Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Direct Bonding Method for Completely Cured Polyimide by Surface Activation and Wetting

Version 1 : Received: 1 March 2022 / Approved: 2 March 2022 / Online: 2 March 2022 (07:47:17 CET)

A peer-reviewed article of this Preprint also exists.

Meng, Y.; Gao, R.; Wang, X.; Huang, S.; Wei, K.; Wang, D.; Mu, F.; Liu, X. Direct Bonding Method for Completely Cured Polyimide by Surface Activation and Wetting. Materials 2022, 15, 2529. Meng, Y.; Gao, R.; Wang, X.; Huang, S.; Wei, K.; Wang, D.; Mu, F.; Liu, X. Direct Bonding Method for Completely Cured Polyimide by Surface Activation and Wetting. Materials 2022, 15, 2529.

Abstract

Polymer adhesives have emerged as a promising dielectric passivation layer in hybrid bonding for 3D integration while they raise misalignment problems during curing. In this work, the synergistic effect of oxygen plasma surface activation and wetting is utilized to achieve bonding between completed cured polyimides. The optimized process achieves a void-less bonding with a maximum shear strength of 35.3 MPa at a low temperature of 250 °C in merely 2 min, significantly shortening the bonding period and decreasing thermal stress. It is found that the plasma activation generated hydrophilic groups on the polyimide surface, and the wetting process further introduced more -OH groups and water molecular on the activated polyimide surface. The synergistic process of plasma activation and wetting facilitate bridging polyimide interfaces to achieve bonding, providing an alternative path for adhesive bonding in 3D integration.

Keywords

polyimide bonding; plasma activation; hydrophilic; hybrid bonding; 3D integration

Subject

Engineering, Electrical and Electronic Engineering

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.