save_to file(mimic, '~/MIMIC-III/filtered_mimic_full.dat')
3 - Label VAP cases

#In case one wants to load the dataset from just above
mimic = load_from_file('~/MIMIC-III/filtered_mimic_full.dat")

Labeling

icustay = pd.read_csv('~/MIMIC-III/ICUSTAYS.csv")

diagnoses_icd =
pd.read_csv('~/MIMIC-III/DIAGNOSES_ICD.csv').merge(icustay.loc[:,

['"HADM_ID', 'ICUSTAY_ID']], on='HADM_ID',)

#Not the same as the diagnosis column in the ADMISSIONS tables. This table
corresponds to the diagnoses

#made at the end of an hospital stay.There may be multiple diagnoses for a
single patient
diagnoses_icd.head()

+

#Retrieve the ICU ID's for patients with a VAP diagnosis
vap_code = '99731' #ICD-9 code for VAP

vap_filter = diagnoses_icd.query("ICD9_CODE == @vap_code").loc[:,
['ICD9_CODE', 'ICUSTAY_ID']]

vap_ids = set(vap_filter['ICUSTAY_ID'])

valid vap_ids = [str(ID) for ID in vap_ids if str(ID) in
list(mimic.keys())]

print('Number of stays:', len(mimic))

print('Number of VAP cases: {}'.format(len(valid_vap_ids)),
"\nPrevalence:’,

"{}%" .format(round(100*len(valid_vap_ids)/len(mimic), 2)))

+
Assign a pneumonia label to each patient
for patient in list(mimic.keys()):
mimic[patient]['Outcomes’'] = {'Pneumonia’: {'is_pneumonia': False}}
for ID in valid vap ids:
mimic[ID]['Outcomes']['Pneumonia’]['is_pneumonia’'] = True

-

mimic = process_raw _data_all(mimic) #bins the raw data, dataset size stays
the same

Save the processed patient collection
save_to_file(mimic, '~/MIMIC-III/processed_mimic_full.dat")
4 - Demo

#In case one wants to load the dataset from just above
mimic = load_from file('~/MIMIC-III/processed_mimic_full.dat')

+
print(len(mimic))

for ID in list(mimic.keys()):
if 'HR' not in mimic[ID]['ProcessedData’]:
mimic.pop(ID)
elif 'DiasABP' not in mimic[ID]['ProcessedData’]:
mimic.pop(ID)
elif 'SysABP' not in mimic[ID]['ProcessedData’]:
mimic.pop(ID)
elif 'Temp' not in mimic[ID]['ProcessedData’]:
mimic.pop(ID)
elif 'Sp02' not in mimic[ID]['ProcessedData’]:
mimic.pop(ID)
elif '"WBC' not in mimic[ID]['ProcessedData’]:
mimic.pop(ID)
elif 'Creatinine’ not in mimic[ID]['ProcessedData’]:
mimic.pop(ID)
elif 'RespRate’ not in mimic[ID]['ProcessedData’]:
mimic.pop(ID)
elif 'GCS' not in mimic[ID]['ProcessedData’]:
mimic.pop(ID)
elif 'Platelets' not in mimic[ID]['ProcessedData’]:
mimic.pop(ID)
elif 'BUN' not in mimic[ID]['ProcessedData’]:
mimic.pop(ID)
elif 'Hematocrit' not in mimic[ID]['ProcessedData’]:
mimic.pop(ID)

print(len(mimic)) #should be 6126 with everything ?

+

###t Keys are patient ICUSTAY id's, between 200,001 and 299,999 (strings)
#tkeys = List(mimic.keys())

#tkeys.remove('")

#keys = List(map(int, keys))

#print(min(keys), max(keys))

patient = mimic['222222'] #a random patient

#one can recognize the keys defined earlier in the CONFIG

print('Keys of a patient\'s PatientCollection:', list(patient.keys()))
print('--> ID:', patient['ID'])

print('--> ICD9:', patient['ICD9'])

print('--> Info:', patient['Info'], '\n'")

print('ProcessedData keys:', list(patient['ProcessedData’].keys()), '\n'")

#processed data contains time series of the patient's measurements
print('Keys of every measurement in ProcessedData:’,
list(patient['ProcessedData’]['HR'].keys()), '\n")

print('For example, the heart rate (HR)')
print('Time: \n',
patient['ProcessedData’]['HR']["time"'],
'"\n Value: \n',
patient['ProcessedData’]['HR']['value'])

HUHBHBHHBRBHBHHBABRBH R B R BRI Y
_2 Processing_contd.
HARAHHABAB AR HA AR R AR AR AR ARG

In this part we go from processed _mimic_full.dat to processed _mimic_k.dat
with k = 12, 24, 36, 48

The resulting files are our final patient population data for each k.
However it requires a bit more work to get this data ready for Llearning.

Imports

+

import sys

import utils
import collections
import os

import save_to_file

import numpy as np

import pandas as pd

import logging

logging.basicConfig(level = logging.INFO)

from tqdm import tqgdm, trange
import time

import matplotlib.pyplot as plt
Zmatplotlib inline

-

mimic = load_from file('~/MIMIC-III/processed_mimic_full.dat')

Independence

icustay = pd.read_csv('~/MIMIC-III/ICUSTAYS.csv")

mv = pd.read_csv('~/MIMIC-III/ventilation_duration.csv')

mv =

mv.loc[np.logical not(np.isnan(mv['icustay_id']))].reset_index(drop=True)

mv.head()

+
Just to illustrate

ids = [int(ID) for ID in mimic] #ICUSTAY_ID's 1in our dataset

#corresponding hospital admission id for each ICU stay in our dataset
hadm_ids =

icustay.loc[icustay['ICUSTAY_ID'].isin(ids)]["HADM_ID'].to_numpy() #may
contain repetitions

print('Number of unique hospital admissions represented in the dataset:’',
len(set(hadm_ids)), '/', len(ids), 'ICU stays')

+

###t Here we remove all the ICU stays (with MV) such that the patient was
admitted to the ICU and ventilated

another time during the same hospital stay. Otherwise there is no way
to know which instance of ventilation led to VAP.

(diagnoses are Labeled with the hospital admission ID)

#ICU STAY 1id's with MV
mv_icu_ids = mv['icustay_id'].to_numpy()

#HADM ID's with ICU STAY with MV (may contain repetitions !)
mv_hadm_ids =
icustay.loc[icustay['ICUSTAY_ID'].isin(mv_icu_ids)]['HADM_ID'].to_numpy()

#HADM ID's with multiple ICU stays with MV
multiplemv_hadm_ids = []
counter = dict(collections.Counter(mv_hadm_ids))
for hadm_id in counter:
if counter[hadm_id]>1:
multiplemv_hadm_ids.append(hadm_id)
else:

pass

#ICUSTAY ID's corresponding to HADM ID's with multiple MV ICU stays
bad_icustay_ids =

icustay.loc[icustay["HADM_ID'].isin(multiplemv_hadm_ids)]['ICUSTAY_ID'].to_
numpy ()

#The same but only those contained in our dataset
valid _bad_icustay_ids = [str(ID) for ID in bad_icustay_ids if str(ID) in
mimic]

print(len(mimic), ‘'encounters prior to multiple MV filtering')
for icustay in list(mimic.keys()):
if icustay in valid bad icustay ids:
mimic.pop(icustay)
print(len(mimic), ‘'encounters remaining after multiple MV filtering')
print(len(valid_bad_icustay_ids), 'encounters removed')
-

count = 0
for icustay in mimic:
if mimic[icustay]['Outcomes']['Pneumonia’]['is_pneumonia'] == True:
count+=1
print('Number of VAP cases: {}'.format(count),
"\nPrevalence:', '{}%'.format(round(100*count/len(mimic), 2)))

Filtering altenatives
Time filtering

Check everything went as planned during processing
ALL times are the same
for ID in mimic:
t = [mimic[ID]['ProcessedData’][key]['time’'] for key in
mimic[ID]['ProcessedData’]]
assert (t==t[0]).all()
Times are hourly spaced
for ID in mimic:
t =
mimic[ID]['ProcessedData’][1list(mimic[ID]['ProcessedData’].keys())[@]]["tim
e']
assert np.all((t[1:]-t[:-1])==np.timedelta64(1, 'h"))

Adapts the way these are computed (with ProcessedData times 1instead of
RawData times)
(For better clarity moving on)
for ID in mimic:

mimic[ID]['Info"']['first_measurement_time'] =
mimic[ID]['ProcessedData’][list(mimic[ID]['ProcessedData’].keys())[@]]['tim
e'][e]

mimic[ID]['Info']['last_measurement_time'] =
mimic[ID]["ProcessedData’][list(mimic[ID]['ProcessedData’].keys())[@]][' tim
e'][-1]

+

VAP by definition can only happen after 48h so we want to have 48h of
data at least

(or more precisely data in 48 different hourly bins after intubation)
starting in the first hour following intubation.

We keep patients that have at least 12/24/36/48h of data. Set R here.
k = 48

print(len(mimic), 'encounters before time filtering')
for ID in list(mimic.keys()):

if
mimic[ID]["Info']['first_measurement_time']-mimic[ID]['Info']['mvstarts'][0©
1 > np.timedelta64(1, 'h"):

mimic.pop(ID)

elif
mimic[ID]["Info']['last_measurement_time']-max(mimic[ID]['Info']['mvstarts’
1101, mimic[ID]["Info']['first_measurement_time']) < np.timedelta64(k-1,
'h'):

mimic.pop(ID)
print(len(mimic), 'encounters remaining after time filtering')

+
count=0
for ID in mimic:
if
mimic[ID]['Info"']['discharge_time"']-mimic[ID]['Info"']['mvstarts'][@]<np.tim
edelta64(48, 'h'):
count+=1
print(count)
-

Prevalence check

count = @
for icustay in mimic:

if mimic[icustay]['Outcomes']['Pneumonia’]['is_pneumonia'] == True:
count+=1
print('Number of VAP cases: {}'.format(count),

"\nPrevalence: "', "'{}%'.format(round(100*count/len(mimic), 2)))
We lost 20 positive examples no matter R: there are 20 VAP positive
patients with less than 12h of data.

Save

save_to_file(mimic, '~/MIMIC-III/processed_mimic_{}.dat'.format(k))

HUHBHBHHHABHBHH IR BRI A R B R BRI Y
3 Demographics
R R T

import sys

import utils
import collections
import os

import numpy as np

import pandas as pd

import logging

logging.basicConfig(level = logging.INFO)

import load from file

from tqdm import tqdm, trange
import time

import matplotlib.pyplot as plt
Zmatplotlib inline

-

mimic = load from file('~/MIMIC-III/processed_mimic_36.dat"')

ids = list(mimic.keys())

pos_ids = [ID for ID in ids if

mimic[ID]['Outcomes']['Pneumonia’]['is_pneumonia']==True]
neg _ids = [ID for ID in ids if

mimic[ID]['Outcomes']['Pneumonia’]['is_pneumonia']==False]
print('Positive cases: {}, Negative cases: {}'.format(len(pos_ids),
len(neg_ids)))

ARDS
ards = pd.read_csv('~/MIMIC/mpwr_ards.csv')
ards = ards.loc[ards['icustay_id'].isin(list(map(int, ids)))]

ards = ards.loc[ards['ards']==1, :].reset_index(drop=True)
ards.head(10)

+

print(len(set(ards['icustay_id']).intersection(set(map(int, pos_ids)))),
len(set(ards['icustay_id']).intersection(set(map(int,

pos_ids))))/len(pos_ids),
len(set(ards['icustay_id']).intersection(set(map(int, neg_ids)))),
len(set(ards['icustay_id']).intersection(set(map(int,

neg_ids))))/len(neg_ids))

print(len(pos_ids)-len(set(ards['icustay_id']).intersection(set(map(int,
pos_ids)))),

1-len(set(ards['icustay_id']).intersection(set(map(int,
pos_ids))))/len(pos_ids),

len(neg _ids)-len(set(ards['icustay_id']).intersection(set(map(int,
neg_ids)))),

1-len(set(ards['icustay_id']).intersection(set(map(int,
neg_ids))))/len(neg_ids))

-

Age

+

ages = [mimic[ID]['Info']['age'] for ID in neg_ids]
bins = [30, 50, 60, 70, 80]

¢ = np.bincount(np.digitize(ages, bins = bins))
print(c)

print(np.round(c/len(neg_ids), 3))

-

Gender

genders = np.array([mimic[ID]["'Info']['gender'] for ID in neg_ids])
c = np.sum(genders=="F")

print(c)

print(c/len(neg_ids))

Ethnicity

+
icustay = pd.read_csv('~/MIMIC/ICUSTAYS.csv")

admissions = pd.read _csv('~/MIMIC/ADMISSIONS.csv').merge(icustay.loc[:,
['HADM_ID', 'ICUSTAY_ID']], on = 'HADM_ID')

admissions = admissions.loc[admissions['ICUSTAY_ID'].isin(list(map(int,
ids)))]

assert len(admissions)==1len(set(admissions['ICUSTAY_ID']))

-

eth = admissions.loc[admissions['ICUSTAY_ID'].isin(list(map(int,
pos_ids)))]['ETHNICITY'].to_numpy()
collections.Counter(eth).most_common()

HUHAAHRUH AR BRI H AR BB IR AABRRHAAA
_4 Features
B

In this part we retrieve and save all the additional features we want
that are not present in the original patient collection
(processed_mimic.dat, which only has basic info (age, weight) and vitals
time series).

These features 1include the comorbidities and various indicators and
counts, that are here split in 48 hourly bins, with the reference time
being the initiation of mechanical ventilation (MV).

Imports

+

import sys

import utils
import collections
import os

import load from file, save to file
import numpy as np

import pandas as pd
import logging
logging.basicConfig(level = logging.INFO)

from tqdm import tqgdm, trange
import time

import matplotlib.pyplot as plt
Zmatplotlib inline

-

We load the processed data

#1t's just to have the 1id's

#for thinning experiments, load for k=24 as we want the experiments on this
window.

mimic = load_from file('~/MIMIC-III/processed_mimic_24.dat"')

ids = list(mimic.keys())

pos_ids = [ID for ID in ids if

mimic[ID]['Outcomes']['Pneumonia’]['is_pneumonia']==True]
neg_ids = [ID for ID in ids if

mimic[ID]['Outcomes']['Pneumonia’]['is_pneumonia']==False]

+
Ignore

for key in mimic:
if not
mimic[key]['Info']['intime'].astype('datetime64[h]"')-np.timedeltab4(1,
"h')<=mimic[key]["Info']['mvstarts'][0]:
print(key,
mimic[key]['Info']['intime'].astype('datetime64[h]"),
mimic[key]['Info']['mvstarts'][0O],
min(mimic[key]['ProcessedData’]['HR"]["time']))

-
Comorbidities

+
icustay = pd.read_csv('~/MIMIC-III/ICUSTAYS.csv')

admissions = pd.read_csv('~/MIMIC-III/ADMISSIONS.csv').merge(icustay.loc[:,
["HADM_ID', 'ICUSTAY_ID']], on='HADM ID',)

admissions = admissions.loc[admissions['ICUSTAY_ID'].isin(list(map(int,

ids)))]

comorbidities = ['INTRACRANIAL HEMORRHAGE', 'SUBARACHNOID HEMORRHAGE',
'SEPSIS', 'RESPIRATORY FAILURE', 'CONGESTIVE HEART
FAILURE',
'"FEVER', 'RESPIRATORY DISTRESS', 'SHORTNESS OF BREATH',
"CIRRHOSIS', 'RENAL FAILURE', 'CHRONIC RENAL FAILURE’,
'BACTEREMIA']

+
comor_dict = {ID:{comor:False for comor in comorbidities} for ID in ids}

diag _dict = pd.Series(admissions.DIAGNOSIS.values,
index=admissions.ICUSTAY_ID.astype(str)).to dict()

for icustay in diag_dict:
for comorbidity in comorbidities:
if comorbidity in diag dict[icustay]:
comor_dict[icustay][comorbidity]=True
-

save_to_file(comor_dict, '~/MIMIC-III/ comor.dat')

comor_dict['203909"]

+
pos_count = {comor:0 for comor in comorbidities}
neg _count = {comor:0 for comor in comorbidities}

for ID in pos_ids:

for comor in comorbidities:

if comor_dict[ID][comor]==True: pos_count[comor]+=1
for ID in neg_ids:

for comor in comorbidities:

if comor_dict[ID][comor]==True: neg count[comor]+=1

u=max([len(comor) for comor in comorbidities])
print('Comorbidity', (u-11)*" ', " + ', ' - ")
for comor in comorbidities:
print(comor, (u-len(comor))*' ', round(pos_count[comor]/len(pos_ids),
3), round(neg_count[comor]/len(neg_ids), 3))
-

Sputum (count)

+

icustay = pd.read_csv('~/MIMIC-III/ICUSTAYS.csv')

microbio =
pd.read_csv('~/MIMIC-III/MICROBIOLOGYEVENTS.csv").merge(icustay.loc[:,
["HADM_ID', 'ICUSTAY_ ID', 'INTIME', 'OUTTIME']], on="HADM_ID',)

sputum = microbio.loc[microbio['SPEC_TYPE_DESC'] == 'SPUTUM', :]
sputum = sputum.loc[sputum["ICUSTAY_ID'].isin(list(map(int, ids)))]
print(len(sputum))

sputum = sputum.loc[sputum['CHARTDATE']!=sputum['CHARTTIME'], :]
sputum =

sputum.loc[np.logical not(np.isnan(pd.to_datetime(sputum|['CHARTTIME']).to_n
umpy()))].reset_index(drop=True) #we need the true times !
print(len(sputum))

sputum["CHARTTIME'] = sputum['CHARTTIME'].astype(np.datetime64)
sputum.head(20)

-

#drop some of the entries for thinning experiments

sputum = sputum.drop(np.random.choice(np.arange(@, len(sputum)),
3*len(sputum)//4, replace=False)).reset_index(drop=True)
print(len(sputum))

sputum_count = {ID:np.zeros(48, int) for ID in ids}
for i in range(len(sputum)):

ID = str(sputum['ICUSTAY_ID'][i])

time = sputum['CHARTTIME'][i]

start = mimic[ID]["Info']['mvstarts'][0]

index = int((time - start) / np.timedelta64(1l, 'h'"))

if index <= 0: index = © #VERY IMPORTANT: we choose to consider
things that happened before intubation

if 0 <= index <= 47:

sputum_count[ID][index] +=1

save_to file(sputum _count, '~/MIMIC-III/ sputum_75.dat')

plt.hist([np.sum(sputum_count[ID]) for ID in neg_ids], bins=40,
density=False, alpha=0.5, color='blue', label='Negative')
plt.hist([np.sum(sputum_count[ID]) for ID in pos_ids], bins=40,
density=False, alpha=0.5, color="red', label='Positive')

plt.legend()

plt.xlim(e, 47)

plt.yscale('log")

plt.show()

print(np.sum([np.sum(sputum_count[ID])>5 for ID in pos_ids]))
print(np.sum([np.sum(sputum_count[ID])>5 for ID in neg_ids]))

Blood (count)

blood = microbio.loc[microbio['SPEC_TYPE_DESC'] == 'BLOOD CULTURE', :]
#microbio lLoaded from above cell and jointed on ICUSTAYS

blood = blood.loc[blood['ICUSTAY_ID'].isin(list(map(int, ids)))]
print(len(blood))

blood = blood.loc[blood['CHARTDATE']!=blood['CHARTTIME'], :]

blood =

blood.loc[np.logical not(np.isnan(pd.to_datetime(blood['CHARTTIME']).to_num
py()))].reset_index(drop=True) #we need the true times !
print(len(blood))

blood['CHARTTIME'] = blood['CHARTTIME'].astype(np.datetime64)
blood.head(20)

#drop some of the entries for thinning experiments

blood = blood.drop(np.random.choice(np.arange(0, len(blood)),
3*len(blood)//4, replace=False)).reset _index(drop=True)
print(len(blood))

blood_count = {ID:np.zeros(48, int) for ID in ids}
for i in range(len(blood)):

ID = str(blood['ICUSTAY_ID'][i])

time = blood['CHARTTIME'][i]

start = mimic[ID]["Info']['mvstarts'][0]

index = int((time - start) / np.timedelta64(1l, 'h'"))

if index <= 0: index = © #VERY IMPORTANT: we choose to consider
things that happened before intubation

if 0 <= index <= 47:

blood count[ID][index] +=1

save_to file(blood count, '~/MIMIC-III/ blood_75.dat')

plt.hist([np.sum(blood count[ID]) for ID in neg_ids], bins=40,
density=False, alpha=0.5, color='blue', label='Negative')
plt.hist([np.sum(blood_count[ID]) for ID in pos_ids], bins=40,
density=False, alpha=0.5, color="red', label='Positive')

plt.legend()

plt.xlim(@, 55)

plt.yscale('log")

plt.show()

print(np.sum([np.sum(blood count[ID])<5 for ID in pos_ids]))
print(np.sum([np.sum(blood_count[ID])<5 for ID in neg_ids]))

Antibiotics (count)

antibio =

microbio.loc[np.logical not(np.isnan(microbio["AB_ITEMID'].to_numpy()))]
antibio = antibio.loc[antibio['ICUSTAY_ID'].isin(list(map(int, ids)))]
print(len(antibio))

antibio = antibio.loc[antibio['CHARTDATE']!=antibio['CHARTTIME'], :]
antibio =

antibio.loc[np.logical not(np.isnan(pd.to_datetime(antibio['CHARTTIME']).to
_numpy()))].reset_index(drop=True) #we need the true times !
print(len(antibio))

antibio["CHARTTIME'] = antibio["CHARTTIME'].astype(np.datetime64)
antibio.head(20)

#drop some of the entries for thinning experiments

antibio = antibio.drop(np.random.choice(np.arange(@, len(antibio)),
3*len(antibio)//4, replace=False)).reset_index(drop=True)
print(len(antibio))

ab_count = {ID:np.zeros(48, int) for ID in ids}
for i in range(len(antibio)):

ID = str(antibio["ICUSTAY_ID'][i])

time = antibio["CHARTTIME'][i]

start = mimic[ID]["Info']['mvstarts'][0]

index = int((time - start) / np.timedelta64(1l, 'h'"))

if index <= 0: index = © #VERY IMPORTANT: we choose to consider
things that happened before intubation

if 0 <= index <= 47:

ab_count[ID][index] +=1

save_to file(ab_count, '~/MIMIC-III/ antibio_75.dat')

plt.hist([np.sum(ab_count[ID]) for ID in neg_ids], bins=40, density=False,
alpha=0.5, color='blue', label="Negative')
plt.hist([np.sum(ab_count[ID]) for ID in pos_ids], bins=40, density=False,
alpha=0.5, color='red', label='Positive')

plt.legend()

plt.xlim(@, 50)

plt.yscale('log")

plt.show()

print(np.sum([np.sum(ab_count[ID])<5 for ID in pos_1ids]))
print(np.sum([np.sum(ab_count[ID])<5 for ID in neg_ids]))

Urine (count, value)

+

urine codes = ['40055', '43175', '40069',
'40094', '40715', '40473',
'40085', '40057', '40056',
'40405', '40428', '40086',
'40096', '40651',
'226559"', '226560', '226561',
'226584', '226563', '226564',
'226565', '226567', '226557',
'226558', '227488', '227489']

items = pd.read_csv('~/MIMIC-III/D_ITEMS.csv')

items.LABEL = items.LABEL.fillna('")

#items = items.loc[items['LABEL'].str.contains('Urine')]

items = items.loc[items['ITEMID'].isin(list(map(int,urine codes)))]
items.head(490)

-

output = pd.read_csv('~/MIMIC-III/OUTPUTEVENTS.csv")

urine = output.loc[output['ITEMID'].isin(map(int, urine_codes))]
urine = urine.loc[urine['ICUSTAY_ID'].isin(list(map(int, ids)))]
print(len(urine))

urine = urine.loc[urine['VALUE']>=0, :]

urine = urine.loc[urine['VALUE']<=10000, :]

urine = urine.loc[urine['VALUEUOM'].isin(['ml", 'mL']), :]
urine =

urine.loc[np.logical not(np.isnan(pd.to_datetime(urine['CHARTTIME']).to_num
py()))] #we need the true times !

urine =

urine.loc[np.logical not(np.isnan(urine["VALUE'].to_numpy()))].reset_index(
drop=True)

print(len(urine))

urine["CHARTTIME'] = urine['CHARTTIME'].astype(np.datetime64)

urine.head(20)

#drop half the entries for thinning experiments

urine = urine.drop(np.random.choice(np.arange(9, len(urine)),
3*len(urine)//4, replace=False)).reset_index(drop=True)
print(len(urine))

urine_value = {ID:np.zeros(48, int) for ID in ids}
urine_count = {ID:np.zeros(48, int) for ID in ids}
for i in range(len(urine)):
ID = str(int(urine["ICUSTAY_ID'][i]))
time = urine["CHARTTIME'][i]
start = mimic[ID]["Info"']['mvstarts’'][0]
index = int((time - start) / np.timedelta64(1, 'h'))
if index <= ©: index = @ #VERY IMPORTANT: we choose to consider
things that happened before intubation
if 0 <= index <= 47:
urine value[ID][index] += urine['VALUE'][i]
urine_count[ID][index] += 1

save_to file(urine_value, '~/MIMIC-III/ urine_value_75.dat')
save_to file(urine_count, '~/MIMIC-III/_ urine_count_75.dat")

plt.hist([np.sum(urine_value[ID]) for ID in neg_ids], bins=40,
density=False, alpha=0.5, color='blue', label='Negative')
plt.hist([np.sum(urine_value[ID]) for ID in pos_ids], bins=40,
density=False, alpha=0.5, color='red', label='Positive')
plt.legend()

plt.x1lim(e, 40000)

plt.yscale('log")

plt.show()

plt.hist([np.sum(urine_count[ID]) for ID in neg_ids], bins=40,
density=False, alpha=0.5, color='blue', label='Negative')
plt.hist([np.sum(urine_count[ID]) for ID in pos_ids], bins=40,
density=False, alpha=0.5, color="red', label='Positive')
plt.legend()

plt.xlim(@, 200)

plt.yscale('log')

plt.show()

MV Hours (value)

def MV(mvstarts, mvends):

From a two ordered lists of np.datetime64 representing the start and
end of consecutive events with no overlap,

extracts the total duration of events for each hour in a 48h window
starting at the first event start,

mv_hours = np.zeros(48)

for i in range(len(mvstarts)):

start = (mvstarts[i]-mvstarts[@]) / np.timedelta64(1, 'h'")

end = (mvends[i]-mvstarts[@]) / np.timedelta64(1, 'h")

if start >= 48:
break

if end > 48:
end = 48

if int(end)-int(start)==0:
mv_hours[int(start)] += end-start

else:
mv_hours[int(start)] += int(start)+l-start
for h in range(int(start)+1, int(end)):
mv_hours[h] += 1
if int(end) != 48:
mv_hours[int(end)] += end-int(end)
return mv_hours

mv_hours = {}
for ID in ids:

mv_hours[ID] = MV(mimic[ID]['Info"']['mvstarts'],
mimic[ID]["Info']['mvends’'])

save_to_file(mv_hours, ‘~/MIMIC-III/ MV.dat')

print(len(ids), len(pos_ids))
print(np.sum([np.sum(mv_hours[ID])==48 for ID in pos_ids]))

plt.hist([np.sum(mv_hours[ID]) for ID in neg_ids], bins=48, density=False,
alpha=0.5, color='blue', label='Negative')

plt.hist([np.sum(mv_hours[ID]) for ID in pos_ids], bins=48, density=False,
alpha=0.5, color='red’', label='Positive')

plt.legend()

plt.xlim(e, 48)

plt.yscale('log')

plt.show()

#We can already see that this will be of upmost importance to differentiate
between positive and negative patients.

ARDS (indicator)

ards = pd.read_csv('~/MIMIC-III/mpwr_ards.csv')
ards = ards.loc[ards['icustay_id'].isin(list(map(int, ids)))]
ards =

ards.loc[np.logical_not(np.isnan(pd.to_datetime(ards['charttime’]).to_numpy
ON]

ards = ards.loc[ards['ards']==1, :].reset_index(drop=True)
ards['charttime'] = ards['charttime’].astype(np.datetime64)

ards.head(10)

#drop half the entries for thinning experiments

ards = ards.drop(np.random.choice(np.arange(0, len(ards)), 3*len(ards)//4,
replace=False)).reset_index(drop=True)

print(len(ards))

+
ards_indic = {ID: np.zeros(48, int) for ID in ids}

for i in range(len(ards)):

ID = str(ards['icustay_id'][i])

start = mimic[ID]["'Info']['mvstarts’'][Q]

time = ards['charttime’][i]

index = int((time - start) / np.timedelta64(1, 'h"))

if index < @: index=0

if index <= 47:

ards_indic[ID][index:] = 1 #this means that once ards is diagnosed,
necessarily the indicator stays at 1 in the future
-

save_to_file(ards_indic, '~/MIMIC-III/_ ards_75.dat")

print(np.mean([np.any(ards_indic[ID]) for ID in neg_ids]),

np.mean([np.any(ards_indic[ID]) for ID in pos_ids]))

#the biggest the sum, the earliest it was diagnosed
plt.hist([np.sum(ards_indic[ID]) for ID in neg ids], bins=48,
density=False, alpha=0.5, color="'blue', label='Negative')
plt.hist([np.sum(ards_indic[ID]) for ID in pos_ids], bins=48,
density=False, alpha=0.5, color='red', label='Positive')

plt.legend()

plt.xlim(@, 48)

plt.yscale('log")

plt.show()

#ARDS 1is not very indicative of VAP, except maybe when developped early

LOS (not a feature!!!)
LOS = {ID: mimic[ID]['Info']['length_of_stay'] for ID in ids}
save_to file(LOS, '~/MIMIC-III/ LOS.dat')

plt.hist([LOS[ID] for ID in neg_ids], bins=20, density=False, alpha=0.5,
color="blue', label="Negative')

plt.hist([LOS[ID] for ID in pos_ids], bins=20, density=False, alpha=0.5,
color="red', label='Positive")

plt.legend()

plt.xlim(e, 100)

plt.yscale('log')

plt.show()

BRI BRI T R
_5 Learning
HEHAHHHH AR AR BB

In this part we train all the models necessary for the final results,
using the final datasets.

+

import sys

import utils
import collections
import os

import numpy as np

import pandas as pd
import logging
logging.basicConfig(level = logging.WARNING)

from tqdm import tqgdm, trange
from time import time

import matplotlib.pyplot as plt
Zmatplotlib inline
plt.style.use('seaborn-darkgrid")

import load from file

import sklearn

from

from

sklearn.linear_model import LogisticRegression, SGDClassifier

sklearn.model_selection import train_test_split, GridSearchCV,

cross_val score, ParameterGrid

from
from
from
from
from

sklearn.impute import SimpleImputer

sklearn.neural_network import MLPClassifier

sklearn.preprocessing import StandardScaler# , Imputer
sklearn.calibration import calibration_curve, CalibratedClassifierCV
sklearn import svm

import pickle

import keras
import xgboost

from
from
from

xgboost.sklearn import XGBClassifier
sklearn.ensemble import RandomForestClassifier
sklearn.metrics import roc_auc_score, mean_squared_error,

classification_report, plot_roc_curve, precision_recall curve,
average_precision_score, brier_score_loss

from

from
from
from

from
from

bisect import bisect

interpret import show
interpret.data import ClassHistogram
interpret.glassbox import ExplainableBoostingClassifier

interpret import set_visualize_provider
interpret.provider import InlineProvider

set_visualize_provider(InlineProvider())

from

interpret.perf import ROC

import tensorflow as tf

import tensorflow.keras.layers as layers

import tensorflow.keras.models as models

import tensorflow.keras.optimizers as optimizers

+

SEED = 5299 # a different seed leads to different train/test splits.
Results can vary slightly.

logging.disable(logging.WARNING)

def split(X, Y, seed=SEED):

X: 2D float array of training examples with dimensions (n_examples,
n_features)

Y: 1D binary array of labels with dimension n_examples

seed: int used for the split. With the same seed, datasets of same
size will be splitted the same

outputs: X_train, X _test, Y_train, Y_test

Splits a dataset into training and testing array,

with median imputation for nans and 0-1 normalization

(both based on the training set).

#Split

X_train, X_test, Y_train, Y_test = train_test split(X, Y, test_size
0.2, shuffle = True, random_state=seed)

#Input missing values

impute_median = SimpleImputer(missing_values = np.nan, strategy =
'median')

impute_median.fit(X_train)

X_train_imputed = impute_median.transform(X_train)
X_test_imputed = impute_median.transform(X_ test)

X_train = np.array(X_train_imputed)
X_test = np.array(X_test_imputed)

#0-1 normalization
train_min, train_max = np.min(X_train, axis=0), np.max(X_train,
axis=0)

X _train = (X_train-train_min)/(train_max-train_min)
X _test = (X_test-train_min)/(train_max-train_min)

m, sd = np.mean(X_train, axis=0), np.std(X_ train, axis=0)
X _train = (X_train-m)/sd
X _test = (X_test-m)/sd

return X_train, X _test, Y_train, Y_test

def brier_skill score(Y_test, y_pred):
BS = brier_score_loss(Y_test, y pred)
BSS = 1 - BS/brier_score_loss(Y_test,
np.mean(Y_test)*np.ones(len(Y_test)))
return BSS

def train_lr(X_train, Y_train):
prevalence = np.mean(Y_train)
t=time()

log_reg = SGDClassifier(loss = 'log’,
class_weight = 'balanced', eta@ = 0.01)

log reg params = {'penalty': ['12"', '11', 'elasticnet'],
'1l1_ratio': [0.01, 0.1, 0.5, 1],
'alpha': [0.0001, 0.001, 0.01, 0.1],
"learning_rate': ['constant', 'optimal', 'invscaling’,
'adaptive'],
'eta®@’': [0.001, 0.01, 0.1, 1]}

log reg params = {'penalty’': ['L2', 'L1', 'elasticnet'],
'"L1 ratio': [0.01, 0.1, 0.5, 1],
'alpha': [0.0001],
"Learning_rate': ['constant'],
‘eta9’': [0.01]} #always enough though

H OB OB R R

log reg clf = GridSearchCV(log reg, log reg params, cv = 4,
scoring = 'roc_auc', n_jobs = -1, verbose=0)
#scoring=roc_auc, average_precision, or neg_brier_score

log reg clf.fit(X _train, Y_train)

print('Logistic classifier trained in', np.timedelta64(int(time()-t),

's"))

return log reg clf.best _estimator_, log reg clf.best params_

def train_xgb(X_train, Y_train):

prevalence = np.mean(Y_train)
t=time()

xgb = XGBClassifier(objective = 'binary:logistic’,
n_estimators = 1000, learning rate = 0.01,

scale_pos_weight = (1-prevalence)/prevalence, penalty =

'elasticnet’,

H OB R R

1, cv

use label encoder=False, verbosity=0)

xgb_params = {'max_depth': [5],
'reg_lambda': [0.01, 0.1, 1],
‘gamma': [©0.1, 0.3],
‘colsample_bytree': [0.1, 0.3, 0.5]}

xgb_params = {'max_depth': [5],
'reg _Lambda': [1],
‘gamma’': [6.1, 0.3],
'colsample_bytree': [0.1]} #always enough though

xgb_clf = GridSearchCV(xgb, xgb_params, scoring='roc_auc', n_jobs

= 4, verbose=3)

xgb_clf.fit(X_train, Y_train)

print('XGBoost trained in', np.timedelta64(int(time()-t), 's'))

return xgb_clf.best_estimator_, xgb_clf.best params_

def train_ebm(X_train, Y _train, feature_names):

t=time()

def scorer(estimator, X, y):

y_pred = estimator.predict_proba(X)[:, 1]
auc = roc_auc_score(y, y pred)

return auc

ebm_params = {'learning_rate': [0.01, 0.1, 0.5],
'min_samples_leaf': [2, 4],
'max_leaves': [3, 5],
'max_bins':[256]}

param_list = []

score_list = []

for params in ParameterGrid(ebm_params):

param_list.append(params)

ebm = ExplainableBoostingClassifier(n_jobs=-1, interactions=20,
feature_names=feature_names, **params)

cv_scores = cross_val score(ebm, X train, Y_train, scoring=scorer)
#ebm implements 'fit' so it works

score_list.append(cv_scores)

i = np.argmax(np.mean(score_list, axis=1))
best _params = param_list[i]

ebm = ExplainableBoostingClassifier(n_jobs=-1, interactions=20,
feature_names=feature_names, **best_params)
ebm.fit(X_train, Y_train)

print('EBM trained in', np.timedelta64(int(time()-t), 's'))
return ebm, best_params

def train(model type, X train, Y_train, feature_names=None):
if model_type=="1lr"':
return train_lr(X_train, Y_train)
elif model type=='xgb':
return train_xgb(X_train, Y_train)
elif model_type=="ebm':
return train_ebm(X_train, Y_train, feature_names)

def load_data(k, data_folder = '~/MIMIC-III/learning _data/"):
data = load_from_file(data_folder + 'data_{}.dat'.format(k))
X, Y, header, ID = data['X'], data['Y'], data['header'], data['ID']
return X, Y, header, ID

def save_model(model, model_type, k, seed, path = '~/MIMIC-III/models/"'):
with open(path + "{}_{}_{}.pkl'.format(model_type, k, seed), 'wb') as
f:
pickle.dump(model, f)

def load_model(model type, k, seed, path = '~/MIMIC-III/models/"'):
with open(path + "{}_{}_{}.pkl'.format(model_type, k, seed), 'rb') as

model = pickle.load(f)
return model

-
Training

for k in [12, 24, 36, 48]:
X, Y, header, ID = load_data(k)
X_train, X_test, Y_train, Y_test = split(X, Y)

print('Training on {} hours data...'.format(k))

for model type in ['1lr', 'xgb', 'ebm']:

if model _type=="1lr' and k==12: continue #####WARNING: remove that
Line if you rerun this, I had a problem the first time (but the model
exists)

print('Training {}..."'.format(model type))

clf, best_params = train(model_ type, X _train, Y_train, header)

print('Best params: {}'.format(best_ params))

save_model(clf, model type, k, SEED, path = '~/MIMIC-III/models/")
y_pred = clf.predict_proba(X_test)[:, 1]

auc = roc_auc_score(Y_test, y_pred)

ap = average_precision_score(Y_test, y pred)

bss = brier skill score(Y_test, y pred)

print('AUC: {} ; AP: {} ; BSS: {}'.format(round(auc, 3), round(ap,
3), round(bss, 3)))

print('\n")
for k in [12, 24, 36, 48]:

X, Y, header, ID = 1load data(k)

X_train, X_test, Y_train, Y_test = split(X, Y)

print('Training on {} hours data...'.format(k))

for model type in ['1lr', 'xgb']:

clf = load_model(model_type, k, SEED)

clf isotonic = CalibratedClassifierCV(clf, cv=4, method='isotonic"')

clf isotonic.fit(X_train, Y_train)

save_model(clf isotonic, model type, k, SEED, path =
'~/MIMIC-III/calibrated(iso)/")

y_pred = clf_isotonic.predict_proba(X_test)[:, 1]

auc = roc_auc_score(Y_test, y_pred)
ap = average_precision_score(Y_test, y pred)
bss = brier skill score(Y_test, y pred)

print('AUC: {} ; AP: {} ; BSS: {}'.format(round(auc, 3), round(ap,
3), round(bss, 3)))
print('\n")

Few features model

+
def few features(X, Y, header, ID):
cols = []
for i in range(len(header)):
if '"MV' in header[i] or 'GCS' in header[i] or 'WBC' in header[i]:
cols.append(i)
return X[:, cols], Y, np.array(header)[cols], ID

for k in [12, 24, 36, 48]:
X, Y, header, ID = few_features(*load_data(k)) # <---
X_train, X_test, Y_train, Y_test = split(X, Y)

print('Training on {} hours data...'.format(k))

for model_type in ['1lr', 'xgb', 'ebm']:

print('Training {}..."'.format(model type))

clf, best _params = train(model_type, X _train, Y_train, header)

print('Best params: {}'.format(best_ params))

save_model(clf, model type, k, SEED, path =
'~/MIMIC-III/few_features/')

y_pred = clf.predict proba(X_test)[:, 1]

auc = roc_auc_score(Y_test, y_pred)
ap = average_precision_score(Y_test, y pred)
bss = brier skill score(Y_test, y pred)

print('AUC: {} ; AP: {} ; BSS: {}'.format(round(auc, 3), round(ap,
3), round(bss, 3)))

print('\n")

+

def few_features(X, Y, header, ID):
cols = []

for i in range(len(header)):

if 'MV' in header[i] or 'GCS' in header[i] or 'WBC' in header[i]:
cols.append(i)

return X[:, cols], Y, np.array(header)[cols], ID

for k in [12, 24, 36, 48]:
X, Y, header, ID = few_features(*load data(k)) # <---
X _train, X_test, Y _train, Y_test = split(X, Y)

print('Training on {} hours data...'.format(k))

for model _type in ['ebm']:

print('Training {}...'.format(model_type))

clf, best_params = train(model_type, X_train, Y_train, header)
print('Best params: {}'.format(best_params))

save_model(clf, model_type, k, SEED, path = '~/MIMIC-III/ebm_envl/")
y_pred = clf.predict_proba(X_test)[:, 1]

auc = roc_auc_score(Y_test, y pred)

ap = average precision_score(Y_test, y pred)

bss = brier_skill score(Y_test, y_pred)

print('AUC: {} ; AP: {} ; BSS: {}'.format(round(auc, 3), round(ap,
3), round(bss, 3)))
print('\n")

Thinned datasets

+
k=24

for thinning_rate in [25, 50, 75]:
X, Y, header, ID = 1load_data(k, data_folder =
'~/MIMIC-III/thinned_{}/'.format(thinning_rate))
X_train, X_test, Y_train, Y_test = split(X, Y)

print('Training on {} hours data...'.format(k))

for model_type in ['ebm']:

print('Training {}..."'.format(model type))

clf, best_params = train(model_ type, X_train, Y_train, header)
print('Best params: {}'.format(best params))

save_model(clf, model type, k, SEED, path =
'~/MIMIC-III/thinned_{}/'.format(thinning_rate))

y_pred = clf.predict proba(X_test)[:, 1]
auc = roc_auc_score(Y_test, y_pred)
ap = average precision_score(Y_test, y pred)

bss = brier_skill score(Y_test, y_pred)

print('AUC: {} ; AP: {} ; BSS: {}'.format(round(auc, 3), round(ap,
3), round(bss, 3)))

print('\n")

+

def few_features(X, Y, header, ID):
cols = []

for i in range(len(header)):

if 'MV' in header[i] or 'GCS' in header[i] or 'WBC' in header[i]:
cols.append(i)

return X[:, cols], Y, np.array(header)[cols], ID

for thinning_rate in [25, 50, 75]:
X, Y, header, ID = few_features(*load data(k, data_folder =
'~/MIMIC-III/thinned_{}/'.format(thinning rate)))

X _train, X_test, Y _train, Y_test = split(X, Y)
print('Training on {} hours data...'.format(k))

for model_type in ['ebm']:

print('Training {}...'.format(model_type))

clf, best_params = train(model_type, X_train, Y_train, header)
print('Best params: {}'.format(best_ params))

save_model(clf, model_type, k, SEED, path =
'~/MIMIC-III/thinned_{}/'.format(thinning rate))

y_pred = clf.predict_proba(X_test)[:, 1]

auc = roc_auc_score(Y_test, y pred)
ap = average _precision_score(Y_test, y pred)
bss = brier_skill score(Y_test, y_pred)

print('AUC: {} ; AP: {} ; BSS: {}'.format(round(auc, 3), round(ap,
3), round(bss, 3)))

print('\n")
-

Cross performance (train everything on k=48 patient population)

for k in [12, 24, 36, 48]:
X, Y, header, ID = load_data(k)
>, _, _, ID48 = load_data(48)
i = np.where(np.isin(ID, ID48))
X, Y, ID = X[i], np.array(Y)[i], np.array(ID)[i]

X _train, X_test, Y train, Y_test = split(X, Y)

print('Training on {} hours data...'.format(k))

for model type in ['1lr', 'xgb', 'ebm']:

print('Training {}...'.format(model type))

clf, best_params = train(model_type, X_train, Y_train, header)

print('Best params: {}'.format(best params))

save_model(clf, model_type, k, SEED, path =
'~/MIMIC-III/robustness/"')

y_pred = clf.predict proba(X_test)[:, 1]

auc = roc_auc_score(Y_test, y_pred)
ap = average precision _score(Y_test, y pred)
bss = brier_skill score(Y_test, y_pred)

print('AUC: {} ; AP: {} ; BSS: {}'.format(round(auc, 3), round(ap,
3), round(bss, 3)))
print('\n")

HAHARARHABRBHAH AR AV HAHABABHARH
6 Analysis
B B L

This part is used to generate all the figures for the article. The last
bit (risk vs feature plots) need to run on envl for work (python Llibrary
versions problem), everything else on env2, as all the parts. Some cells
have to be modified to generate different variations of the figures
(everything is indicated)

+

import sys

import utils
import collections
import os

import numpy as np

import pandas as pd

import logging

logging.basicConfig(level = logging.WARNING)

from tqdm import tqgdm, trange
from time import time

import matplotlib.pyplot as plt
Zmatplotlib inline
plt.style.use('seaborn-darkgrid")

import load_from_file, get_detailed_performance
import sklearn

from sklearn.linear_model import LogisticRegression, SGDClassifier

from sklearn.model selection import train_test split, GridSearchCvVv

from sklearn.impute import SimpleImputer

from sklearn.neural_network import MLPClassifier

from sklearn.preprocessing import StandardScaler# , Imputer
from sklearn.calibration import calibration_curve

from sklearn import svm

import pickle

import keras

import xgboost

from xgboost.sklearn import XGBClassifier

from sklearn.ensemble import RandomForestClassifier

from sklearn.metrics import roc_auc_score, mean_squared_error,
classification_report, plot_roc_curve

from sklearn.metrics import precision_recall curve,

average _precision_score, brier_score_loss

from bisect import bisect

from interpret import show
from interpret.data import ClassHistogram
from interpret.glassbox import ExplainableBoostingClassifier

from interpret import set_visualize_ provider
from interpret.provider import InlineProvider
set_visualize provider(InlineProvider())

from interpret.perf import ROC

+
SEED = 5299
logging.disable(logging.WARNING)

def split(X, Y, seed=SEED):

X: 2D float array of training examples with dimensions (n_examples,
n_features)

Y: 1D binary array of labels with dimension n_examples

seed: int used for the split. With the same seed, datasets of same
size will be splitted the same

outputs: X_train, X _test, Y_train, Y_test

Splits a dataset into training and testing array,

with median imputation for nans and ©-1 normalization
(both based on the training set).

#Split

X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size

0.2, shuffle = True, random_state=seed)

#Input missing values

impute_median = SimpleImputer(missing_values = np.nan, strategy =

'median')
impute_median.fit(X train)

X_train_imputed = impute_median.transform(X_train)
X_test_imputed = impute_median.transform(X_test)

X_train = np.array(X_train_imputed)
X_test = np.array(X_test_imputed)

#0-1 normalization

train_min, train_max = np.min(X_train, axis=0), np.max(X_train,

axis=0)
X _train = (X_train-train_min)/(train_max-train_min)
X _test = (X_test-train_min)/(train_max-train_min)

m, sd = np.mean(X_train, axis=0), np.std(X _ train, axis=0)
X _train = (X_train-m)/sd
X _ test = (X_test-m)/sd

return X _train, X _test, Y_train, Y_test

def brier_skill score(Y_test, y_pred):

BS = brier_score_loss(Y_test, y pred)

BSS = 1 - BS/brier_score_loss(Y_test,
np.mean(Y_test)*np.ones(len(Y_test)))

random_bss = 1 - (1/3) / brier_score loss(Y_test,
np.mean(Y_test)*np.ones(len(Y_test)))

return BSS, random_bss

def load_data(k, data_folder = '~/MIMIC-III/learning_data/'):
data = load_from_file(data_folder + 'data_{}.dat’'.format(k))

X, Y, header, ID = data['X'], data['Y'], data['header'], data['ID']

return X, Y, header, ID

def save_model(model, model type, k, seed, path = '~/MIMIC-III/models/"'):
with open(path + "{}_{}_{}.pkl'.format(model_type, k, seed), 'wb') as

pickle.dump(model, f)

def load_model(model_ type, k, seed, path = '~/MIMIC-III/models/"):
with open(path + "{}_{}_{}.pkl'.format(model type, k, seed), 'rb') as

model = pickle.load(f)
return model

def few_features(X, Y, header, ID):
cols = []
for i in range(len(header)):
if 'MV' in header[i] or 'GCS' in header[i] or 'WBC' in header[i]:
cols.append(i)
return X[:, cols], Y, np.array(header)[cols], ID

def get_roc(model_type, k, seed, path = '~/MIMIC-III/models/"):

X, Y, header, ID = load_data(k) #### MODIFY here for few_features
roc curves: few features(*load data(R))

X_train, X_test, Y_train, Y_test = split(X, Y)

clf = load_model(model_type, k, seed, path = path)

y _pred = clf.predict proba(X_test)[:, 1]

report = get detailed_performance(Y_test, y_pred)

return report['roc_x'], report['roc_y'], round(report['auroc'], 3)

def get pr(model type, k, seed, path = '~/MIMIC-III/models/"):
X, Y, header, ID = load_data(k)
X _train, X _test, Y train, Y_test = split(X, Y)
clf = load model(model type, k, seed, path = path)
y_pred = clf.predict_proba(X_test)[:, 1]
precision, recall, _ = precision_recall_curve(Y_test, y_pred)
ap = average_precision_score(Y_test, y _pred)
return precision, recall, round(ap, 3), np.mean(Y_train)

def get_f(model type, k, seed, path = '~/MIMIC-III/models/"'):
clf = load model(model type, k, seed, path=path)
_, _, standard_header, _ = load_data(48) #disgusting but hey
if model_type=="1lr"':
return np.array(standard_header[:87]), np.array(clf.coef [0])
#warning: pos and neg values: take abs

if model type=="xgb':

return np.array(standard_header[:87]),
np.array(clf.feature_importances_)

if model type=='ebm':

report = clf.explain_global().data()

return np.array(report['names']), np.array(report['scores'])

def get calibration(model type, k, seed, path = '~/MIMIC-III/models/'):
X, Y, header, ID = load_data(k)
X_train, X_test, Y_train, Y_test = split(X, Y)
prevalence = np.mean(Y_test)
clf = load_model(model type, k, seed, path=path)

y_pred = clf.predict_proba(X_test)[:, 1]

fop, mpv = calibration_curve(Y_test, y pred, normalize = False,
n_bins=8, strategy="quantile')

bss, random bss = brier_skill score(Y_test, y pred)

return mpv, fop, prevalence, round(bss, 3), round(random_bss, 3)

results_path = '~/MIMIC-III/results/’
-

Performance curves

+
k = 12 #Set that

model titles = {'lr':'Logistic Regression', 'xgb':'XGBoost', 'ebm':'EBM'}

for model_type in ['1lr', 'xgb', 'ebm']:
roc_x, roc_y, auc = get roc(model type, k, seed=SEED)
plt.plot(roc_x, roc_y, label='{}
(AUC={})"'.format(model_ titles[model type], auc))
plt.plot([@, 1], [0, 1], label='Random (AUC=0.5)"', linestyle='--")
plt.xlabel('1-Specificity')
plt.ylabel('Sensitivity")
plt.title('ROC curves for {}h window'.format(k))
plt.legend()
plt.savefig(results _path + 'ROC_" + '{}.png'.format(k))
plt.show()

+

k = 48 #set that
model_titles = {'1r':'Logistic Regression', 'xgb':'XGBoost', 'ebm':'EBM'}

for model_type in ['1lr', 'xgb', 'ebm']:
precision, recall, ap, prevalence = get_pr(model_type, k, seed =
SEED)
plt.plot(recall, precision, label="{}
(AP={})"'.format(model titles[model type], ap))
plt.plot([@, 1], [prevalence, prevalence], label='Random', linestyle='--")
plt.xlabel('Recall’)
plt.ylabel('Precision')
plt.title('PR curves for {}h window'.format(k))
plt.legend()
plt.savefig(results_path + 'PR_' + "{}.png'.format(k))
plt.show()

k = 48 #set that modify where indicated for uncalibrated/calibrated models.
ebm is already calibrated

model titles = {'lr':'Logistic Regression', 'xgb':'XGBoost', 'ebm':'EBM'}

for model_type in ['1lr', 'xgb', 'ebm']:
if model type=='ebm':
mpv, fop, prevalence, bss, random_bss
k, seed = SEED, path = '~/MIMIC-III/models/")
else: #####here
mpv, fop, prevalence, bss, random_bss = get calibration(model_ type,
k, seed = SEED, path = '~/MIMIC-III/models/calibrated(iso)/")
plt.plot(mpv, fop, label='{}
(BSS={})"'.format(model titles[model type], bss))
plt.xlabel('Mean Predicted Value')
plt.ylabel('Fraction of Positive')
plt.plot([@, 1], [prevalence, prevalence], label='Random

get _calibration(model type,

(BSS={})"'.format(random_bss), linestyle='--', linewidth=0.75)
plt.plot([@, 1], [0, 1], label='Perfectly calibrated (BSS=1)",
linestyle="--', linewidth=0.75)

plt.plot([prevalence], [prevalence], marker='*', label='Dummy (BSS=0)',
linewidth=0)

plt.title('Calibration curves for {}h window (isotonic
calibration)'.format(k)) #####there

plt.legend()

plt.savefig(results path + 'Cal_" + '{}.png'.format(k))

plt.show()

+

k = 48 #set that

model_type = 'xgb' #set that

n_features = 20

model_titles = {'1r':'Logistic Regression', 'xgb':'XGBoost', 'ebm':'EBM'}

plt.rcParams["figure.figsize"] = (8, 6) #change if needed, but prettier
Like that

names, scores = get_f(model_ type, k, SEED, path = '~/MIMIC-III/models/")
sorted_idx = np.abs(scores).argsort()

plt.barh(names[sorted _idx][-n_features:],
100*np.abs(scores[sorted_idx][-n_features:])/np.sum(np.abs(scores)))
plt.xlabel('Feature importance (% of absolute total score)')
plt.title('{}, k={}'.format(model titles[model type], k))
plt.savefig(results_path + 'Features_' + "{}_{}.png'.format(model type, k))
plt.show()

plt.rcParams["figure.figsize"] = (6.4, 4.8) #default fig size

-

Few features EBM

+
model_type = 'ebm' #set that

model titles = {'lr':'Logistic Regression', 'xgb':'XGBoost', 'ebm':'EBM'}

for k in [12, 24, 36, 48]:

HHHAHAHHWARNING: modify the get roc function as 1indicated for this
cell (JUST this one)

roc_x, roc_y, auc = get roc(model_type, k, seed=SEED,
path="'~/MIMIC-III/models/few_features/')

plt.plot(roc_x, roc_y, label="k={} (AUC={})'.format(k, auc))
plt.plot([@, 1], [0, 1], label='Random (AUC=0.5)"', linestyle='--")
plt.xlabel('1-Specificity")
plt.ylabel('Sensitivity")
plt.title('EBM ROC curves (few features)'.format(k))
plt.legend()
plt.savefig(results_path + 'EBM_ROC_few.png')
plt.show()

-
Robustness
Thinning

+
def doublesplit(X_1, Y_1, X 2, Y_2):

X _train, X_ref, Y _train, Y_ref = train_test split(X_ 1, Y 1, test size
= 0.2, shuffle = True, random_state = SEED)

_, X_test, _, Y_test = train_test_split(X_ 2, Y_2, test_size = 0.2,
shuffle = True, random_state = SEED)

impute_median = SimpleImputer(missing values = np.nan, strategy =
'median')
impute_median.fit(X train)

X_train = np.array(impute_median.transform(X_train))
X_ref = np.array(impute_median.transform(X_ref))
X _test = np.array(impute_median.transform(X_ test))

#0-1 normalization

train_min, train_max = np.min(X_train, axis=0), np.max(X_train,
axis=0)

X_train = (X_train-train_min)/(train_max-train_min)

X_ref = (X_ref-train_min)/(train_max-train_min)

X test = (X_test-train_min)/(train_max-train_min)

return X _train, X ref, X test, Y train, Y_ref, Y _test

####change where it is written for few_features: add to path, or
few_features(*lLoad_data(...)). 6 changes in total

default_model = load _model('ebm', 24, seed=SEED, path =
'~/MIMIC-III/models/few_features/') ######here

default X, default Y, header, ID few_features(*load data(24)) ####ttthere
X_train, X_test, Y_train, Y_test = split(default X, default Y)

y_pred = default model.predict _proba(X test)[:, 1]
auc = roc_auc_score(Y_test, y pred)

default_auc [auc]
thinned_auc = [auc]

for thinning_rate in [25, 50, 75]:

#it#it#there

X, Y, header, ID = few_features(*load data(24, data_folder =
'~/MIMIC-III/learning_data/thinned_{}/'.format(thinning_rate)))

., _, X test, , , Y_test = doublesplit(default X, default Y, X, Y)
#the "unthinned" model needs to see the thinned data under 1its perspective
for a fair comparison

default_auc.append(roc_auc_score(Y_test,
default_model.predict_proba(X_test)[:, 1]))

#it#it#there

thinned_model = load _model('ebm', 24, seed=SEED, path =
'~/MIMIC-III/models/few_features/thinned_{}/'.format(thinning rate))

X_train, X_test, Y_train, Y_test = split(X, Y)

thinned_auc.append(roc_auc_score(Y_test,
thinned_model.predict_proba(X_test)[:, 1]))

default_auc, thinned_auc = np.array(default_auc), np.array(thinned_auc)
plt.scatter(np.arange(4), default_auc, label="Model trained on unthinned
data', s=50)

plt.scatter(np.arange(4), thinned _auc, label="'Model trained on the thinned
data', s=50)

plt.xticks(np.arange(4), label=[0, 25, 50, 75])

plt.xlabel('Thinning rate')

plt.ylabel('AUC")

plt.ylim(@.5, 1)

plt.legend()

plt.title('EBM, 24h window (few features)') ####here
plt.savefig(results_path + 'Thinning_few_features.png') ####here
plt.show()

print(default_auc, thinned auc)

-
Cross performance

+
results = {} #keys: model then data

for k in [12, 24, 36, 48]:
for model_type in ['1lr', 'xgb', 'ebm']:

model = load_model(model_ type, k, seed=SEED, path =
'~/MIMIC-III/models/robustness/"')
results[model type+' '+str(k)] = {}

for data_k in [12, 24, 36, 48]:

X, Y, header, ID = 1load data(data k)

_, _» _, IDA8 = load_data(48)

i = np.where(np.isin(ID, ID48))

X, Y, ID = X[i], np.array(Y)[i], np.array(ID)[i]

X_train, X_test, Y_train, Y_test = split(X, Y)
y_pred = model.predict proba(X_test)[:, 1]

auc = roc_auc_score(Y_test, y_pred)
ap = average_precision_score(Y_test, y _pred)
bss = brier_skill score(Y_test, y pred)

results[model_type+'_ '+str(k)][data_k]=(auc, ap, bss)

+
import seaborn as sns
model titles = {'lr':'Logistic Regression', 'xgb':'XGBoost', 'ebm':'EBM'}

model type = 'ebm' #set that

table = np.zeros((4, 4))
for i in range(4):

for j in range(4):

table[i, j] = results[model type+' '+str([12, 24, 36, 48][i])][[12,
24, 36, 48][j]l[e]
sns.heatmap(table, vmin=0.5, vmax=1, annot=True, yticklabels = [str([12,
24, 36, 48][i]) for i in range(4)],

xticklabels = [str([12, 24, 36, 48][i]) for i in range(4)])

plt.xlabel('Time window for testing')
plt.ylabel('Time window for training')
plt.title('Cross performance of {} for different time

windows ' .format(model titles[model type]))
plt.savefig(results_path + 'grid_{}.png'.format(model type))
plt.show()

-

Risk vs feature plot for few_features model

+

from interpret import show

from interpret.data import ClassHistogram

from interpret.glassbox import ExplainableBoostingClassifier
from interpret import set visualize provider

from interpret.provider import InlineProvider
set_visualize_provider(InlineProvider())

ebm = load_model('ebm', 24, seed=SEED, path =
'~/MIMIC-III/models/few_features/ebm_envl/')
explain = ebm.explain_global()

report = explain.data()
names, scores = np.array(report['names']), np.array(report['scores'])

n_features = 20
model_titles = {'1r':'Logistic Regression', 'xgb':'XGBoost', 'ebm':'EBM'}

plt.rcParams["figure.figsize"] = (8, 6)

sorted_idx = np.abs(scores).argsort()

plt.barh(names[sorted idx][-n_features:],

100*np.abs(scores[sorted idx][-n_features:])/np.sum(np.abs(scores)))
plt.xlabel('Feature importance (% of absolute total score)')
plt.title('{}, k={}'.format(model titles['ebm'], 24))

plt.show()

plt.rcParams["figure.figsize"] = (6.4, 4.8)

#look at top 3 features
-

show(explain)

