Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Carbon and Trace Element Compositions of Total Suspended Particles (TSP) and Nanoparticles (PM0.1) in Ambient Air of Southern Thailand and Characterization of Their Sources

Version 1 : Received: 9 March 2022 / Approved: 11 March 2022 / Online: 11 March 2022 (03:02:33 CET)

A peer-reviewed article of this Preprint also exists.

Inerb, M.; Phairuang, W.; Paluang, P.; Hata, M.; Furuuchi, M.; Wangpakapattanawong, P. Carbon and Trace Element Compositions of Total Suspended Particles (TSP) and Nanoparticles (PM0.1) in Ambient Air of Southern Thailand and Characterization of Their Sources. Atmosphere 2022, 13, 626. Inerb, M.; Phairuang, W.; Paluang, P.; Hata, M.; Furuuchi, M.; Wangpakapattanawong, P. Carbon and Trace Element Compositions of Total Suspended Particles (TSP) and Nanoparticles (PM0.1) in Ambient Air of Southern Thailand and Characterization of Their Sources. Atmosphere 2022, 13, 626.

Journal reference: Atmosphere 2022, 13, 626
DOI: 10.3390/atmos13040626

Abstract

The concentration of total suspended particles (TSP) and nanoparticles (PM0.1) over Hat Yai city, Songkhla province, southern Thailand was measured in 2019. Organic carbon (OC) and elemental carbon (EC) were evaluated by carbon aerosol analyzer (IMPROVE-TOR) method. Thirteen trace elements including Al, Ba, K, Cu, Cr, Fe, Mg, Mn, Na, Ni, Ti, Pb, and Zn were evaluated by ICP-OES. Annual average TSP and PM0.1 mass concentrations were determined to be 58.3 ± 7.8 and 10.4 ± 1.2 µg/m3, respectively. The highest levels of PM occurred in the wet season with the corresponding values for the dry seasons being lower. The annual average OC/EC ratio ranged from 3.8 - 4.2 (TSP) and 2.5 - 2.7 (PM0.1). The char to soot ratios were constantly less than 1.0 for both TSP and PM0.1, indicating that land transportation is the main emission source. A principal component analysis (PCA) revealed that road transportation, industry, and biomass burning are the key sources of these particles. However, PM arising from Indonesian peatland fires causes an increase in the carbon and trace element concentrations in southern Thailand. The findings make useful information for air quality management and strategies for controlling this problem, based on a source apportionment analysis.

Keywords

air quality management; biomass burning; carbon; PCA; PM0.1; trace elements

Subject

EARTH SCIENCES, Atmospheric Science

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our diversity statement.

Leave a public comment
Send a private comment to the author(s)
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.