Vo, A.N.; Kundu, S.; Strong, C.; Jung, O.; Lee, E.; Song, M.J.; Boutin, M.E.; Raghunath, M.; Ferrer, M. Enhancement of Neuroglial Extracellular Matrix Formation and Physiological Activity of Dopaminergic Neural Cocultures by Macromolecular Crowding. Cells2022, 11, 2131.
Vo, A.N.; Kundu, S.; Strong, C.; Jung, O.; Lee, E.; Song, M.J.; Boutin, M.E.; Raghunath, M.; Ferrer, M. Enhancement of Neuroglial Extracellular Matrix Formation and Physiological Activity of Dopaminergic Neural Cocultures by Macromolecular Crowding. Cells 2022, 11, 2131.
Vo, A.N.; Kundu, S.; Strong, C.; Jung, O.; Lee, E.; Song, M.J.; Boutin, M.E.; Raghunath, M.; Ferrer, M. Enhancement of Neuroglial Extracellular Matrix Formation and Physiological Activity of Dopaminergic Neural Cocultures by Macromolecular Crowding. Cells2022, 11, 2131.
Vo, A.N.; Kundu, S.; Strong, C.; Jung, O.; Lee, E.; Song, M.J.; Boutin, M.E.; Raghunath, M.; Ferrer, M. Enhancement of Neuroglial Extracellular Matrix Formation and Physiological Activity of Dopaminergic Neural Cocultures by Macromolecular Crowding. Cells 2022, 11, 2131.
Abstract
The neuroglial extracellular matrix (ECM) provides critical support and physiological cues for the proper growth, differentiation, and function of neuronal cells in the brain. However, in most in vitro settings that study neural physiology, cells are grown as monolayers on stiff surfaces that maximize adhesion and proliferation, and therefore lack the physiological cues that ECM in native neuronal tissues provides. Macromolecular crowding (MMC) is a biophysical phenomenon based on the principle of excluded volume that can be harnessed to induce native ECM deposition by cells in culture. Here, we show that MMC using two species of Ficoll with vitamin C supplementation significantly boosts deposition of relevant brain ECM by cultured human astrocytes. Dopaminergic neurons co-cultured on this astrocyte-ECM bed prepared under MMC treatment showed longer and denser neuronal extensions, a higher number of pre ad post synaptic contacts, and increased physiological activity as evidenced by higher frequency calcium oscillation, compared to standard co-culture conditions. When the pharmacological activity of various compounds was tested on MMC-treated co-cultures, their responses were enhanced, and for apomorphine, a D2-receptor agonist, it was inverted in comparison to control cell culture conditions, thus emulating responses observed in in vivo settings. These results indicate that macromolecular crowding can harness the ECM-building potential of human astrocytes in vitro forming an ultra-flat 3D microenvironment that makes neural cultures more physiological and pharmacological relevant.
Keywords
Extracellular matrices; Macromolecular crowding; human iPSC derived astrocytes; human iPSC derived dopaminergic neurons; drug testing
Subject
Biology and Life Sciences, Cell and Developmental Biology
Copyright:
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.