
Supplementary Material

Table S1. Feature inputs for models. Clinical variables which were processed into inputs for model
training.

Vitals and labs Counts Boolean Indicators Demographic
Info

● Systolic BP
● Dias BP
● HR
● Respiratory Rate
● Temperature
● Hematocrit
● SpO2
● GCS
● Platelet Count
● Sputum
● Blood culture
● WBC
● Creatinine

Numbers of MV hours,
sputum tests, blood
cultures, urine output
measurements, and
antibiotic input events

Indicators of cirrhosis,
congestive heart failure,
fever, bacteremia,
intracranial
hemorrhage, renal
failure, respiratory
distress, respiratory
failure, sepsis,
subarachnoid
hemorrhage, shortness
of breath, and acute
respiratory distress
syndrome

● Age
● Weight
● Total urine

output

Table S2. Demographic information of patients included in time windows of k = 12, 24, 36 hours.
Abbreviations: VAP - Ventilator-associated pneumonia
 k = 12 k = 24 k = 36

 Characteristic

VAP + VAP - VAP + VAP - VAP + VAP -

n = 470 n = 20594 n = 470 n = 20017 n = 470 n = 19447

Age

<30 26 (5.5%) 899 (4.4%) 26 (5.5%) 848 (4.2%) 26 (5.5%) 776 (4%)

30-49 78 (16.6%) 3024 (14.7%) 78 (16.6%) 2921 (14.6%) 78 (16.6%) 2811 (14.5%)

50-59 98 (20.9%) 3725 (18.1%) 98 (20.9%) 3653 (18.2%) 98 (20.9%) 3569 (18.4%)

60-69 99 (21.1%) 4734 (23%) 99 (21.1%) 4631 (23.1%) 99 (21.1%) 4541 (23.4%)

70-79 95 (20.2%) 4641 (22.5%) 95 (20.2%) 4527 (22.6%) 95 (20.2%) 4431 (22.8%)

80+ 74 (15.7%) 3571 (17.3) 74 (15.7%) 3427 (17.2%) 74 (15.7%) 3319 (17.1%)

Gender

Male 282 (60%)
12303
(59.7%) 282 (60%)

11969
(59.8%) 282 (60%)

11641
(59.9%)

Female 188 (40%) 8291 (40.3%) 188 (40%) 8048 (40.2%) 188 (40%) 7806 (40.1%)

Ethnicit
y

White
314
(66.8%)

14634
(71.1%)

314
(66.8%)

14259
(71.2%)

314
(66.8%)

13865
(71.3%)

Black/African-
American 43 (9.1%) 1500 (7.3%) 43 (9.1%) 1449 (7.2%) 43 (9.1%) 1402 (7.2%)

Asian 18 (3.8%) 446 (2.2%) 18 (3.8%) 434 (2.2%) 18 (3.8%) 418 (2.1%)
Hispanic/
Latino 12 (2.6%) 666 (3.2%) 12 (2.6%) 644 (3.2%) 12 (2.6%) 619 (3.2%)
Unknown/
Other 83 (17.7%) 3348 (16.2%) 83 (17.7%) 3231 (16.1%) 83 (17.7%) 3143 (16.1%)

Figure S1. Precision recall (PR) curves for LR, fEBM, and XGB models at k = 12, 24, 36, 48 hours.
Abbreviations: LR – Logistic Regression; fEBM – full feature Explainable Boosting Machine; XGB –
XGBoost; AUPRC – Area Under the Precision Recall Curve

Figure S2. Feature importance plots for the fEBM model at k = 12, 36, 48 h. Abbreviations:
WBC - white blood cell; MV - mechanical ventilator; GCS - Glasgow coma scale; HR - heart
rate; fEBM – full feature Explainable Boosting Machine.

Figure S3. Contribution of the top features to fEBM scores. There are three panels
corresponding to the top features of fEBM—MV hours, WBC first , and GCS last. Each
panel consists of two subplots, the top plot shows the contribution to the fEBM risk score
versus standardized feature value; the bottom plot indicates how common it is to observe a
range of feature values. A higher score reflects greater risk of VAP. The score fEBM

produces is a sum of scores resulting from each feature. Abbreviations: MV- mechanical
ventilation; WBC - white blood cell count; and GCS - Glasgow Coma Scale; fEBM – full
feature Explainable Boosting Machine.

##############################

_1_Processing

#############################

In this part we extract the dataset from raw CSV files. It is then saved

as a PatientCollection (PC) as raw_mimic_full.dat

After various filtering operations, the PC is saved as

filtered_mimic_full.dat. After labeling and processing, the PC is saved as

processed_mimic_full.dat

These 3 files are only intermediate and are never used later again.

Imports

+

import sys

import collections

import os

import numpy as np

import pandas as pd

import logging

logging.basicConfig(level = logging.INFO)

import utils

import config

import import_csv_all, save_to_file, load_from_file, process_raw_data_all

from tqdm import tqdm, trange

import time

import matplotlib.pyplot as plt

%matplotlib inline

-

1 - Extract the CSV files into a PatientCollection

start = time.time()

Load all CSV files from your source directory

mimic = import_csv_all()

print((time.time() - start)/60, 'minutes.')

Save the raw PatientCollection

save_to_file(mimic, '~/MIMIC-III/raw_mimic_full.dat') #saves the raw

patient collection

Code S1. Source code for data processing and model training

2 - Filter the data

2.1 - Basic filtering (age and existence of data)

#In case one wants to load the dataset from just above

mimic = load_from_file('~/MIMIC-III/raw_mimic_full.dat')

print(len(mimic))

mimic['200033']['Info']

mimic['200033']['RawData'].keys()

Filter patients without data

utils.raw_data_filter(mimic)

Filter patients under 18

utils.age_filter(mimic)

2.2 - VAP-related filtering (no CAP, intubation)

Hardcode some info about MV

+

Hardcode some information in the 'Info' section of each patient

To make the filtering easier afterwards

icustay = pd.read_csv('~/MIMIC-III/ICUSTAYS.csv')

for i in range(len(icustay)):

ID = str(icustay['ICUSTAY_ID'][i])

if ID in mimic:

assert mimic[ID]['Info']['admission_time'] ==

np.datetime64(icustay['INTIME'][i])

mimic[ID]['Info']['discharge_time'] =

np.datetime64(icustay['OUTTIME'][i])

+

mv = pd.read_csv('~/MIMIC-III/ventilation_duration.csv') #already ordered

mv =

mv.loc[np.logical_not(np.isnan(mv['icustay_id']))].reset_index(drop=True)

for key in mimic:

mimic[key]['Info']['mvstarts']=[]

mimic[key]['Info']['mvends']=[]

for i in range(len(mv)):

ID = str(int(mv['icustay_id'][i]))

if ID in mimic:

mimic[ID]['Info']['mvstarts'].append(np.datetime64(mv['starttime'][i]))

mimic[ID]['Info']['mvends'].append(np.datetime64(mv['endtime'][i]))

+

Check there is no problem in MV times ordering

def is_ordered(l):

for i in range(len(l)-1):

if l[i+1]<l[i]:

return False

return True

for icustay in mimic:

if len(mimic[icustay]['Info']['mvstarts'])==0:

assert len(mimic[icustay]['Info']['mvends'])==0

else:

assert

len(mimic[icustay]['Info']['mvstarts'])==len(mimic[icustay]['Info']['mvends

'])

j = []

for pair in zip(mimic[icustay]['Info']['mvstarts'],

mimic[icustay]['Info']['mvends']):

j.extend(pair)

assert is_ordered(j)

-

Filter patients who were never intubated

+

print(len(mimic), 'encounters prior to MV filtering:')

for key in list(mimic.keys()):

if len(mimic[key]['Info']['mvstarts'])==0:

mimic.pop(key)

print(len(mimic), 'encounters remaining after MV filtering')

-

Filter patients diagnosed with CAP (community acquired pneumonia) at

their admission

icustay = pd.read_csv('~/MIMIC-III/ICUSTAYS.csv')

admissions = pd.read_csv('~/MIMIC-III/ADMISSIONS.csv').merge(icustay.loc[:,

['HADM_ID', 'ICUSTAY_ID']], on='HADM_ID',)

print(admissions.head())

+

cap_ids = []

for i in range(len(admissions)):

if 'pneumonia' in str(admissions['DIAGNOSIS'][i]).lower():

cap_ids += [admissions['ICUSTAY_ID'][i]]

valid_cap_ids = [str(ID) for ID in cap_ids if str(ID) in

list(mimic.keys())]

print(len(mimic), 'encounters prior to CAP filtering')

for key in valid_cap_ids:

mimic.pop(key)

print(len(mimic), 'encounters remaining after CAP filtering')

print(len(valid_cap_ids), 'encounters removed')

-

Save the filtered patient collection

save_to_file(mimic, '~/MIMIC-III/filtered_mimic_full.dat')

3 - Label VAP cases

#In case one wants to load the dataset from just above

mimic = load_from_file('~/MIMIC-III/filtered_mimic_full.dat')

Labeling

icustay = pd.read_csv('~/MIMIC-III/ICUSTAYS.csv')

diagnoses_icd =

pd.read_csv('~/MIMIC-III/DIAGNOSES_ICD.csv').merge(icustay.loc[:,

['HADM_ID', 'ICUSTAY_ID']], on='HADM_ID',)

#Not the same as the diagnosis column in the ADMISSIONS tables. This table

corresponds to the diagnoses

#made at the end of an hospital stay.There may be multiple diagnoses for a

single patient

diagnoses_icd.head()

+

#Retrieve the ICU ID's for patients with a VAP diagnosis

vap_code = '99731' #ICD-9 code for VAP

vap_filter = diagnoses_icd.query("ICD9_CODE == @vap_code").loc[:,

['ICD9_CODE', 'ICUSTAY_ID']]

vap_ids = set(vap_filter['ICUSTAY_ID'])

valid_vap_ids = [str(ID) for ID in vap_ids if str(ID) in

list(mimic.keys())]

print('Number of stays:', len(mimic))

print('Number of VAP cases: {}'.format(len(valid_vap_ids)),

'\nPrevalence:',

'{}%'.format(round(100*len(valid_vap_ids)/len(mimic), 2)))

+

Assign a pneumonia label to each patient

for patient in list(mimic.keys()):

mimic[patient]['Outcomes'] = {'Pneumonia': {'is_pneumonia': False}}

for ID in valid_vap_ids:

mimic[ID]['Outcomes']['Pneumonia']['is_pneumonia'] = True

-

mimic = process_raw_data_all(mimic) #bins the raw data, dataset size stays

the same

Save the processed patient collection

save_to_file(mimic, '~/MIMIC-III/processed_mimic_full.dat')

4 - Demo

#In case one wants to load the dataset from just above

mimic = load_from_file('~/MIMIC-III/processed_mimic_full.dat')

+

print(len(mimic))

for ID in list(mimic.keys()):

if 'HR' not in mimic[ID]['ProcessedData']:

mimic.pop(ID)

elif 'DiasABP' not in mimic[ID]['ProcessedData']:

mimic.pop(ID)

elif 'SysABP' not in mimic[ID]['ProcessedData']:

mimic.pop(ID)

elif 'Temp' not in mimic[ID]['ProcessedData']:

mimic.pop(ID)

elif 'SpO2' not in mimic[ID]['ProcessedData']:

mimic.pop(ID)

elif 'WBC' not in mimic[ID]['ProcessedData']:

mimic.pop(ID)

elif 'Creatinine' not in mimic[ID]['ProcessedData']:

mimic.pop(ID)

elif 'RespRate' not in mimic[ID]['ProcessedData']:

mimic.pop(ID)

elif 'GCS' not in mimic[ID]['ProcessedData']:

mimic.pop(ID)

elif 'Platelets' not in mimic[ID]['ProcessedData']:

mimic.pop(ID)

elif 'BUN' not in mimic[ID]['ProcessedData']:

mimic.pop(ID)

elif 'Hematocrit' not in mimic[ID]['ProcessedData']:

mimic.pop(ID)

print(len(mimic)) #should be 6126 with everything ?

+

Keys are patient ICUSTAY id's, between 200,001 and 299,999 (strings)

#keys = list(mimic.keys())

#keys.remove('')

#keys = list(map(int, keys))

#print(min(keys), max(keys))

patient = mimic['222222'] #a random patient

#one can recognize the keys defined earlier in the CONFIG

print('Keys of a patient\'s PatientCollection:', list(patient.keys()))

print('--> ID:', patient['ID'])

print('--> ICD9:', patient['ICD9'])

print('--> Info:', patient['Info'], '\n')

print('ProcessedData keys:', list(patient['ProcessedData'].keys()), '\n')

#processed data contains time series of the patient's measurements

print('Keys of every measurement in ProcessedData:',

list(patient['ProcessedData']['HR'].keys()), '\n')

print('For example, the heart rate (HR)')

print('Time: \n',

patient['ProcessedData']['HR']['time'],

'\n Value: \n',

patient['ProcessedData']['HR']['value'])

##############################

_2_Processing_contd.

#############################

In this part we go from processed_mimic_full.dat to processed_mimic_k.dat

with k = 12, 24, 36, 48

The resulting files are our final patient population data for each k.

However it requires a bit more work to get this data ready for learning.

Imports

+

import sys

import utils

import collections

import os

import save_to_file

import numpy as np

import pandas as pd

import logging

logging.basicConfig(level = logging.INFO)

from tqdm import tqdm, trange

import time

import matplotlib.pyplot as plt

%matplotlib inline

-

mimic = load_from_file('~/MIMIC-III/processed_mimic_full.dat')

Independence

icustay = pd.read_csv('~/MIMIC-III/ICUSTAYS.csv')

mv = pd.read_csv('~/MIMIC-III/ventilation_duration.csv')

mv =

mv.loc[np.logical_not(np.isnan(mv['icustay_id']))].reset_index(drop=True)

mv.head()

+

Just to illustrate

ids = [int(ID) for ID in mimic] #ICUSTAY_ID's in our dataset

#corresponding hospital admission id for each ICU stay in our dataset

hadm_ids =

icustay.loc[icustay['ICUSTAY_ID'].isin(ids)]['HADM_ID'].to_numpy() #may

contain repetitions

print('Number of unique hospital admissions represented in the dataset:',

len(set(hadm_ids)), '/', len(ids), 'ICU stays')

+

Here we remove all the ICU stays (with MV) such that the patient was

admitted to the ICU and ventilated

another time during the same hospital stay. Otherwise there is no way

to know which instance of ventilation led to VAP.

(diagnoses are labeled with the hospital admission ID)

#ICU STAY id's with MV

mv_icu_ids = mv['icustay_id'].to_numpy()

#HADM ID's with ICU STAY with MV (may contain repetitions !)

mv_hadm_ids =

icustay.loc[icustay['ICUSTAY_ID'].isin(mv_icu_ids)]['HADM_ID'].to_numpy()

#HADM ID's with multiple ICU stays with MV

multiplemv_hadm_ids = []

counter = dict(collections.Counter(mv_hadm_ids))

for hadm_id in counter:

if counter[hadm_id]>1:

multiplemv_hadm_ids.append(hadm_id)

else:

pass

#ICUSTAY ID's corresponding to HADM ID's with multiple MV ICU stays

bad_icustay_ids =

icustay.loc[icustay['HADM_ID'].isin(multiplemv_hadm_ids)]['ICUSTAY_ID'].to_

numpy()

#The same but only those contained in our dataset

valid_bad_icustay_ids = [str(ID) for ID in bad_icustay_ids if str(ID) in

mimic]

print(len(mimic), 'encounters prior to multiple MV filtering')

for icustay in list(mimic.keys()):

if icustay in valid_bad_icustay_ids:

mimic.pop(icustay)

print(len(mimic), 'encounters remaining after multiple MV filtering')

print(len(valid_bad_icustay_ids), 'encounters removed')

-

count = 0

for icustay in mimic:

if mimic[icustay]['Outcomes']['Pneumonia']['is_pneumonia'] == True:

count+=1

print('Number of VAP cases: {}'.format(count),

'\nPrevalence:', '{}%'.format(round(100*count/len(mimic), 2)))

Filtering altenatives

Time filtering

Check everything went as planned during processing

All times are the same

for ID in mimic:

t = [mimic[ID]['ProcessedData'][key]['time'] for key in

mimic[ID]['ProcessedData']]

assert (t==t[0]).all()

Times are hourly spaced

for ID in mimic:

t =

mimic[ID]['ProcessedData'][list(mimic[ID]['ProcessedData'].keys())[0]]['tim

e']

assert np.all((t[1:]-t[:-1])==np.timedelta64(1, 'h'))

Adapts the way these are computed (with ProcessedData times instead of

RawData times)

(For better clarity moving on)

for ID in mimic:

mimic[ID]['Info']['first_measurement_time'] =

mimic[ID]['ProcessedData'][list(mimic[ID]['ProcessedData'].keys())[0]]['tim

e'][0]

mimic[ID]['Info']['last_measurement_time'] =

mimic[ID]['ProcessedData'][list(mimic[ID]['ProcessedData'].keys())[0]]['tim

e'][-1]

+

VAP by definition can only happen after 48h so we want to have 48h of

data at least

(or more precisely data in 48 different hourly bins after intubation)

starting in the first hour following intubation.

We keep patients that have at least 12/24/36/48h of data. Set k here.

k = 48

print(len(mimic), 'encounters before time filtering')

for ID in list(mimic.keys()):

if

mimic[ID]['Info']['first_measurement_time']-mimic[ID]['Info']['mvstarts'][0

] > np.timedelta64(1, 'h'):

mimic.pop(ID)

elif

mimic[ID]['Info']['last_measurement_time']-max(mimic[ID]['Info']['mvstarts'

][0], mimic[ID]['Info']['first_measurement_time']) < np.timedelta64(k-1,

'h'):

mimic.pop(ID)

print(len(mimic), 'encounters remaining after time filtering')

+

count=0

for ID in mimic:

if

mimic[ID]['Info']['discharge_time']-mimic[ID]['Info']['mvstarts'][0]<np.tim

edelta64(48, 'h'):

count+=1

print(count)

-

Prevalence check

count = 0

for icustay in mimic:

if mimic[icustay]['Outcomes']['Pneumonia']['is_pneumonia'] == True:

count+=1

print('Number of VAP cases: {}'.format(count),

'\nPrevalence:', '{}%'.format(round(100*count/len(mimic), 2)))

We lost 20 positive examples no matter k: there are 20 VAP positive

patients with less than 12h of data.

Save

save_to_file(mimic, '~/MIMIC-III/processed_mimic_{}.dat'.format(k))

##############################

_3_Demographics

#############################

import sys

import utils

import collections

import os

import numpy as np

import pandas as pd

import logging

logging.basicConfig(level = logging.INFO)

import load_from_file

from tqdm import tqdm, trange

import time

import matplotlib.pyplot as plt

%matplotlib inline

-

mimic = load_from_file('~/MIMIC-III/processed_mimic_36.dat')

ids = list(mimic.keys())

pos_ids = [ID for ID in ids if

mimic[ID]['Outcomes']['Pneumonia']['is_pneumonia']==True]

neg_ids = [ID for ID in ids if

mimic[ID]['Outcomes']['Pneumonia']['is_pneumonia']==False]

print('Positive cases: {}, Negative cases: {}'.format(len(pos_ids),

len(neg_ids)))

ARDS

ards = pd.read_csv('~/MIMIC/mpwr_ards.csv')

ards = ards.loc[ards['icustay_id'].isin(list(map(int, ids)))]

ards = ards.loc[ards['ards']==1, :].reset_index(drop=True)

ards.head(10)

+

print(len(set(ards['icustay_id']).intersection(set(map(int, pos_ids)))),

len(set(ards['icustay_id']).intersection(set(map(int,

pos_ids))))/len(pos_ids),

len(set(ards['icustay_id']).intersection(set(map(int, neg_ids)))),

len(set(ards['icustay_id']).intersection(set(map(int,

neg_ids))))/len(neg_ids))

print(len(pos_ids)-len(set(ards['icustay_id']).intersection(set(map(int,

pos_ids)))),

1-len(set(ards['icustay_id']).intersection(set(map(int,

pos_ids))))/len(pos_ids),

len(neg_ids)-len(set(ards['icustay_id']).intersection(set(map(int,

neg_ids)))),

1-len(set(ards['icustay_id']).intersection(set(map(int,

neg_ids))))/len(neg_ids))

-

Age

+

ages = [mimic[ID]['Info']['age'] for ID in neg_ids]

bins = [30, 50, 60, 70, 80]

c = np.bincount(np.digitize(ages, bins = bins))

print(c)

print(np.round(c/len(neg_ids), 3))

-

Gender

genders = np.array([mimic[ID]['Info']['gender'] for ID in neg_ids])

c = np.sum(genders=='F')

print(c)

print(c/len(neg_ids))

Ethnicity

+

icustay = pd.read_csv('~/MIMIC/ICUSTAYS.csv')

admissions = pd.read_csv('~/MIMIC/ADMISSIONS.csv').merge(icustay.loc[:,

['HADM_ID', 'ICUSTAY_ID']], on = 'HADM_ID')

admissions = admissions.loc[admissions['ICUSTAY_ID'].isin(list(map(int,

ids)))]

assert len(admissions)==len(set(admissions['ICUSTAY_ID']))

-

eth = admissions.loc[admissions['ICUSTAY_ID'].isin(list(map(int,

pos_ids)))]['ETHNICITY'].to_numpy()

collections.Counter(eth).most_common()

##############################

_4_Features

#############################

In this part we retrieve and save all the additional features we want

that are not present in the original patient collection

(processed_mimic.dat, which only has basic info (age, weight) and vitals

time series).

These features include the comorbidities and various indicators and

counts, that are here split in 48 hourly bins, with the reference time

being the initiation of mechanical ventilation (MV).

Imports

+

import sys

import utils

import collections

import os

import load_from_file, save_to_file

import numpy as np

import pandas as pd

import logging

logging.basicConfig(level = logging.INFO)

from tqdm import tqdm, trange

import time

import matplotlib.pyplot as plt

%matplotlib inline

-

We load the processed_data

#it's just to have the id's

#for thinning experiments, load for k=24 as we want the experiments on this

window.

mimic = load_from_file('~/MIMIC-III/processed_mimic_24.dat')

ids = list(mimic.keys())

pos_ids = [ID for ID in ids if

mimic[ID]['Outcomes']['Pneumonia']['is_pneumonia']==True]

neg_ids = [ID for ID in ids if

mimic[ID]['Outcomes']['Pneumonia']['is_pneumonia']==False]

+

Ignore

for key in mimic:

if not

mimic[key]['Info']['intime'].astype('datetime64[h]')-np.timedelta64(1,

'h')<=mimic[key]['Info']['mvstarts'][0]:

print(key,

mimic[key]['Info']['intime'].astype('datetime64[h]'),

mimic[key]['Info']['mvstarts'][0],

min(mimic[key]['ProcessedData']['HR']['time']))

-

Comorbidities

+

icustay = pd.read_csv('~/MIMIC-III/ICUSTAYS.csv')

admissions = pd.read_csv('~/MIMIC-III/ADMISSIONS.csv').merge(icustay.loc[:,

['HADM_ID', 'ICUSTAY_ID']], on='HADM_ID',)

admissions = admissions.loc[admissions['ICUSTAY_ID'].isin(list(map(int,

ids)))]

comorbidities = ['INTRACRANIAL HEMORRHAGE', 'SUBARACHNOID HEMORRHAGE',

'SEPSIS', 'RESPIRATORY FAILURE', 'CONGESTIVE HEART

FAILURE',

'FEVER', 'RESPIRATORY DISTRESS', 'SHORTNESS OF BREATH',

'CIRRHOSIS', 'RENAL FAILURE', 'CHRONIC RENAL FAILURE',

'BACTEREMIA']

+

comor_dict = {ID:{comor:False for comor in comorbidities} for ID in ids}

diag_dict = pd.Series(admissions.DIAGNOSIS.values,

index=admissions.ICUSTAY_ID.astype(str)).to_dict()

for icustay in diag_dict:

for comorbidity in comorbidities:

if comorbidity in diag_dict[icustay]:

comor_dict[icustay][comorbidity]=True

-

save_to_file(comor_dict, '~/MIMIC-III/_comor.dat')

comor_dict['203909']

+

pos_count = {comor:0 for comor in comorbidities}

neg_count = {comor:0 for comor in comorbidities}

for ID in pos_ids:

for comor in comorbidities:

if comor_dict[ID][comor]==True: pos_count[comor]+=1

for ID in neg_ids:

for comor in comorbidities:

if comor_dict[ID][comor]==True: neg_count[comor]+=1

u=max([len(comor) for comor in comorbidities])

print('Comorbidity', (u-11)*' ', ' + ', ' - ')

for comor in comorbidities:

print(comor, (u-len(comor))*' ', round(pos_count[comor]/len(pos_ids),

3), round(neg_count[comor]/len(neg_ids), 3))

-

Sputum (count)

+

icustay = pd.read_csv('~/MIMIC-III/ICUSTAYS.csv')

microbio =

pd.read_csv('~/MIMIC-III/MICROBIOLOGYEVENTS.csv').merge(icustay.loc[:,

['HADM_ID', 'ICUSTAY_ID', 'INTIME', 'OUTTIME']], on='HADM_ID',)

sputum = microbio.loc[microbio['SPEC_TYPE_DESC'] == 'SPUTUM', :]

sputum = sputum.loc[sputum['ICUSTAY_ID'].isin(list(map(int, ids)))]

print(len(sputum))

sputum = sputum.loc[sputum['CHARTDATE']!=sputum['CHARTTIME'], :]

sputum =

sputum.loc[np.logical_not(np.isnan(pd.to_datetime(sputum['CHARTTIME']).to_n

umpy()))].reset_index(drop=True) #we need the true times !

print(len(sputum))

sputum['CHARTTIME'] = sputum['CHARTTIME'].astype(np.datetime64)

sputum.head(20)

-

#drop some of the entries for thinning experiments

sputum = sputum.drop(np.random.choice(np.arange(0, len(sputum)),

3*len(sputum)//4, replace=False)).reset_index(drop=True)

print(len(sputum))

sputum_count = {ID:np.zeros(48, int) for ID in ids}

for i in range(len(sputum)):

ID = str(sputum['ICUSTAY_ID'][i])

time = sputum['CHARTTIME'][i]

start = mimic[ID]['Info']['mvstarts'][0]

index = int((time - start) / np.timedelta64(1, 'h'))

if index <= 0: index = 0 #VERY IMPORTANT: we choose to consider

things that happened before intubation

if 0 <= index <= 47:

sputum_count[ID][index] +=1

save_to_file(sputum_count, '~/MIMIC-III/_sputum_75.dat')

plt.hist([np.sum(sputum_count[ID]) for ID in neg_ids], bins=40,

density=False, alpha=0.5, color='blue', label='Negative')

plt.hist([np.sum(sputum_count[ID]) for ID in pos_ids], bins=40,

density=False, alpha=0.5, color='red', label='Positive')

plt.legend()

plt.xlim(0, 47)

plt.yscale('log')

plt.show()

print(np.sum([np.sum(sputum_count[ID])>5 for ID in pos_ids]))

print(np.sum([np.sum(sputum_count[ID])>5 for ID in neg_ids]))

Blood (count)

blood = microbio.loc[microbio['SPEC_TYPE_DESC'] == 'BLOOD CULTURE', :]

#microbio loaded from above cell and jointed on ICUSTAYS

blood = blood.loc[blood['ICUSTAY_ID'].isin(list(map(int, ids)))]

print(len(blood))

blood = blood.loc[blood['CHARTDATE']!=blood['CHARTTIME'], :]

blood =

blood.loc[np.logical_not(np.isnan(pd.to_datetime(blood['CHARTTIME']).to_num

py()))].reset_index(drop=True) #we need the true times !

print(len(blood))

blood['CHARTTIME'] = blood['CHARTTIME'].astype(np.datetime64)

blood.head(20)

#drop some of the entries for thinning experiments

blood = blood.drop(np.random.choice(np.arange(0, len(blood)),

3*len(blood)//4, replace=False)).reset_index(drop=True)

print(len(blood))

blood_count = {ID:np.zeros(48, int) for ID in ids}

for i in range(len(blood)):

ID = str(blood['ICUSTAY_ID'][i])

time = blood['CHARTTIME'][i]

start = mimic[ID]['Info']['mvstarts'][0]

index = int((time - start) / np.timedelta64(1, 'h'))

if index <= 0: index = 0 #VERY IMPORTANT: we choose to consider

things that happened before intubation

if 0 <= index <= 47:

blood_count[ID][index] +=1

save_to_file(blood_count, '~/MIMIC-III/_blood_75.dat')

plt.hist([np.sum(blood_count[ID]) for ID in neg_ids], bins=40,

density=False, alpha=0.5, color='blue', label='Negative')

plt.hist([np.sum(blood_count[ID]) for ID in pos_ids], bins=40,

density=False, alpha=0.5, color='red', label='Positive')

plt.legend()

plt.xlim(0, 55)

plt.yscale('log')

plt.show()

print(np.sum([np.sum(blood_count[ID])<5 for ID in pos_ids]))

print(np.sum([np.sum(blood_count[ID])<5 for ID in neg_ids]))

Antibiotics (count)

antibio =

microbio.loc[np.logical_not(np.isnan(microbio['AB_ITEMID'].to_numpy()))]

antibio = antibio.loc[antibio['ICUSTAY_ID'].isin(list(map(int, ids)))]

print(len(antibio))

antibio = antibio.loc[antibio['CHARTDATE']!=antibio['CHARTTIME'], :]

antibio =

antibio.loc[np.logical_not(np.isnan(pd.to_datetime(antibio['CHARTTIME']).to

_numpy()))].reset_index(drop=True) #we need the true times !

print(len(antibio))

antibio['CHARTTIME'] = antibio['CHARTTIME'].astype(np.datetime64)

antibio.head(20)

#drop some of the entries for thinning experiments

antibio = antibio.drop(np.random.choice(np.arange(0, len(antibio)),

3*len(antibio)//4, replace=False)).reset_index(drop=True)

print(len(antibio))

ab_count = {ID:np.zeros(48, int) for ID in ids}

for i in range(len(antibio)):

ID = str(antibio['ICUSTAY_ID'][i])

time = antibio['CHARTTIME'][i]

start = mimic[ID]['Info']['mvstarts'][0]

index = int((time - start) / np.timedelta64(1, 'h'))

if index <= 0: index = 0 #VERY IMPORTANT: we choose to consider

things that happened before intubation

if 0 <= index <= 47:

ab_count[ID][index] +=1

save_to_file(ab_count, '~/MIMIC-III/_antibio_75.dat')

plt.hist([np.sum(ab_count[ID]) for ID in neg_ids], bins=40, density=False,

alpha=0.5, color='blue', label='Negative')

plt.hist([np.sum(ab_count[ID]) for ID in pos_ids], bins=40, density=False,

alpha=0.5, color='red', label='Positive')

plt.legend()

plt.xlim(0, 50)

plt.yscale('log')

plt.show()

print(np.sum([np.sum(ab_count[ID])<5 for ID in pos_ids]))

print(np.sum([np.sum(ab_count[ID])<5 for ID in neg_ids]))

Urine (count, value)

+

urine_codes = ['40055', '43175', '40069',

'40094', '40715', '40473',

'40085', '40057', '40056',

'40405', '40428', '40086',

'40096', '40651',

'226559', '226560', '226561',

'226584', '226563', '226564',

'226565', '226567', '226557',

'226558', '227488', '227489']

items = pd.read_csv('~/MIMIC-III/D_ITEMS.csv')

items.LABEL = items.LABEL.fillna('')

#items = items.loc[items['LABEL'].str.contains('Urine')]

items = items.loc[items['ITEMID'].isin(list(map(int,urine_codes)))]

items.head(40)

-

output = pd.read_csv('~/MIMIC-III/OUTPUTEVENTS.csv')

urine = output.loc[output['ITEMID'].isin(map(int, urine_codes))]

urine = urine.loc[urine['ICUSTAY_ID'].isin(list(map(int, ids)))]

print(len(urine))

urine = urine.loc[urine['VALUE']>=0, :]

urine = urine.loc[urine['VALUE']<=10000, :]

urine = urine.loc[urine['VALUEUOM'].isin(['ml', 'mL']), :]

urine =

urine.loc[np.logical_not(np.isnan(pd.to_datetime(urine['CHARTTIME']).to_num

py()))] #we need the true times !

urine =

urine.loc[np.logical_not(np.isnan(urine['VALUE'].to_numpy()))].reset_index(

drop=True)

print(len(urine))

urine['CHARTTIME'] = urine['CHARTTIME'].astype(np.datetime64)

urine.head(20)

#drop half the entries for thinning experiments

urine = urine.drop(np.random.choice(np.arange(0, len(urine)),

3*len(urine)//4, replace=False)).reset_index(drop=True)

print(len(urine))

urine_value = {ID:np.zeros(48, int) for ID in ids}

urine_count = {ID:np.zeros(48, int) for ID in ids}

for i in range(len(urine)):

ID = str(int(urine['ICUSTAY_ID'][i]))

time = urine['CHARTTIME'][i]

start = mimic[ID]['Info']['mvstarts'][0]

index = int((time - start) / np.timedelta64(1, 'h'))

if index <= 0: index = 0 #VERY IMPORTANT: we choose to consider

things that happened before intubation

if 0 <= index <= 47:

urine_value[ID][index] += urine['VALUE'][i]

urine_count[ID][index] += 1

save_to_file(urine_value, '~/MIMIC-III/_urine_value_75.dat')

save_to_file(urine_count, '~/MIMIC-III/_urine_count_75.dat')

plt.hist([np.sum(urine_value[ID]) for ID in neg_ids], bins=40,

density=False, alpha=0.5, color='blue', label='Negative')

plt.hist([np.sum(urine_value[ID]) for ID in pos_ids], bins=40,

density=False, alpha=0.5, color='red', label='Positive')

plt.legend()

plt.xlim(0, 40000)

plt.yscale('log')

plt.show()

plt.hist([np.sum(urine_count[ID]) for ID in neg_ids], bins=40,

density=False, alpha=0.5, color='blue', label='Negative')

plt.hist([np.sum(urine_count[ID]) for ID in pos_ids], bins=40,

density=False, alpha=0.5, color='red', label='Positive')

plt.legend()

plt.xlim(0, 200)

plt.yscale('log')

plt.show()

MV Hours (value)

def MV(mvstarts, mvends):

'''

From a two ordered lists of np.datetime64 representing the start and

end of consecutive events with no overlap,

extracts the total duration of events for each hour in a 48h window

starting at the first event start,

'''

mv_hours = np.zeros(48)

for i in range(len(mvstarts)):

start = (mvstarts[i]-mvstarts[0]) / np.timedelta64(1, 'h')

end = (mvends[i]-mvstarts[0]) / np.timedelta64(1, 'h')

if start >= 48:

break

if end > 48:

end = 48

if int(end)-int(start)==0:

mv_hours[int(start)] += end-start

else:

mv_hours[int(start)] += int(start)+1-start

for h in range(int(start)+1, int(end)):

mv_hours[h] += 1

if int(end) != 48:

mv_hours[int(end)] += end-int(end)

return mv_hours

mv_hours = {}

for ID in ids:

mv_hours[ID] = MV(mimic[ID]['Info']['mvstarts'],

mimic[ID]['Info']['mvends'])

save_to_file(mv_hours, '~/MIMIC-III/_MV.dat')

print(len(ids), len(pos_ids))

print(np.sum([np.sum(mv_hours[ID])==48 for ID in pos_ids]))

plt.hist([np.sum(mv_hours[ID]) for ID in neg_ids], bins=48, density=False,

alpha=0.5, color='blue', label='Negative')

plt.hist([np.sum(mv_hours[ID]) for ID in pos_ids], bins=48, density=False,

alpha=0.5, color='red', label='Positive')

plt.legend()

plt.xlim(0, 48)

plt.yscale('log')

plt.show()

#We can already see that this will be of upmost importance to differentiate

between positive and negative patients.

ARDS (indicator)

ards = pd.read_csv('~/MIMIC-III/mpwr_ards.csv')

ards = ards.loc[ards['icustay_id'].isin(list(map(int, ids)))]

ards =

ards.loc[np.logical_not(np.isnan(pd.to_datetime(ards['charttime']).to_numpy

()))]

ards = ards.loc[ards['ards']==1, :].reset_index(drop=True)

ards['charttime'] = ards['charttime'].astype(np.datetime64)

ards.head(10)

#drop half the entries for thinning experiments

ards = ards.drop(np.random.choice(np.arange(0, len(ards)), 3*len(ards)//4,

replace=False)).reset_index(drop=True)

print(len(ards))

+

ards_indic = {ID: np.zeros(48, int) for ID in ids}

for i in range(len(ards)):

ID = str(ards['icustay_id'][i])

start = mimic[ID]['Info']['mvstarts'][0]

time = ards['charttime'][i]

index = int((time - start) / np.timedelta64(1, 'h'))

if index < 0: index=0

if index <= 47:

ards_indic[ID][index:] = 1 #this means that once ards is diagnosed,

necessarily the indicator stays at 1 in the future

-

save_to_file(ards_indic, '~/MIMIC-III/_ards_75.dat')

print(np.mean([np.any(ards_indic[ID]) for ID in neg_ids]),

np.mean([np.any(ards_indic[ID]) for ID in pos_ids]))

#the biggest the sum, the earliest it was diagnosed

plt.hist([np.sum(ards_indic[ID]) for ID in neg_ids], bins=48,

density=False, alpha=0.5, color='blue', label='Negative')

plt.hist([np.sum(ards_indic[ID]) for ID in pos_ids], bins=48,

density=False, alpha=0.5, color='red', label='Positive')

plt.legend()

plt.xlim(0, 48)

plt.yscale('log')

plt.show()

#ARDS is not very indicative of VAP, except maybe when developped early

LOS (not a feature!!!)

LOS = {ID: mimic[ID]['Info']['length_of_stay'] for ID in ids}

save_to_file(LOS, '~/MIMIC-III/_LOS.dat')

plt.hist([LOS[ID] for ID in neg_ids], bins=20, density=False, alpha=0.5,

color='blue', label='Negative')

plt.hist([LOS[ID] for ID in pos_ids], bins=20, density=False, alpha=0.5,

color='red', label='Positive')

plt.legend()

plt.xlim(0, 100)

plt.yscale('log')

plt.show()

##############################

_5_Learning

#############################

In this part we train all the models necessary for the final results,

using the final datasets.

+

import sys

import utils

import collections

import os

import numpy as np

import pandas as pd

import logging

logging.basicConfig(level = logging.WARNING)

from tqdm import tqdm, trange

from time import time

import matplotlib.pyplot as plt

%matplotlib inline

plt.style.use('seaborn-darkgrid')

import load_from_file

import sklearn

from sklearn.linear_model import LogisticRegression, SGDClassifier

from sklearn.model_selection import train_test_split, GridSearchCV,

cross_val_score, ParameterGrid

from sklearn.impute import SimpleImputer

from sklearn.neural_network import MLPClassifier

from sklearn.preprocessing import StandardScaler# , Imputer

from sklearn.calibration import calibration_curve, CalibratedClassifierCV

from sklearn import svm

import pickle

import keras

import xgboost

from xgboost.sklearn import XGBClassifier

from sklearn.ensemble import RandomForestClassifier

from sklearn.metrics import roc_auc_score, mean_squared_error,

classification_report, plot_roc_curve, precision_recall_curve,

average_precision_score, brier_score_loss

from bisect import bisect

from interpret import show

from interpret.data import ClassHistogram

from interpret.glassbox import ExplainableBoostingClassifier

from interpret import set_visualize_provider

from interpret.provider import InlineProvider

set_visualize_provider(InlineProvider())

from interpret.perf import ROC

import tensorflow as tf

import tensorflow.keras.layers as layers

import tensorflow.keras.models as models

import tensorflow.keras.optimizers as optimizers

+

SEED = 5299 # a different seed leads to different train/test splits.

Results can vary slightly.

logging.disable(logging.WARNING)

def split(X, Y, seed=SEED):

'''

X: 2D float array of training examples with dimensions (n_examples,

n_features)

Y: 1D binary array of labels with dimension n_examples

seed: int used for the split. With the same seed, datasets of same

size will be splitted the same

outputs: X_train, X_test, Y_train, Y_test

Splits a dataset into training and testing array,

with median imputation for nans and 0-1 normalization

(both based on the training set).

'''

#Split

X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size =

0.2, shuffle = True, random_state=seed)

#Input missing values

impute_median = SimpleImputer(missing_values = np.nan, strategy =

'median')

impute_median.fit(X_train)

X_train_imputed = impute_median.transform(X_train)

X_test_imputed = impute_median.transform(X_test)

X_train = np.array(X_train_imputed)

X_test = np.array(X_test_imputed)

#0-1 normalization

train_min, train_max = np.min(X_train, axis=0), np.max(X_train,

axis=0)

X_train = (X_train-train_min)/(train_max-train_min)

X_test = (X_test-train_min)/(train_max-train_min)

m, sd = np.mean(X_train, axis=0), np.std(X_train, axis=0)

X_train = (X_train-m)/sd

X_test = (X_test-m)/sd

return X_train, X_test, Y_train, Y_test

def brier_skill_score(Y_test, y_pred):

BS = brier_score_loss(Y_test, y_pred)

BSS = 1 - BS/brier_score_loss(Y_test,

np.mean(Y_test)*np.ones(len(Y_test)))

return BSS

def train_lr(X_train, Y_train):

prevalence = np.mean(Y_train)

t=time()

log_reg = SGDClassifier(loss = 'log',

class_weight = 'balanced', eta0 = 0.01)

log_reg_params = {'penalty': ['l2', 'l1', 'elasticnet'],

'l1_ratio': [0.01, 0.1, 0.5, 1],

'alpha': [0.0001, 0.001, 0.01, 0.1],

'learning_rate': ['constant', 'optimal', 'invscaling',

'adaptive'],

'eta0': [0.001, 0.01, 0.1, 1]}

log_reg_params = {'penalty': ['l2', 'l1', 'elasticnet'],

'l1_ratio': [0.01, 0.1, 0.5, 1],

'alpha': [0.0001],

'learning_rate': ['constant'],

'eta0': [0.01]} #always enough though

log_reg_clf = GridSearchCV(log_reg, log_reg_params, cv = 4,

scoring = 'roc_auc', n_jobs = -1, verbose=0)

#scoring=roc_auc, average_precision, or neg_brier_score

log_reg_clf.fit(X_train, Y_train)

print('Logistic classifier trained in', np.timedelta64(int(time()-t),

's'))

return log_reg_clf.best_estimator_, log_reg_clf.best_params_

def train_xgb(X_train, Y_train):

prevalence = np.mean(Y_train)

t=time()

xgb = XGBClassifier(objective = 'binary:logistic',

n_estimators = 1000, learning_rate = 0.01,

scale_pos_weight = (1-prevalence)/prevalence, penalty =

'elasticnet',

use_label_encoder=False, verbosity=0)

xgb_params = {'max_depth': [5],

'reg_lambda': [0.01, 0.1, 1],

'gamma': [0.1, 0.3],

'colsample_bytree': [0.1, 0.3, 0.5]}

xgb_params = {'max_depth': [5],

'reg_lambda': [1],

'gamma': [0.1, 0.3],

'colsample_bytree': [0.1]} #always enough though

xgb_clf = GridSearchCV(xgb, xgb_params, scoring='roc_auc', n_jobs =

1, cv = 4, verbose=3)

xgb_clf.fit(X_train, Y_train)

print('XGBoost trained in', np.timedelta64(int(time()-t), 's'))

return xgb_clf.best_estimator_, xgb_clf.best_params_

def train_ebm(X_train, Y_train, feature_names):

t=time()

def scorer(estimator, X, y):

y_pred = estimator.predict_proba(X)[:, 1]

auc = roc_auc_score(y, y_pred)

return auc

ebm_params = {'learning_rate': [0.01, 0.1, 0.5],

'min_samples_leaf': [2, 4],

'max_leaves': [3, 5],

'max_bins':[256]}

param_list = []

score_list = []

for params in ParameterGrid(ebm_params):

param_list.append(params)

ebm = ExplainableBoostingClassifier(n_jobs=-1, interactions=20,

feature_names=feature_names, **params)

cv_scores = cross_val_score(ebm, X_train, Y_train, scoring=scorer)

#ebm implements 'fit' so it works

score_list.append(cv_scores)

i = np.argmax(np.mean(score_list, axis=1))

best_params = param_list[i]

ebm = ExplainableBoostingClassifier(n_jobs=-1, interactions=20,

feature_names=feature_names, **best_params)

ebm.fit(X_train, Y_train)

print('EBM trained in', np.timedelta64(int(time()-t), 's'))

return ebm, best_params

def train(model_type, X_train, Y_train, feature_names=None):

if model_type=='lr':

return train_lr(X_train, Y_train)

elif model_type=='xgb':

return train_xgb(X_train, Y_train)

elif model_type=='ebm':

return train_ebm(X_train, Y_train, feature_names)

def load_data(k, data_folder = '~/MIMIC-III/learning_data/'):

data = load_from_file(data_folder + 'data_{}.dat'.format(k))

X, Y, header, ID = data['X'], data['Y'], data['header'], data['ID']

return X, Y, header, ID

def save_model(model, model_type, k, seed, path = '~/MIMIC-III/models/'):

with open(path + '{}_{}_{}.pkl'.format(model_type, k, seed), 'wb') as

f:

pickle.dump(model, f)

def load_model(model_type, k, seed, path = '~/MIMIC-III/models/'):

with open(path + '{}_{}_{}.pkl'.format(model_type, k, seed), 'rb') as

f:

model = pickle.load(f)

return model

-

Training

for k in [12, 24, 36, 48]:

X, Y, header, ID = load_data(k)

X_train, X_test, Y_train, Y_test = split(X, Y)

print('Training on {} hours data...'.format(k))

for model_type in ['lr', 'xgb', 'ebm']:

if model_type=='lr' and k==12: continue #####WARNING: remove that

line if you rerun this, I had a problem the first time (but the model

exists)

print('Training {}...'.format(model_type))

clf, best_params = train(model_type, X_train, Y_train, header)

print('Best params: {}'.format(best_params))

save_model(clf, model_type, k, SEED, path = '~/MIMIC-III/models/')

y_pred = clf.predict_proba(X_test)[:, 1]

auc = roc_auc_score(Y_test, y_pred)

ap = average_precision_score(Y_test, y_pred)

bss = brier_skill_score(Y_test, y_pred)

print('AUC: {} ; AP: {} ; BSS: {}'.format(round(auc, 3), round(ap,

3), round(bss, 3)))

print('\n')

for k in [12, 24, 36, 48]:

X, Y, header, ID = load_data(k)

X_train, X_test, Y_train, Y_test = split(X, Y)

print('Training on {} hours data...'.format(k))

for model_type in ['lr', 'xgb']:

clf = load_model(model_type, k, SEED)

clf_isotonic = CalibratedClassifierCV(clf, cv=4, method='isotonic')

clf_isotonic.fit(X_train, Y_train)

save_model(clf_isotonic, model_type, k, SEED, path =

'~/MIMIC-III/calibrated(iso)/')

y_pred = clf_isotonic.predict_proba(X_test)[:, 1]

auc = roc_auc_score(Y_test, y_pred)

ap = average_precision_score(Y_test, y_pred)

bss = brier_skill_score(Y_test, y_pred)

print('AUC: {} ; AP: {} ; BSS: {}'.format(round(auc, 3), round(ap,

3), round(bss, 3)))

print('\n')

Few features model

+

def few_features(X, Y, header, ID):

cols = []

for i in range(len(header)):

if 'MV' in header[i] or 'GCS' in header[i] or 'WBC' in header[i]:

cols.append(i)

return X[:, cols], Y, np.array(header)[cols], ID

for k in [12, 24, 36, 48]:

X, Y, header, ID = few_features(*load_data(k)) # <---

X_train, X_test, Y_train, Y_test = split(X, Y)

print('Training on {} hours data...'.format(k))

for model_type in ['lr', 'xgb', 'ebm']:

print('Training {}...'.format(model_type))

clf, best_params = train(model_type, X_train, Y_train, header)

print('Best params: {}'.format(best_params))

save_model(clf, model_type, k, SEED, path =

'~/MIMIC-III/few_features/')

y_pred = clf.predict_proba(X_test)[:, 1]

auc = roc_auc_score(Y_test, y_pred)

ap = average_precision_score(Y_test, y_pred)

bss = brier_skill_score(Y_test, y_pred)

print('AUC: {} ; AP: {} ; BSS: {}'.format(round(auc, 3), round(ap,

3), round(bss, 3)))

print('\n')

+

def few_features(X, Y, header, ID):

cols = []

for i in range(len(header)):

if 'MV' in header[i] or 'GCS' in header[i] or 'WBC' in header[i]:

cols.append(i)

return X[:, cols], Y, np.array(header)[cols], ID

for k in [12, 24, 36, 48]:

X, Y, header, ID = few_features(*load_data(k)) # <---

X_train, X_test, Y_train, Y_test = split(X, Y)

print('Training on {} hours data...'.format(k))

for model_type in ['ebm']:

print('Training {}...'.format(model_type))

clf, best_params = train(model_type, X_train, Y_train, header)

print('Best params: {}'.format(best_params))

save_model(clf, model_type, k, SEED, path = '~/MIMIC-III/ebm_env1/')

y_pred = clf.predict_proba(X_test)[:, 1]

auc = roc_auc_score(Y_test, y_pred)

ap = average_precision_score(Y_test, y_pred)

bss = brier_skill_score(Y_test, y_pred)

print('AUC: {} ; AP: {} ; BSS: {}'.format(round(auc, 3), round(ap,

3), round(bss, 3)))

print('\n')

-

Thinned datasets

+

k=24

for thinning_rate in [25, 50, 75]:

X, Y, header, ID = load_data(k, data_folder =

'~/MIMIC-III/thinned_{}/'.format(thinning_rate))

X_train, X_test, Y_train, Y_test = split(X, Y)

print('Training on {} hours data...'.format(k))

for model_type in ['ebm']:

print('Training {}...'.format(model_type))

clf, best_params = train(model_type, X_train, Y_train, header)

print('Best params: {}'.format(best_params))

save_model(clf, model_type, k, SEED, path =

'~/MIMIC-III/thinned_{}/'.format(thinning_rate))

y_pred = clf.predict_proba(X_test)[:, 1]

auc = roc_auc_score(Y_test, y_pred)

ap = average_precision_score(Y_test, y_pred)

bss = brier_skill_score(Y_test, y_pred)

print('AUC: {} ; AP: {} ; BSS: {}'.format(round(auc, 3), round(ap,

3), round(bss, 3)))

print('\n')

+

def few_features(X, Y, header, ID):

cols = []

for i in range(len(header)):

if 'MV' in header[i] or 'GCS' in header[i] or 'WBC' in header[i]:

cols.append(i)

return X[:, cols], Y, np.array(header)[cols], ID

for thinning_rate in [25, 50, 75]:

X, Y, header, ID = few_features(*load_data(k, data_folder =

'~/MIMIC-III/thinned_{}/'.format(thinning_rate)))

X_train, X_test, Y_train, Y_test = split(X, Y)

print('Training on {} hours data...'.format(k))

for model_type in ['ebm']:

print('Training {}...'.format(model_type))

clf, best_params = train(model_type, X_train, Y_train, header)

print('Best params: {}'.format(best_params))

save_model(clf, model_type, k, SEED, path =

'~/MIMIC-III/thinned_{}/'.format(thinning_rate))

y_pred = clf.predict_proba(X_test)[:, 1]

auc = roc_auc_score(Y_test, y_pred)

ap = average_precision_score(Y_test, y_pred)

bss = brier_skill_score(Y_test, y_pred)

print('AUC: {} ; AP: {} ; BSS: {}'.format(round(auc, 3), round(ap,

3), round(bss, 3)))

print('\n')

-

Cross performance (train everything on k=48 patient population)

for k in [12, 24, 36, 48]:

X, Y, header, ID = load_data(k)

_, _, _, ID48 = load_data(48)

i = np.where(np.isin(ID, ID48))

X, Y, ID = X[i], np.array(Y)[i], np.array(ID)[i]

X_train, X_test, Y_train, Y_test = split(X, Y)

print('Training on {} hours data...'.format(k))

for model_type in ['lr', 'xgb', 'ebm']:

print('Training {}...'.format(model_type))

clf, best_params = train(model_type, X_train, Y_train, header)

print('Best params: {}'.format(best_params))

save_model(clf, model_type, k, SEED, path =

'~/MIMIC-III/robustness/')

y_pred = clf.predict_proba(X_test)[:, 1]

auc = roc_auc_score(Y_test, y_pred)

ap = average_precision_score(Y_test, y_pred)

bss = brier_skill_score(Y_test, y_pred)

print('AUC: {} ; AP: {} ; BSS: {}'.format(round(auc, 3), round(ap,

3), round(bss, 3)))

print('\n')

##############################

_6_Analysis

#############################

This part is used to generate all the figures for the article. The last

bit (risk vs feature plots) need to run on env1 for work (python library

versions problem), everything else on env2, as all the parts. Some cells

have to be modified to generate different variations of the figures

(everything is indicated)

+

import sys

import utils

import collections

import os

import numpy as np

import pandas as pd

import logging

logging.basicConfig(level = logging.WARNING)

from tqdm import tqdm, trange

from time import time

import matplotlib.pyplot as plt

%matplotlib inline

plt.style.use('seaborn-darkgrid')

import load_from_file, get_detailed_performance

import sklearn

from sklearn.linear_model import LogisticRegression, SGDClassifier

from sklearn.model_selection import train_test_split, GridSearchCV

from sklearn.impute import SimpleImputer

from sklearn.neural_network import MLPClassifier

from sklearn.preprocessing import StandardScaler# , Imputer

from sklearn.calibration import calibration_curve

from sklearn import svm

import pickle

import keras

import xgboost

from xgboost.sklearn import XGBClassifier

from sklearn.ensemble import RandomForestClassifier

from sklearn.metrics import roc_auc_score, mean_squared_error,

classification_report, plot_roc_curve

from sklearn.metrics import precision_recall_curve,

average_precision_score, brier_score_loss

from bisect import bisect

from interpret import show

from interpret.data import ClassHistogram

from interpret.glassbox import ExplainableBoostingClassifier

from interpret import set_visualize_provider

from interpret.provider import InlineProvider

set_visualize_provider(InlineProvider())

from interpret.perf import ROC

+

SEED = 5299

logging.disable(logging.WARNING)

def split(X, Y, seed=SEED):

'''

X: 2D float array of training examples with dimensions (n_examples,

n_features)

Y: 1D binary array of labels with dimension n_examples

seed: int used for the split. With the same seed, datasets of same

size will be splitted the same

outputs: X_train, X_test, Y_train, Y_test

Splits a dataset into training and testing array,

with median imputation for nans and 0-1 normalization

(both based on the training set).

'''

#Split

X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size =

0.2, shuffle = True, random_state=seed)

#Input missing values

impute_median = SimpleImputer(missing_values = np.nan, strategy =

'median')

impute_median.fit(X_train)

X_train_imputed = impute_median.transform(X_train)

X_test_imputed = impute_median.transform(X_test)

X_train = np.array(X_train_imputed)

X_test = np.array(X_test_imputed)

#0-1 normalization

train_min, train_max = np.min(X_train, axis=0), np.max(X_train,

axis=0)

X_train = (X_train-train_min)/(train_max-train_min)

X_test = (X_test-train_min)/(train_max-train_min)

m, sd = np.mean(X_train, axis=0), np.std(X_train, axis=0)

X_train = (X_train-m)/sd

X_test = (X_test-m)/sd

return X_train, X_test, Y_train, Y_test

def brier_skill_score(Y_test, y_pred):

BS = brier_score_loss(Y_test, y_pred)

BSS = 1 - BS/brier_score_loss(Y_test,

np.mean(Y_test)*np.ones(len(Y_test)))

random_bss = 1 - (1/3) / brier_score_loss(Y_test,

np.mean(Y_test)*np.ones(len(Y_test)))

return BSS, random_bss

def load_data(k, data_folder = '~/MIMIC-III/learning_data/'):

data = load_from_file(data_folder + 'data_{}.dat'.format(k))

X, Y, header, ID = data['X'], data['Y'], data['header'], data['ID']

return X, Y, header, ID

def save_model(model, model_type, k, seed, path = '~/MIMIC-III/models/'):

with open(path + '{}_{}_{}.pkl'.format(model_type, k, seed), 'wb') as

f:

pickle.dump(model, f)

def load_model(model_type, k, seed, path = '~/MIMIC-III/models/'):

with open(path + '{}_{}_{}.pkl'.format(model_type, k, seed), 'rb') as

f:

model = pickle.load(f)

return model

def few_features(X, Y, header, ID):

cols = []

for i in range(len(header)):

if 'MV' in header[i] or 'GCS' in header[i] or 'WBC' in header[i]:

cols.append(i)

return X[:, cols], Y, np.array(header)[cols], ID

def get_roc(model_type, k, seed, path = '~/MIMIC-III/models/'):

X, Y, header, ID = load_data(k) #### MODIFY here for few_features

roc curves: few_features(*load_data(k))

X_train, X_test, Y_train, Y_test = split(X, Y)

clf = load_model(model_type, k, seed, path = path)

y_pred = clf.predict_proba(X_test)[:, 1]

report = get_detailed_performance(Y_test, y_pred)

return report['roc_x'], report['roc_y'], round(report['auroc'], 3)

def get_pr(model_type, k, seed, path = '~/MIMIC-III/models/'):

X, Y, header, ID = load_data(k)

X_train, X_test, Y_train, Y_test = split(X, Y)

clf = load_model(model_type, k, seed, path = path)

y_pred = clf.predict_proba(X_test)[:, 1]

precision, recall, _ = precision_recall_curve(Y_test, y_pred)

ap = average_precision_score(Y_test, y_pred)

return precision, recall, round(ap, 3), np.mean(Y_train)

def get_f(model_type, k, seed, path = '~/MIMIC-III/models/'):

clf = load_model(model_type, k, seed, path=path)

_, _, standard_header, _ = load_data(48) #disgusting but hey

if model_type=='lr':

return np.array(standard_header[:87]), np.array(clf.coef_[0])

#warning: pos and neg values: take abs

if model_type=='xgb':

return np.array(standard_header[:87]),

np.array(clf.feature_importances_)

if model_type=='ebm':

report = clf.explain_global().data()

return np.array(report['names']), np.array(report['scores'])

def get_calibration(model_type, k, seed, path = '~/MIMIC-III/models/'):

X, Y, header, ID = load_data(k)

X_train, X_test, Y_train, Y_test = split(X, Y)

prevalence = np.mean(Y_test)

clf = load_model(model_type, k, seed, path=path)

y_pred = clf.predict_proba(X_test)[:, 1]

fop, mpv = calibration_curve(Y_test, y_pred, normalize = False,

n_bins=8, strategy='quantile')

bss, random_bss = brier_skill_score(Y_test, y_pred)

return mpv, fop, prevalence, round(bss, 3), round(random_bss, 3)

results_path = '~/MIMIC-III/results/'

-

Performance curves

+

k = 12 #Set that

model_titles = {'lr':'Logistic Regression', 'xgb':'XGBoost', 'ebm':'EBM'}

for model_type in ['lr', 'xgb', 'ebm']:

roc_x, roc_y, auc = get_roc(model_type, k, seed=SEED)

plt.plot(roc_x, roc_y, label='{}

(AUC={})'.format(model_titles[model_type], auc))

plt.plot([0, 1], [0, 1], label='Random (AUC=0.5)', linestyle='--')

plt.xlabel('1-Specificity')

plt.ylabel('Sensitivity')

plt.title('ROC curves for {}h window'.format(k))

plt.legend()

plt.savefig(results_path + 'ROC_' + '{}.png'.format(k))

plt.show()

+

k = 48 #set that

model_titles = {'lr':'Logistic Regression', 'xgb':'XGBoost', 'ebm':'EBM'}

for model_type in ['lr', 'xgb', 'ebm']:

precision, recall, ap, prevalence = get_pr(model_type, k, seed =

SEED)

plt.plot(recall, precision, label='{}

(AP={})'.format(model_titles[model_type], ap))

plt.plot([0, 1], [prevalence, prevalence], label='Random', linestyle='--')

plt.xlabel('Recall')

plt.ylabel('Precision')

plt.title('PR curves for {}h window'.format(k))

plt.legend()

plt.savefig(results_path + 'PR_' + '{}.png'.format(k))

plt.show()

+

k = 48 #set that modify where indicated for uncalibrated/calibrated models.

ebm is already calibrated

model_titles = {'lr':'Logistic Regression', 'xgb':'XGBoost', 'ebm':'EBM'}

for model_type in ['lr', 'xgb', 'ebm']:

if model_type=='ebm':

mpv, fop, prevalence, bss, random_bss = get_calibration(model_type,

k, seed = SEED, path = '~/MIMIC-III/models/')

else: #####here

mpv, fop, prevalence, bss, random_bss = get_calibration(model_type,

k, seed = SEED, path = '~/MIMIC-III/models/calibrated(iso)/')

plt.plot(mpv, fop, label='{}

(BSS={})'.format(model_titles[model_type], bss))

plt.xlabel('Mean Predicted Value')

plt.ylabel('Fraction of Positive')

plt.plot([0, 1], [prevalence, prevalence], label='Random

(BSS={})'.format(random_bss), linestyle='--', linewidth=0.75)

plt.plot([0, 1], [0, 1], label='Perfectly calibrated (BSS=1)',

linestyle='--', linewidth=0.75)

plt.plot([prevalence], [prevalence], marker='*', label='Dummy (BSS=0)',

linewidth=0)

plt.title('Calibration curves for {}h window (isotonic

calibration)'.format(k)) #####here

plt.legend()

plt.savefig(results_path + 'Cal_' + '{}.png'.format(k))

plt.show()

+

k = 48 #set that

model_type = 'xgb' #set that

n_features = 20

model_titles = {'lr':'Logistic Regression', 'xgb':'XGBoost', 'ebm':'EBM'}

plt.rcParams["figure.figsize"] = (8, 6) #change if needed, but prettier

like that

names, scores = get_f(model_type, k, SEED, path = '~/MIMIC-III/models/')

sorted_idx = np.abs(scores).argsort()

plt.barh(names[sorted_idx][-n_features:],

100*np.abs(scores[sorted_idx][-n_features:])/np.sum(np.abs(scores)))

plt.xlabel('Feature importance (% of absolute total score)')

plt.title('{}, k={}'.format(model_titles[model_type], k))

plt.savefig(results_path + 'Features_' + '{}_{}.png'.format(model_type, k))

plt.show()

plt.rcParams["figure.figsize"] = (6.4, 4.8) #default fig size

-

Few features EBM

+

model_type = 'ebm' #set that

model_titles = {'lr':'Logistic Regression', 'xgb':'XGBoost', 'ebm':'EBM'}

for k in [12, 24, 36, 48]:

#######WARNING: modify the get_roc function as indicated for this

cell (JUST this one)

roc_x, roc_y, auc = get_roc(model_type, k, seed=SEED,

path='~/MIMIC-III/models/few_features/')

plt.plot(roc_x, roc_y, label='k={} (AUC={})'.format(k, auc))

plt.plot([0, 1], [0, 1], label='Random (AUC=0.5)', linestyle='--')

plt.xlabel('1-Specificity')

plt.ylabel('Sensitivity')

plt.title('EBM ROC curves (few features)'.format(k))

plt.legend()

plt.savefig(results_path + 'EBM_ROC_few.png')

plt.show()

-

Robustness

Thinning

+

def doublesplit(X_1, Y_1, X_2, Y_2):

X_train, X_ref, Y_train, Y_ref = train_test_split(X_1, Y_1, test_size

= 0.2, shuffle = True, random_state = SEED)

_, X_test, _, Y_test = train_test_split(X_2, Y_2, test_size = 0.2,

shuffle = True, random_state = SEED)

impute_median = SimpleImputer(missing_values = np.nan, strategy =

'median')

impute_median.fit(X_train)

X_train = np.array(impute_median.transform(X_train))

X_ref = np.array(impute_median.transform(X_ref))

X_test = np.array(impute_median.transform(X_test))

#0-1 normalization

train_min, train_max = np.min(X_train, axis=0), np.max(X_train,

axis=0)

X_train = (X_train-train_min)/(train_max-train_min)

X_ref = (X_ref-train_min)/(train_max-train_min)

X_test = (X_test-train_min)/(train_max-train_min)

return X_train, X_ref, X_test, Y_train, Y_ref, Y_test

####change where it is written for few_features: add to path, or

few_features(*load_data(...)). 6 changes in total

default_model = load_model('ebm', 24, seed=SEED, path =

'~/MIMIC-III/models/few_features/') ######here

default_X, default_Y, header, ID = few_features(*load_data(24)) #####here

X_train, X_test, Y_train, Y_test = split(default_X, default_Y)

y_pred = default_model.predict_proba(X_test)[:, 1]

auc = roc_auc_score(Y_test, y_pred)

default_auc = [auc]

thinned_auc = [auc]

for thinning_rate in [25, 50, 75]:

#####here

X, Y, header, ID = few_features(*load_data(24, data_folder =

'~/MIMIC-III/learning_data/thinned_{}/'.format(thinning_rate)))

_, _, X_test, _, _, Y_test = doublesplit(default_X, default_Y, X, Y)

#the "unthinned" model needs to see the thinned data under its perspective

for a fair comparison

default_auc.append(roc_auc_score(Y_test,

default_model.predict_proba(X_test)[:, 1]))

#####here

thinned_model = load_model('ebm', 24, seed=SEED, path =

'~/MIMIC-III/models/few_features/thinned_{}/'.format(thinning_rate))

X_train, X_test, Y_train, Y_test = split(X, Y)

thinned_auc.append(roc_auc_score(Y_test,

thinned_model.predict_proba(X_test)[:, 1]))

default_auc, thinned_auc = np.array(default_auc), np.array(thinned_auc)

plt.scatter(np.arange(4), default_auc, label='Model trained on unthinned

data', s=50)

plt.scatter(np.arange(4), thinned_auc, label='Model trained on the thinned

data', s=50)

plt.xticks(np.arange(4), label=[0, 25, 50, 75])

plt.xlabel('Thinning rate')

plt.ylabel('AUC')

plt.ylim(0.5, 1)

plt.legend()

plt.title('EBM, 24h window (few features)') ####here

plt.savefig(results_path + 'Thinning_few_features.png') ####here

plt.show()

print(default_auc, thinned_auc)

-

Cross performance

+

results = {} #keys: model then data

for k in [12, 24, 36, 48]:

for model_type in ['lr', 'xgb', 'ebm']:

model = load_model(model_type, k, seed=SEED, path =

'~/MIMIC-III/models/robustness/')

results[model_type+'_'+str(k)] = {}

for data_k in [12, 24, 36, 48]:

X, Y, header, ID = load_data(data_k)

_, _, _, ID48 = load_data(48)

i = np.where(np.isin(ID, ID48))

X, Y, ID = X[i], np.array(Y)[i], np.array(ID)[i]

X_train, X_test, Y_train, Y_test = split(X, Y)

y_pred = model.predict_proba(X_test)[:, 1]

auc = roc_auc_score(Y_test, y_pred)

ap = average_precision_score(Y_test, y_pred)

bss = brier_skill_score(Y_test, y_pred)

results[model_type+'_'+str(k)][data_k]=(auc, ap, bss)

+

import seaborn as sns

model_titles = {'lr':'Logistic Regression', 'xgb':'XGBoost', 'ebm':'EBM'}

model_type = 'ebm' #set that

table = np.zeros((4, 4))

for i in range(4):

for j in range(4):

table[i, j] = results[model_type+'_'+str([12, 24, 36, 48][i])][[12,

24, 36, 48][j]][0]

sns.heatmap(table, vmin=0.5, vmax=1, annot=True, yticklabels = [str([12,

24, 36, 48][i]) for i in range(4)],

xticklabels = [str([12, 24, 36, 48][i]) for i in range(4)])

plt.xlabel('Time window for testing')

plt.ylabel('Time window for training')

plt.title('Cross performance of {} for different time

windows'.format(model_titles[model_type]))

plt.savefig(results_path + 'grid_{}.png'.format(model_type))

plt.show()

-

Risk vs feature plot for few_features model

+

from interpret import show

from interpret.data import ClassHistogram

from interpret.glassbox import ExplainableBoostingClassifier

from interpret import set_visualize_provider

from interpret.provider import InlineProvider

set_visualize_provider(InlineProvider())

ebm = load_model('ebm', 24, seed=SEED, path =

'~/MIMIC-III/models/few_features/ebm_env1/')

explain = ebm.explain_global()

report = explain.data()

names, scores = np.array(report['names']), np.array(report['scores'])

n_features = 20

model_titles = {'lr':'Logistic Regression', 'xgb':'XGBoost', 'ebm':'EBM'}

plt.rcParams["figure.figsize"] = (8, 6)

sorted_idx = np.abs(scores).argsort()

plt.barh(names[sorted_idx][-n_features:],

100*np.abs(scores[sorted_idx][-n_features:])/np.sum(np.abs(scores)))

plt.xlabel('Feature importance (% of absolute total score)')

plt.title('{}, k={}'.format(model_titles['ebm'], 24))

plt.show()

plt.rcParams["figure.figsize"] = (6.4, 4.8)

#look at top 3 features

-

show(explain)

