Preprint
Article

This version is not peer-reviewed.

Phenomenological Potentials for the Refractory Metals Cr, Mo and W

Submitted:

26 April 2022

Posted:

28 April 2022

You are already at the latest version

Abstract
Cohesion in the refractory metals Cr, Mo, and W is phenomenologically described in this work via a n-body energy functional with a set of physically motivated parameters that were optimized to reproduce selected experimental properties characteristic of perfect and defective crystals. The functional contains four terms accounting for the hard-core repulsion, the Thomas-Fermi kinetic energy repulsion and for contributions to the binding energy of s and d valence electrons. Lattice dynamics, molecular statics, and molecular dynamics calculations show that this model describes satisfactorily thermodynamic properties of the studied metals whereas, unlike other empirical approaches from the literature, predictions of phonon dispersion relations and of surface and point defect energetics reveal in fair good agreement with experiments. These results suggest that the present model is well adapted to large-scale simulations and whenever total energy calculations of thermodynamic properties are unfeasible
Keywords: 
;  ;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated