Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Wind Turbine Pitch Actuator Regulation for Efficient and Re-liable Energy Conversion: A Fault-Tolerant Constrained Control Solution

Version 1 : Received: 7 March 2022 / Approved: 17 March 2022 / Online: 17 March 2022 (03:01:31 CET)

A peer-reviewed article of this Preprint also exists.

Habibi, H.; Howard, I.; Simani, S. Wind Turbine Pitch Actuator Regulation for Efficient and Reliable Energy Conversion: A Fault-Tolerant Constrained Control Solution. Actuators 2022, 11, 102. Habibi, H.; Howard, I.; Simani, S. Wind Turbine Pitch Actuator Regulation for Efficient and Reliable Energy Conversion: A Fault-Tolerant Constrained Control Solution. Actuators 2022, 11, 102.

Abstract

Motivated for improving the efficiency and reliability of wind turbine energy conversion, this paper presents an advanced control design that enhances the power regulation efficiency and re-liability. The constrained behaviour of the wind turbine is taken into account, by using the barrier Lyapunov function in the analysis of the Lyapunov direct method. This, consequently, guarantees that the generated power remains within the desired bounds to satisfy the grid power demand. Moreover, a Nussbaum-type function is utilized in the control scheme, to cope with the unpre-dictable wind speed. This eliminates the need for accurate wind speed measurement or estimation. Furthermore, via properly designed adaptive laws, a robust actuator fault-tolerant capability is integrated into the scheme, handling the model uncertainty. Numerical simulations are performed on a high-fidelity wind turbine benchmark model, under different fault scenarios, to verify the effectiveness of the developed design. Also, a Monte-Carlo analysis is exploited for the evaluation of the reliability and robustness characteristics against the model-reality mismatch, measurement errors and disturbance effects.

Keywords

Adaptive Constrained Control; Barrier Lyapunov Function; Fault-Tolerant Control; Nussbaum-type function; power regulation; wind turbine benchmark

Subject

Engineering, Control and Systems Engineering

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.