Preprint
Article

This version is not peer-reviewed.

Robust Control Examples Applied to a Wind Turbine Simulated Model

A peer-reviewed article of this preprint also exists.

Submitted:

19 September 2017

Posted:

19 September 2017

You are already at the latest version

Abstract
Wind turbine plants are complex dynamic and uncertain processes driven by stochastic inputs and disturbances, as well as different loads represented by gyroscopic, centrifugal, and gravitational forces. Moreover, as their aerodynamic models are nonlinear, both modelling and control become challenging problems. On one hand, high-fidelity simulators should contain different parameters and variables in order to accurately describe the main dynamic system behaviour. Therefore, the development of modelling and control for wind turbine systems should consider these complexity aspects. On the other hand, these control solutions have to include the main wind turbine dynamic characteristics without becoming too complicated. The main point of this paper is thus to provide two practical examples of development of robust control strategies when applied to a simulated wind turbine plant. Experiments with the wind turbine simulator and the Monte–Carlo tools represent the instruments for assessing the robustness and reliability aspects of the developed control methodologies when the model-reality mismatch and measurement errors are also considered. Advantages and drawbacks of these regulation methods are also highlighted with respect to different control strategies via proper performance metrics.
Keywords: 
;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated