Preprint
Article

Design and Optimization of Free-Form Surfaces for Modular Concrete 3D Printing

Submitted:

14 March 2022

Posted:

15 March 2022

You are already at the latest version

A peer-reviewed article of this preprint also exists.

Abstract
Shell-like, double curved and thus above-average performance structures, are usually produced monolithically on site. For industrial advancement, however, they must be divided into transportable modules which can be assembled on the construction site (design for assembly). Models are lattice shells made of steel and glass, in which predominantly flat sub-surfaces (modules) are used. Therefore, the main question is: Which modularizations are suitable for flow production with mineral building materials? In this paper designed free-form surface is going to be discretized as PQ circular mesh system, suitable modules for 3D concrete printing. Moreover, the multi-criteria optimization is done with Response Surface Methodology (RSM) in order to get optimal final shape. The goal is to start from the arbitrary shape, that can be generated from two curves, with possible two-way division into modules and compare it with the resulted discretized PQ circular mesh system, realized with new algorithm. The comparison can be defined through two main criteria: geometrical and structural.
Keywords: 
circular meshes; free-form surfaces; 3D concrete printing; shell structures
Subject: 
Engineering  -   Architecture, Building and Construction
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.

Downloads

346

Views

276

Comments

0

Subscription

Notify me about updates to this article or when a peer-reviewed version is published.

Email

Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2025 MDPI (Basel, Switzerland) unless otherwise stated