Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

E-cadherin Variants Affecting Distinct Protein Domains Impact Differently on Tensional Homeostasis of Gastric Cancer Cells

Version 1 : Received: 26 April 2022 / Approved: 30 April 2022 / Online: 30 April 2022 (05:18:13 CEST)

A peer-reviewed article of this Preprint also exists.

Xu, H.; Bunde, K.A.; Figueiredo, J.; Seruca, R.; Smith, M.L.; Stamenović, D. Differential Impacts on Tensional Homeostasis of Gastric Cancer Cells Due to Distinct Domain Variants of E-Cadherin. Cancers 2022, 14, 2690. Xu, H.; Bunde, K.A.; Figueiredo, J.; Seruca, R.; Smith, M.L.; Stamenović, D. Differential Impacts on Tensional Homeostasis of Gastric Cancer Cells Due to Distinct Domain Variants of E-Cadherin. Cancers 2022, 14, 2690.

Abstract

In epithelia, breakdown of tensional homeostasis is closely associated with E-cadherin dysfunction and disruption of tissue function and integrity. In this study, we investigated the effect of E-cadherin mutations affecting distinct protein domains on tensional homeostasis of gastric cancer cells. We used micropattern traction microscopy to measure temporal fluctuations of cellular traction forces in AGS cells transfected with the wild-type E-cadherin or with variants affecting the extracellular, the juxtamembrane, and the intracellular domains of the protein. We focused on the dynamic aspect of tensional homeostasis, namely the ability of cells to maintain a consistent level of tension, with low temporal variability around a set point. Cells were cultured on hydrogels micropatterned with different extracellular matrix (ECM) proteins to test whether the ECM adhesion impacts cell behavior. A combination of Fibronectin and Vitronectin was used as a substrate that promotes the adhesive ability of E-cadherin dysfunctional cells, whereas Collagen VI was used to test an unfavorable ECM condition. Our results showed that mutations affecting distinct E-cadherin domains influenced differently cell tensional homeostasis, and pinpointed the juxtamembrane and intracellular regions of E-cadherin as the key players in this process. Furthermore, Fibronectin and Vitronectin might modulate cancer cell behavior towards tensional homeostasis.

Keywords

Tensional homeostasis; Traction microscopy; Gastric cancer cells; E-cadherin mutations; Extra-cellular matrix proteins

Subject

Biology and Life Sciences, Biochemistry and Molecular Biology

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.